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Abstract

In recent years, modelling the evolution of beam losses in circular proton ma-

chines starting from the concept of dynamic aperture its time evolution has

been the focus of intense research. Results from single-particle non-linear beam

dynamics have been used to build simple models that proved to be in good

agreement with beam measurements. These results have been generalised, thus

opening the possibility to describe also the luminosity evolution in a circular

hadron collider. In a companion paper [1], the derivation of a scaling law for

luminosity, which includes both burn off and pseudo-diffusive effects, has been

carried out. In this paper, the proposed models are applied to the analysis of

the data collected during the CERN Large Hadron Collider (LHC) Run 1. A

data set referring to the proton physics runs for the years 2011 and 2012 has

been analysed and the results are proposed and discussed in detail in this paper.

Keywords: Dynamic aperture, luminosity evolution, LHC

1. Introduction

The unavoidable non-linear magnetic field errors that plague the dynamics

of charged particles of modern superconducting colliders, inducing new and

potential harmful effects, require the development of new approaches to perform
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more powerful analyses and to gain insight in the beam dynamics. It is the

case of the critical revision of the concept of dynamic aperture (DA) and of its

dependence on time [2, 3] for the case of single-particle effects. Such a scaling

law was later successfully extended to the case in which weak-strong beam-beam

effects are taken into account [4]. More importantly, this scaling law paved

the way to describe the time evolution of beam losses in a circular particle

accelerator under the influence of non-linear effects [5], verified experimentally

using data from CERN accelerators and the Tevatron, which is at the heart of

a novel method to measure experimentally the DA in a circular ring [6].

The description of the luminosity evolution in a circular collider profited from

this novel framework. The first attempts to derive a new model are reported

in [7, 8], whereas a more complete and accurate modelling is described in [1].

The proposed approach is put in action by analysing a selection of luminosity

data collected at the LHC during Run 1, in particular for the proton physics runs

in the years 2011 and 2012, which is the focus on this paper, where the result of

these analyses is discussed in detail. Furthermore, it is worth mentioning that

the scaling law [5] has been used also in the analysis of dedicated beam-beam

experiments performed at the LHC [9, 10].

Two points are worth stressing. Firstly, the focus of this paper is a test of

the descriptiveness of the novel model, which is probed by checking the quality

of the agreement with the LHC data. Note that the issue of predictiveness

will be addressed in a different paper. Secondly, the arguments used to build

the proposed model are rather general, thus implying that they should not be

applicable to LHC only, but to circular colliders in general.

It is recalled that the starting point is the expression of luminosity, which is

a key figure-of-merit for colliders that, neglecting the hourglass effect, reads [11]

L =
γr frev kb n1 n2

4πε∗β∗
F (θc, σz, σ

∗), (1)

where γr is the relativistic γ-factor, frev the revolution frequency, kb the number

of colliding bunches, ni the number of particles per bunch in each colliding

beam, ε∗ is the RMS normalised transverse emittance, and β∗ is the value of
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the beta-function at the collision point. The total beam population is defined

as Nj = kb nj . Different bunches have different collision schedules, meaning

that they collide in different interaction points. Hence, the following analysis

could have been performed on a bunch-by-bunch basis and considering bunches

with the same collision schedule as members of the same class. However, a

simplified approach has been applied, namely the total intensity Nj has been

rescaled by
kb,ATLAS,CMS

kb
, where kb,ATLAS,CMS represents the number of bunches

colliding in the two high-luminosity experiments. The underlining assumption

is that the effects generated by the collisions in the two other low-luminosity

experiments can be neglected. This is supported by the difference in typical

peak luminosities, whose ratio to those of the high-luminosity experiments is

∼ 10−1,∼ 10−3 for LHCb and Alice in 2011, respectively and ∼ 10−2,≥ 10−3

for LHCb and Alice in 2012, respectively [12].

The factor F accounts for the reduction in volume overlap between the col-

liding bunches due to the presence of a crossing angle and is a function of half the

crossing angle θc and the transverse and longitudinal RMS dimensions σ∗, σz,

respectively according to [11]:

F (θc, σz, σ
∗) =

1√
1 +

(
θc

2

σz
σ∗

)2
. (2)

Note that σ∗ =
√
β∗ ε∗/(βr γr), where βr is the relativistic β-factor. Equa-

tion (1) is valid in the case of round beams (ε∗x = ε∗y = ε∗) and round optics

(β∗x = β∗y = β∗). For our scope, Eq. (1) will be recast in the following form [11]:

L = ΞN1N2, Ξ =
γrfrev

4πε∗β∗ kb
F (θc, σz, σ

∗) (3)

in which the dependence on the total intensity of the colliding beams is high-

lighted and the other quantities are included in the term Ξ .

The plan of the paper is the following: in section 2 a global overview of the

LHC data is presented, including a discussion of the time-dependence of some

beam parameters, and the choice made for the data analysis. The application

of the proposed model is presented in three different sections each dealing with
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one of the three main observables considered, namely the time evolution of the

luminosity over a physics fill (section 3), the integrated luminosity over a physics

fill (section 4), and the optimal duration of a physics fill (section 5). Conclusions

are drawn in section 6, whereas the detailed discussion of the important features

of the numerical models proposed in this paper is presented in Appendix A.

2. LHC data from Run 1

2.1. General considerations

The models derived in the companion paper [1] will be applied to the analysis

of the LHC performance data collected during Run 1. Detailed information

on this topic can be found in Refs. [15–18], while in Ref. [19] a preliminary

analysis was made, without focusing on models to describe the luminosity and

its time evolution. Here, the focus will be on the proton physics run and the

data analysed can be found at [20]. As an example, the evolution of some key

parameters is shown in Fig. 1 as a function of the fill number, which is an

incremental integer number representing in a unique way the physics fill. The

peak luminosity L and the total beam intensities are shown in the upper row

of Fig. 1, while ε∗1 is reported in the middle row. The latter can be derived

from the knowledge of L and the beam parameters entering in Eqs. (1) and (2)

according to

ε∗1 =
−θ2

c σ
2
z +

√
θ4

c σ
4
z + 4χ2

8β∗
χ =

γr frev N1N2

π kb L
, (4)

with the assumption that the emittances of the two beams are equal as well as

the value of β∗. In the lower row the evolution of β∗ and kb is also shown. Data

for the 2011 and 2012 runs are shown in the left and right columns, respectively.

The total beam intensity has been increasing throughout the 2011 run, lev-

elling out in 2012. Correspondingly, the peak luminosity has increased also

because of the reduction of ε∗1 and β∗ and the increase of the number of bunches

kb. A step decrease in ε∗1 is clearly seen in the 2011 data and corresponds to the

progressive reduction of the controlled transverse emittance blow-up applied at
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Figure 1: LHC performance during Run 1. The evolution of peak luminosity Li and beam

intensity (upper row), of ε∗1 (middle row) and of β∗ and kb (lower row) is plotted vs. fill

number. The data for 2011 (left) and 2012 (right) are shown for the sake of comparison. The

estimate of ε∗1 assumes that the two beams have the same emittances as well as the value of

β∗ and is obtained by means of Eq. (4).
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the SPS [21]. Since that change, the emittance is fairly constant even during

the 2012 run. It is worth mentioning that the beam brightness is defined by

the LHC injectors’ complex and is basically constant, which implies a linear

relationship between intensity and transverse emittance.

The evolution of β∗ follows a steady decrease, with a sudden jump during

the 2011 run from 1.5 m to 1 m, whereas in 2012 it has been kept constant,

but at the lower value of 0.6 m. Finally, the number of bunches has been

increased up to 1380, corresponding to a bunch spacing of 50 ns. During the

2011 run the gradual increase of kb corresponding to the progress with the

beam commissioning is clearly visible, while in 2012 the maximum number of

bunches is the routine configuration. It is worth mentioning that the periods

with reduced number of bunches correspond to the recommissioning after the

regular technical stops occurring during the physics run.

The data shown in Fig. 1 are also used in the following analysis of the

luminosity evolution. Among the full data set available from [20] a selection has

been considered including only the fills that resulted in successful physics runs,

the so-called stable beams, of a total duration exceeding 103 s and featuring

Ni,1,2 > 1013 p. Such a filtering allows removing data corresponding to beam

commissioning stages or low luminosity fills, which would not be representative

of the typical LHC performance. Additionally we only select those fills that

have a number of bunches kb > 1300 to exclude ion runs.

The analysis of this data set showed that the difference in beam intensity at

the beginning of a physics fill is rather small, at the level of few percent [19].

Hence, the simplifying assumption Ni,1 = Ni,2 is fully justified and is used in the

following. Using Li = ΞNi,1Ni,2 we can calculate ε from the initial luminosity

Li:

ε =
σint nc Li

frev Ni,1Ni,2
, (5)

where nc = 2 because the vast majority of protons are burnt in the two

high-luminosity interaction points (see the previous comment on the relative

luminosities of the various LHC experiments), and the total inelastic cross-
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section for proton-proton collisions is σint is 73.5 mb for 3.5 TeV and 76 mb for

4 TeV [13, 14] for protons, representing the total inelastic cross-section.

2.2. Observed time-dependence of beam parameters and other assumptions for

data analysis

The analyses presented in Ref. [1] included the situation when some beam

parameters are changing during the fill, as it can be the case for the rms bunch

length σz or any of the two transverse normalised emittances ε∗x,y.

Equations (1) and (2) show that while σz has an impact on F , only, the

transverse normalised emittances ε∗x,y affect both F and the peak luminosity.

The measured data revealed that the variation of σz over a typical physics fill

does not exceed ≈ 7 %. Such a small variation is understandable by considering

that at the collision energy of 3.5 TeV or 4 TeV, which are the values for the 2011

and 2012 runs, respectively, the damping generated by synchrotron radiation is

not too strong. Therefore, the time-dependence of σz can be safely neglected in

the analyses presented in the following sections.

The time-dependence of ε needs to be assessed to decide the approach to be

applied to the data analyses and the outcome of these investigations, based on

the selected fills of the 2011 and 2012 runs, is shown in Fig. 2.

The data have been fitted using an exponential function and the result is

given by

∆ ε(t) = 34.69 e−0.1358 t − 35.39 (6)

where t is expressed in hours and ∆ε in percent. The fit quality is given by

R2
adj = 96.17 (see Eq. (8) in section 3 for the definition of this quantity). For

the majority of fills ∆ ε does not exceed ≈ 30 % and it has been decided to

perform the numerical analyses assuming a time-independent ε. Note that the

fit models presented in section 3 have been cross-checked against models in

which ε had been assumed to be time-dependent and the differences have been

found small, thus confirming that the assumption made is appropriate. It is

worth mentioning that it is planned to apply the most general model described

in Ref. [1] to the description of data for the LHC Run 2 [22].

7



Figure 2: Relative difference of ε between end and beginning of a physics fill as a function

of the fill length for the selected data from the 2011 and 2012 runs. The continuous curve

represents an exponential fit to the data, while the dashed one the asymptotic value.

Another aspect to consider is whether some of the parameters entering in

the proposed models should be different for the two beams. In fact, in Ref. [1]

the descriptive models could include beam-specific values for both the initial

beam intensity and the pseudo-diffusive effects. A close inspection of the Run 1

data [19] reveals that for a typical physics fill the quantity 2 |Ni,1−Ni,2|/(Ni,1 +

Ni,2) does not exceed ≈ 10 %. Hence, in the analysis reported in the following

sections, the two initial beam intensities have always been assumed equal and

the corresponding model for the burn-off part has been used [1]. Given that a

similar estimate holds also for the intensities at the end of the physics fills, the

pseudo-diffusive effects have been assumed to be the same for both beams.

3. Time evolution of luminosity over a fill

The first step in the analysis of the LHC Run 1 data is the fit of the pseudo-

diffusive component of the luminosity evolution based on the expression, which
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was derived in [1], given by

L(τ)

Li
=

1

[1 + εNi (τ − 1)]
2 + (7)

−
[
e−

D2(τ)
2 − e−

D2(1)
2

]{
2−

[
e−

D2(τ)
2 − e−

D2(1)
2

]}
,

where Li is the initial value of the luminosity, given by Li = ΞN2
i , and Ni the

corresponding initial value of the beam intensity.

For this, 24 fills, 10 from 2011 and 14 from 2012, have been selected and fitted

individually, also separating the results for the two high-luminosity experiments,

ATLAS and CMS. The results are shown in Fig. 3 where the model parameters

have been reported as a function of the fill number and their errors are estimated

using the BCa method (see Appendix A). Also shown is R2
adj, the so-called

adjusted coefficient of determination given by

R2
adj = 1− N − 1

N − ν − 1

Σ2

σ2
, (8)

where N is the sample size, ν the number of fit parameters, Σ2 the sum of

residues squared defined in Eq. (A.1), and

σ2 =

N∑
i=1

[yi − ȳ]
2

(9)

is the total variance of the data with ȳ the average over all yi. Note that R2
adj

compares the fit under consideration to the simplest fit, i.e. a constant line

through the mean. When R2
adj � 1 (or possibly even negative), the fit is of

poor quality as the mean of the data provides a better fit than the proposed

model. A good fit has R2
adj → 1, indicating that the residues are small compared

to the data variance.

If we look at the results in Fig. 3, we notice that all fits are of particular

good quality, as all except one have R2
adj > 90 %, while for all fits from 2011

this is even R2
adj > 99 %. There is a clear distinction between the results for

2011 and those for 2012, both in spread, but also in behaviour, as the yearly

average value of D∞ is negative for 2011 whereas it is positive for 2012. The

larger spread in the fit parameters for the 2012 run might be generated by the
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transverse instabilities that plagued that run [23]. It is interesting to stress

that from Fig. 3 no clear systematic difference between the fitted models based

on the ATLAS or CMS data is found as the variations change on a fill-by-fill

basis. The differences observed are not always within the error bars, which

might be underestimated. Moreover, some differences are to be expected as β∗

waist position correction was not fully mastered, the first being at the level of

5 % [24]. A further refinement has been applied during Run 2 lowering the

uncertainty on β∗ at the level of about 1 % [25].

Following the discussion in Appendix A, it is useful to fit the data to a

slightly adapted model, which has a reduced set of parameters. To this end, we

selected three different configurations: one where we fix κ = 2 (according to the

Nekhoroshev estimate [29]) and fit b and D∞; one where we fix D∞ = 0 (as it

is approximately the average of Run 1) and fit b and κ; and one where we fix

both κ = 2 and D∞ = 0 and fit only b, thus leaving only one model parameter.

Table 1: Summary of the fit parameters and associated errors corresponding to the expression

of Lpd(τ), for different model parameters and for different data subsets. The parameter values

presented are the weighted (over the fit parameter’s error) averages over the fills, whereas a

regular average is used for R̄2
adj.

D∞ b κ R̄2
adj[%]

2011 data −0.61± 0.71 180± 210 1.64± 0.40 99.759

2011 data, κ = 2 −0.44± 0.19 920± 73 – 99.736

2011 data, D∞ = 0 – 1900± 940 2.41± 0.19 99.726

2011 data, κ = 2, D∞ = 0 – 752± 18 – 97.469

2012 data 0.36± 0.41 1200± 680 2.19± 0.24 96.531

2012 data, κ = 2 0.20± 0.26 670± 110 – 96.232

2012 data, D∞ = 0 – 200± 200 1.84± 0.26 96.037

2012 data, κ = 2, D∞ = 0 – 748± 23 – 93.492

The resulting weighted average parameter values are listed in Table 1, where

the associated error is given by the weighted standard deviation and R̄2
adj is the
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average over the fills. The difference between the fills from 2011 and from 2012

persists in all four fit versions, for this reason we did not calculate the total

average parameter values over the two years of Run 1. Note that when one

parameter is fixed (κ = 2 or D∞ = 0) the fit quality is almost unaffected (having

only a slight decrease), but when two parameters are fixed (both κ = 2 and

D∞ = 0 at the same time), there is a clear worsening of the fit (even though the

overall quality remains rather good). This confirms the considerations reported

in Appendix A that fixing one parameter delivers a fit that is as good as using

the full parameter set, given the existence of an approximate degeneracy of the

parameter space. The case κ = 2 is preferred over D∞ = 0, because of its

justification on the basis of the Nekhoroshev theorem.

4. Integrated luminosity over a physics fill

The second step consists of establishing the model for the integrated lumi-

nosity delivered in a single fill for physics. In Ref. [1] it has been shown that,

under the assumption of considering burn-off phenomena only, the integrated

luminosity over a fill can be expressed as

Lbo
norm(τ̄) =

τ̄

1 + τ̄
(10)

with an appropriate rescaling and by using a normalised time given by τ̄ =

εNi (τ − 1). Whenever pseudo-diffusive effects are taken into account, then one

can assume the following form for the luminosity evolution

Lnorm(τ) = Lbo
norm(τ) + Lpd(τ) (11)

where Lbo
norm stands for the burn off component of the luminosity evolution [1]

and Lpd can be expressed at first order in the small parameter ε as

Lpd(τ) = −Ni ε

τ∫
1

dτ̃

[
e−

D2(τ̃)
2 − e−

D2(1)
2

]{
2−

[
e−

D2(τ̃)
2 − e−

D2(1)
2

]}
(12)

where Ni is the initial intensity.
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The plot of Lint (the integrated luminosity over a physics fill) is shown in

Fig. 4 (upper row) for 2011 (left) and 2012 (right) runs.

The large spread observed for the 2011 data is due to the change of beam and

ring parameters, i.e. transverse emittance, intensity, and β∗ occurred during the

year 2011 (see Fig. 1), whereas the situation in terms of beam parameters has

been much more stable throughout the 2012 run. The impact of the proposed

normalisation of both Lint and τ according to Eq. (10) is also shown in Fig. 4

(lower). The spread of the data points is almost completely removed and a sort

of universal curve is appearing, with a similar shape for both 2011 and 2012

data. The normalised luminosity allows for an easy recognition of outlying data

points, which have been removed (in total 12 data points) when fitting the data

to the evolution model.

The luminosity data are given as a function of time instead of number of

turns, hence the least computationally expensive way to obtain the pseudo-

diffusive contribution to luminosity from these data is to rearrange Eq. (11)

into

Lpd(τ) = εNi,max frev
L̂int(t)

Li
− Lbo

norm(τ) (13)

and use Eq. (5) to evaluate ε for every data point. When the data, calculated

from Eq. (13), has been fitted to the model (12), it is recast into the normalised

luminosity using Eq. (11).

As a first investigation, the pseudo-diffusion model has been fitted to the

complete Run 1 dataset. This is shown on the left side of Fig. 5, and the values

of the fit parameters including the associated errors are reported in Table 2.

From Fig. 5 it is clear that including the pseudo-diffusive effects is very effi-

cient to recover a nice agreement between model predictions and measured data,

as the discrepancy between the burn off-only model and the measurements is

rather large if τ̄ > 0.1. Furthermore, it is important to note that the fit param-

eters of the pseudo-diffusive component correspond, given that all parameters

are positive, to a situation in which a stable region exists in phase space for

an arbitrarily long time. Note also that κ is extremely close to 2, the estimate
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given in the proof of the Nekhoroshev theorem.

The pseudo-diffusive effect on a yearly basis is shown in the right plot of

Fig. 5, and a difference between the two years is seen, which does not exceed

20 %. Careful inspection reveals that the same difference exists in the data,

thus confirming that the model reproduces closely the features of the dataset.

Note that Lnorm is supposed to be independent of the beam parameters, hence

it should be the same for 2011 and 2012, but this only holds for the burn off

part. Indeed, in Eq. (12) the pseudo-diffusive part is scaled by a factor −εNi

which depends on the beam parameters, while the DA model parameters in the

integrand are sensitive to the specific ring conditions. The parameter values for

the yearly fits are also given in Table 2. Note that now D∞ < 0 for 2011, exactly

like in the non-integrated case, again implying that the phase space is dominated

by a situation of global chaoticity. This difference in behaviour between 2011

and 2012 runs is still lacking an explanation based on considerations linked with

the run conditions.

Based on the considerations made in Appendix A and on the observations

made when fitting the non-integrated luminosity, it is possible to carry out a

refined analysis of the Run 1 data by reducing the number of fit parameters.

The resulting parameters and the corresponding errors are listed in Table 2,

while the corresponding plots for 2011 and 2012 are shown in Fig. 6.

The ranking of the various fit types for a given dataset can be performed

based on the corresponding value of R2
adj. This allows to state that, e.g. for the

combined dataset (2011+2012) or 2012 alone, the model in which both D∞ and

κ are fixed provides the worst performance. For the 2011 dataset, however, all

four models behave very similarly. All in all, this suggests that the best strategy

is to compare the fit with three parameters to a variant with two parameters

only and κ determined based on the theoretical estimate. These considerations

are confirmed by Fig. 6, where no difference is visible between the four types

of fit for the 2011 data, while for 2012 only the model where both κ = 2 and

D∞ = 0 is different from the others, with a difference not exceeding 5 %, but

also performs worse according to the value of R2
adj.

13



Table 2: Summary of the fit parameters and associated errors for Lpd(τ), for different data

subsets. The error on the fit parameters is estimated using the BCa interval. For the param-

eters shown in italic, the fit estimate lies outside the Bootstrap 90 % confidence interval. In

that case the standard deviation of the bootstrap realisations is used instead (see Appendix

A).

D∞ b κ R2
adj[%]

Run 1 (2011+2012) 0 .44 ± 0 .54 460 ± 110 1 .92 ± 0 .31 96.433

κ = 2 0.497+0.095
−0.054 556+20

−37 – 96.440

D∞ = 0 – 177+30
−43 1.517+0.052

−0.094 96.434

κ = 2, D∞ = 0 – 740 .0 ± 1 .1 – 96.208

2011 −0.43+0.38
−0.14 350+150

−80 1.68+0.16
−0.13 97.835

κ = 2 −0.03+0.10
−0.13 757+49

−35 – 97.847

D∞ = 0 – 830+370
−200 2.04+0.13

−0.09 97.848

κ = 2, D∞ = 0 – 744.0+1.6
−1.8 – 97.857

2012 0 .82 ± 0 .52 560 ± 114 2 .08 ± 0 .35 95.746

κ = 2 0.77+0.13
−0.06 455+21

−49 – 95.754

D∞ = 0 – 81+15
−26 1.25+0.06

−0.13 95.737

κ = 2, D∞ = 0 – 738 .2 ± 1 .4 – 95.166

A comparison of the fit parameters for the corresponding cases reported in

Tables 1 and 2 shows that the values are compatible, within the errors, for the

case of three-parameter fit, while the compatibility degrades as the number of

fit parameters is reduced, the case with fixed κ being more compatible between

the non-integrated and integrated luminosity models, than that with D∞. This

confirms once more that fixing κ is the best option among those with reduced

fit parameters.

5. Optimal physics fill duration

As discussed in Ref. [1], the optimisation of the performance of a circular

collider can be performed by maximising the yearly integrated luminosity given

14



by

Lbo
tot,norm(τ) =

T
τta + τ

Lbo
norm(τ) , (14)

where τta is the turnaround time, i.e. the time between the end of a physics fill

and the beginning of the next one, τ is the fill length that should be optimised,

and T is the total time for physics over one year and only the burn off has been

taken into account is considered. The optimal fill length τfill can be obtained

by setting to zero the derivative of Lbo
tot,norm.

Of course, the term Lpd changes the conclusions concerning the optimal fill

time and an approximate expression reads [1]

τfill ≈ τbo
fill −

L̇pd
tot,norm(τbo

fill )

L̈bo
tot,norm(τbo

fill ) + L̈pd
tot,norm(τbo

fill )
(15)

and it is possible to use Eq. (15) to estimate the optimal physics fill duration

for our models, as shown in Fig. 7. Note that there is a clear difference between

the case where only burn off is taken into account, and that where pseudo-

diffusive effects are included. The relation between the various models used to

derive τfill is similar to that for the fit of Lpd , namely, for 2011 all four cases

behave the same, while for 2012 only the case where two parameters are fixed

(κ = 2 and D∞ = 0) is different from the others.

Then, we carried out the comparison of the estimate for the optimal fill

length with the actual fill duration during Run 1, focusing on the situation for

the year 2012. The distribution of the actual values of τfill as a function of τta

is shown in Fig. 8. The data considered includes all fills for high-luminosity

physics, excluding all other cases, e.g. special runs, commissioning periods.

Note, also, that τta for a given physics fill is computed as the time between the

end of the previous physics fill and the beginning of that under consideration.

All these data have been divided into two groups: a class in which the end of

the fill for physics is controlled by operation, so-called programmed dump, and a

class in which the end of the fill for physics is triggered by the machine protection

system, so-called protection dump. The relevance of this classification is that

the first class allows for performing an optimisation of the fill length, while the
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latter does not. It is also worth mentioning that even in the case of the first

class, there are some situations in which a beam dump is indeed triggered by

operation, but in view of preventing a protection dump. It is, e.g. the case when

the cryogenic conditions are going to be lost in a short while and the operator

dumps the beams before a genuine protection dump occurs. This special subset

of the first class explains the cases of programmed dumps with rather short τfill.

Figure 8 shows a number of interesting features: τta is always larger than

∼ 2 h, the minimum turnaround time based on the performance of the LHC

hardware; τta can reach rather high values, which indicate a fault that occurred

in between fills for physics; for the class of programmed dump the length of

the physics fill is clearly different from the corresponding optimal fill length,

either because the physics fill is too short or because it is too long; for the

class of protection dump some fill are also too long with respect to the optimal

duration. While the proposed approach is very useful to qualify whether a single

fill is optimal with respect to its duration, the overall optimisation of the yearly

performance, in terms of integrated luminosity, of a collider is a much more

complex task.

6. Conclusions

The models proposed in the companion paper [1] have been benchmarked

against the data from the LHC Run 1, with special emphasis on the years

2011 and 2012. The inaccuracy to reproduce the LHC data using only burn off

has been confirmed by the analysis made, while the proposed models showed

a remarkable power in reproducing and describing the observed behaviours of

luminosity as a function of time and of integrated luminosity.

A detailed discussion of the potential numerical issues related with the pro-

posed fitting models is presented in Appendix A. It is also shown that the

difficulties can be efficiently resolved by reducing the number of fit parameters,

by using the estimates provided by the proof of Nekhoroshev theorem for some
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of them.

Given the encouraging results of the analyses reported in this paper, the

data from Run 2 will be considered next. In fact, the higher beam energy that

characterises the proton physics in Run 2 opens a new domain in terms of beam

behaviour, such as strong longitudinal emittance damping due to synchrotron

radiation as well as a burn-off dominated regime.

Finally, it is worth stressing that while in this paper the approach has been to

fit the model parameters to measured data, in future the analysis can be shifted

to using numerical simulations to provide the input about the dynamic aperture

evolution, which is needed in the proposed models, to verify the agreement with

observations from the LHC. In this way the descriptiveness of the proposed

approach might turn into predictiveness, which could be used to assess the

performance for future colliders and in particular the luminosity upgrade of the

LHC.
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Figure 3: Fit parameters and R2
adj for the pseudo-diffusive contribution Lpd(τ) per fill for

the case of a fit performed with three free parameters. The vertical dashed line separates

the fills of 2011 from those of 2012. The error bars on the parameters are estimated using

the BCa method (see Appendix A). The horizontal line represents the weighted (over the fit

parameter’s error) average per year. Note the clear distinction between the results for the

two years. The two bottom plots show the measured and fitted curves for L (normalised to

the initial fill luminosity Li) for 2011 (left) and 2012 (right) fills and a very good agreement

is clearly visible.
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Figure 4: The integrated luminosity delivered in a single fill for physics is shown as a function

of the fill duration (upper row). The normalised integrated luminosity defined according to

Eq. (11) is also plotted as a function of the normalised time (lower row). The data for both

2011 (left) and 2012 (right) runs are shown.
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Figure 5: Pseudo-diffusive contribution to the integrated luminosity as a function of the turn

number (upper row). Normalised integrated luminosity as a function of the normalised time

shown together with models based on burn off and pseudo-diffusive effect (lower row). The

model has been fitted using the complete set of 2011 and 2012 data (left), and separately year

by year (right). Note that for 2011 we have τ̄ < 0.2. The agreement between the proposed

model with pseudo-diffusive effects and the experimental data is remarkable.

Figure 6: Different models of the pseudo-diffusive contribution to the luminosity for proton

beam data from 2011 (left) and 2012 (right). The curves for the two-parameter fits are not

shown, as they are almost perfectly superimposed with the curve for three-parameter fit.
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Figure 7: Optimal fill length τfill as a function of the turnaround time τta for 2011 (left) and

2012 (right). The curves for the two-parameter fits are not shown, as they are almost perfectly

superimposed with the curve for three-parameter fit. The parameters of the models used to

estimate τfill are those from Table 2.

Figure 8: Length of physics fill as a function of the turnaround time for all stable physics fills

from 2012. The fills are compared to the estimate for the optimal fill length with and without

pseudo-diffusion.
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Appendix A. Comments on numerical aspects of the proposed fit

model

The proposed model for luminosity evolution implies a fit of the experimental

data to derive the values of the model parameters. Special care is needed for

performing the fit, as, in general, internal dependencies between the model

parameters have been observed and need to be considered in detail. Moreover,

for the specific case of the model for the integrated luminosity, the integral

function that is fitted to the data might be too sensitive to small changes in the

model parameters, thus adding more challenges.

To illustrate this phenomenon and to analyse better the behaviour of the fit,

the sum of the residues squared, which is the figure of merit used by the fitting

algorithm

Σ2(D∞, b, κ) =
∑
i

[yi − f(τi, D∞, b, κ)]
2
, (A.1)

has been considered, yi being the measured data and f the fit model. An internal

dependency between model parameters would manifest in terms of a degenerate

minimum, i.e. changing one parameter while adapting another one would not

change significantly Σ2. The fill 2240 of the year 2011 has been used as a

test case as it is particularly well behaved. The fitting algorithm provided the

following values of the parameters, D∞ = −1.22, b = 286.79, and κ = 1.51, and,

whenever a scan around these values is performed, the behaviour of Σ2 looks

like in the plots of Fig. A.9. An approximate degeneration is visible, showing

that several combinations of fit parameters can give similarly low values of Σ2.

This essential observation leads to the conclusion that decreasing the number

of fit parameters might be advisable. A natural option is to fix κ to the value

provided by the estimate in the proof of Nekhoroshev theorem [29], i.e. κ =

(d + 1)/2, where d is the number of degrees of freedom of the system under

consideration. Other possibilities will be considered and discussed in the next

sections.

Another important aspect to consider is the estimate of the error associated

with the fit parameters. Such an estimate is closely linked with that of the
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Figure A.9: Behaviour of Σ2 for the fit of the model applied to fill 2240 as a function of the fit

parameters. In each plot every curve represents the influence of the listed parameter on Σ2,

while the other two parameters are kept constant. Different curves represent different values of

the other two parameters. The minima of Σ2 are approximately degenerate as several optimal

points (in parameter space) exist with similar values of Σ2.

error associated to the luminosity measurement and crucially depends upon it.

Given that it is not so easy to provide a reliable estimate for the total error

on luminosity, the so-called Bootstrap Method [27, 28] has been applied. Here,

the population of residues of the fit is used as a distribution to generate 10 000

realisations with replacements, that are again fitted to the model. The set

of realisations of each parameter will then be distributed around the original

results of the fit procedure. Therefore, the parameter’s distribution can provide

an estimate of the error associated with the model parameter by means of the

bias-corrected accelerated (BCa) Bootstrap confidence interval [28] at 1σ. For

the studies that exhibit degeneracy in the parameter space, it is often the case

that the fitted parameter value lies outside the BCa interval, even at 90 %. In
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such case the BCa interval calculation is less meaningful and we estimate the

error by the standard deviation of the distribution of the fit parameters over

the realisations instead.
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