CERN Accelerating science

Article
Report number arXiv:1807.02876 ; FERMILAB-PUB-18-318-CD-DI-PPD
Title Machine Learning in High Energy Physics Community White Paper
Author(s) Albertsson, Kim (Lulea U.) ; Altoe, Piero (NVIDIA, Santa Clara) ; Anderson, Dustin (Caltech) ; Anderson, John ; Andrews, Michael (Carnegie Mellon U.) ; Araque Espinosa, Juan Pedro (LIP, Lisbon) ; Aurisano, Adam (Cincinnati U.) ; Basara, Laurent (INFN, Padua ; Padua U.) ; Bevan, Adrian (University Coll. London) ; Bhimji, Wahid (LBL, Berkeley) ; Bonacorsi, Daniele (INFN, Bologna ; U. Bologna, DIFA) ; Burkle, Bjorn ; Calafiura, Paolo (LBL, Berkeley) ; Campanelli, Mario (University Coll. London) ; Capps, Louis (NVIDIA, Santa Clara) ; Carminati, Federico (CERN) ; Carrazza, Stefano (CERN) ; Chen, Yi-fan ; Childers, Taylor (Argonne) ; Coadou, Yann ; Coniavitis, Elias (Freiburg U.) ; Cranmer, Kyle (New York U.) ; David, Claire (DESY) ; Davis, Douglas (Duke U.) ; De Simone, Andrea ; Duarte, Javier (Fermilab) ; Erdmann, Martin (RWTH Aachen U.) ; Eschle, Jonas (Zurich U.) ; Farbin, Amir (Texas U., Arlington) ; Feickert, Matthew (Southern Methodist U.) ; Castro, Nuno Filipe (LIP, Lisbon) ; Fitzpatrick, Conor (Ecole Polytechnique, Lausanne) ; Floris, Michele (CERN) ; Forti, Alessandra (Manchester U.) ; Garra-Tico, Jordi (Cambridge U.) ; Gemmler, Jochen (KIT, Karlsruhe) ; Girone, Maria (CERN) ; Glaysher, Paul (DESY) ; Gleyzer, Sergei (Florida U.) ; Gligorov, Vladimir (CNRS, France) ; Golling, Tobias (Geneva U.) ; Graw, Jonas (NVIDIA, Santa Clara) ; Gray, Lindsey (Fermilab) ; Greenwood, Dick (Louisiana Tech. U.) ; Hacker, Thomas (Purdue U.) ; Harvey, John (CERN) ; Hegner, Benedikt (CERN) ; Heinrich, Lukas (New York U.) ; Heintz, Ulrich ; Hooberman, Ben (Illinois U., Urbana) ; Junggeburth, Johannes (Munich, Max Planck Inst.) ; Kagan, Michael (SLAC) ; Kane, Meghan (Unlisted, DE) ; Kanishchev, Konstantin (INFN, Padua ; Padua U.) ; Karpiński, Przemysław (CERN) ; Kassabov, Zahari (Milan U.) ; Kaul, Gaurav (Caltech) ; Kcira, Dorian (Caltech) ; Keck, Thomas (KIT, Karlsruhe) ; Klimentov, Alexei (Brookhaven) ; Kowalkowski, Jim (Fermilab) ; Kreczko, Luke (Bristol U.) ; Kurepin, Alexander (ITAE, Moscow) ; Kutschke, Rob (Fermilab) ; Kuznetsov, Valentin (Cornell U.) ; Köhler, Nicolas (Munich, Max Planck Inst.) ; Lakomov, Igor (CERN) ; Lannon, Kevin (Notre Dame U.) ; Lassnig, Mario (CERN) ; Limosani, Antonio (Melbourne U.) ; Louppe, Gilles (New York U.) ; Mangu, Aashrita (UC, Berkeley) ; Mato, Pere (CERN) ; Narain, Meenakshi (Brown U.) ; Meinhard, Helge (CERN) ; Menasce, Dario (INFN, Milan Bicocca ; Milan Bicocca U.) ; Moneta, Lorenzo (CERN) ; Moortgat, Seth (Vrije U., Brussels) ; Neubauer, Mark (Illinois U., Urbana) ; Newman, Harvey (Caltech) ; Otten, Sydney ; Pabst, Hans (Caltech) ; Paganini, Michela (Yale U.) ; Paulini, Manfred (Carnegie Mellon U.) ; Perdue, Gabriel (Fermilab) ; Perez, Uzziel (Alabama U.) ; Picazio, Attilio (Massachusetts U., Amherst) ; Pivarski, Jim (Princeton U.) ; Prosper, Harrison (Florida State U.) ; Psihas, Fernanda (Indiana U.) ; Radovic, Alexander (William-Mary Coll.) ; Reece, Ryan (UC, Santa Cruz) ; Rinkevicius, Aurelius (Cornell U.) ; Rodrigues, Eduardo (Cincinnati U.) ; Rorie, Jamal (Rice U.) ; Rousseau, David (Orsay) ; Sauers, Aaron (Fermilab) ; Schramm, Steven (Geneva U.) ; Schwartzman, Ariel (SLAC) ; Severini, Horst (Oklahoma U.) ; Seyfert, Paul (CERN) ; Siroky, Filip (Masaryk U., Brno) ; Skazytkin, Konstantin (ITAE, Moscow) ; Sokoloff, Mike (Cincinnati U.) ; Stewart, Graeme (Glasgow U.) ; Stienen, Bob (Nijmegen U.) ; Stockdale, Ian (Bucharest, IFIN-HH) ; Strong, Giles (LIP, Lisbon) ; Sun, Wei ; Thais, Savannah (Yale U.) ; Tomko, Karen (OSC, Columbus) ; Upfal, Eli (Brown U.) ; Usai, Emanuele (Brown U.) ; Ustyuzhanin, Andrey (Yandex Sch. Data Anal., Moscow) ; Vala, Martin (Kosice Tech. U.) ; Vasel, Justin ; Vallecorsa, Sofia (Gangneung-Wonju Natl. U.) ; Verzetti, Mauro (Rochester U.) ; Vilasís-Cardona, Xavier (Barcelona U.) ; Vlimant, Jean-Roch (Caltech) ; Vukotic, Ilija (Chicago U.) ; Wang, Sean-Jiun (Florida U.) ; Watts, Gordon (Washington U., Seattle) ; Williams, Mike (MIT) ; Wu, Wenjing (ICTS, Beijing) ; Wunsch, Stefan (KIT, Karlsruhe) ; Yang, Kun ; Zapata, Omar (Antioquia U.)
Publication 2018-10-18
Imprint 2018-07-08
Number of pages 27
Note Editors: Sergei Gleyzer, Paul Seyfert and Steven Schramm
In: J. Phys.: Conf. Ser. 1085 (2018) 022008
In: 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Seattle, WA, USA, 21 - 25 Aug 2017, pp.022008
DOI 10.1088/1742-6596/1085/2/022008
Subject category stat.ML ; Mathematical Physics and Mathematics ; hep-ex ; Particle Physics - Experiment ; cs.LG ; Computing and Computers ; physics.comp-ph ; Other Fields of Physics
Abstract Machine learning has been applied to several problems in particle physics research, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas for machine learning in particle physics. We detail a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: (License: CC-BY-3.0)



Corresponding record in: Inspire


 Registro creado el 2018-07-11, última modificación el 2024-06-13


Fulltext from Publisher:
Descargar el texto completoPDF
Texto completo:
Albertsson_2018_J._Phys.__Conf._Ser._1085_022008 - Descargar el texto completoPDF
1807.02876 - Descargar el texto completoPDF
fermilab-pub-18-318-cd-di-ppd - Descargar el texto completoPDF
(archivos adicionales)
Enlace externo:
Descargar el texto completoFermilab Library Server (fulltext available)