
Neutral hadrons disappearing into the darkness

D. Barducci†‡, M. Fabbrichesi‡, and E. Gabrielli∗‡\◦

†Scuola Internazionale di Studi Superiori, via Bonomea 256, 34136 Trieste, Italy
‡INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy

∗Physics Department, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy
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We study the invisible decay of neutral hadrons in a representative model of the dark sector. The
mesons KL and B0 decay into the dark sector with branching rates that can be at the current
experimental limits. The neutron decays with a rate that could either explain the neutron lifetime
puzzle (although only for an extreme choice of the parameters and a fine tuned value of the masses)
or be just above the current limit of its invisible decay (τ inv

N ∼> 1029 years) if kinematically allowed.
These invisible decays of ordinary matter provide a novel and promising window into new physics
that should be vigorously pursued.

I. MOTIVATIONS

The possible existence of a dark sector comprising particles that do not couple directly to the Standard Model (SM)
states has been extensively discussed in the literature (see references in [1] for recent reviews). This dark sector can
include many states and these states can interact among themselves by means of new forces. Dark matter, in this
framework, is made of all the stable members of the dark sector with a non-negligible relic density.

If the dark sector contains sufficiently light states, ordinary matter can and will decay into it without leaving any
trace. These invisible decay channels are striking and may well be the most conspicuous clue to the existence of the
dark sector itself.

Because of charge conservation, only neutral hadrons can altogether decay into the dark sector. The invisible decays
of Kaons and B-mesons are of particular interest because their long lifetimes provide appreciable branching rates (BR)
even for decays as rare as those into the dark sector. In addition to these, the case of the neutron stands out both
because of the very strong bound on its invisible decay and because of the experimental discrepancy between the
lifetime measured from stored neutrons and that from in-beam decays (for a review, see [2]) which could be explained,
as pointed out in [3], by an invisible decay.

II. A MODEL FOR THE DARK SECTOR

We restrict ourselves to a model in which the interaction with ordinary matter is provided by (heavy) messenger
states. This model is taken to be the archetype for a dark sector that can leave a characteristic signature of its
interaction with ordinary mater in, among other processes, the invisible decays of hadrons.

The dark sector is made to resemble QED—that is, a theory of charged fermions. It contains fermions QUi and QDi ,
where the index i runs over generations like in the SM, and these dark fermions are charged only under a gauge group
U(1)D—a proxy for more general interactions—with different charges for the QU and QD type. The dark photon is
massless and directly only couples to the dark sector (in contrast with the case of massive dark photons). We denote
throughout with αD = g2D/4π the U(1)D fine structure constant.

The dark fermions couple to the SM fermions by means of Yukawa-like interactions. The Lagrangian contains terms
coupling quarks of different generations with the dark fermions. In general the interaction is not diagonal and, for
the quark case, is given by

L ⊃ gR

{
S
Ui†
R

[
Q̄
Ui

L (ρUR)ijq
j
R

]
+ S

Di†
R

[
Q̄
Di

L (ρDR)ijq
j
R

]}
+ gL

{
S
Ui†
L

[
Q̄
Ui

R (ρUL)ijq
j
L

]
+ S

Di†
L

[
Q̄
Di

R (ρDL)ijq
j
L

]}
+ H.c. (1)

In Eq. (1), the fields S
Ui,Di

L and S
Ui,Di

R are the messenger scalar particles, respectively doublets and singlets of the
SM SU(2)L gauge group as well as SU(3) color triplets (color indices are implicit in Eq. (1)). The various symmetric
matrices (ρ)ij = (ρ)ji are the result of the diagonalization of the mass eigenstates of both the SM and dark fermions;
they provide the generation mixing necessary to have the messengers play a role in flavor physics. The messenger
fields are also charged under the U(1)D gauge interaction, carrying the same charges as the dark fermions they are
coupled to.

In writing Eq. (1) we assume that the SM gauge group SU(2)L is extended into a left-right (LR) symmetric
SU(2)L×SU(2)R group and follow the approach of [4]—to which we refer for further details. Although we adopt the
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LR symmetric model, the low-energy effective theory is not affected by this choice and is the same as in the model in
[5].

The general structure for the gauge invariant Lagrangian contains a term involving three scalar messengers and the
heavy Higgs HR, a SU(2)R doublet, coupled as follows (generation index i is implicit this time)

L3 ⊃ ηLS̃
Uα†
L SDβL H†RS

Dγ

R εαβγ +
ηR
2
S̃Uα†
R SDβR H†RS

Dγ

R εαβγ + H.c. , (2)

provided the UD(1) dark charges qU and qU of, respectively, the messenger SU†
L,R and SD†

L,R satisfy the relation qU = −2qD

(as in the case of up- and down-quark QED charges) for qU normalized to one. In Eq. (2) above the sum over the

Greek SU(3) color indices is understood and S̃iL,R = iσ2S
i?
L,R, where σ2 is the Pauli matrix of the corresponding

SU(2) group. After the spontaneous breaking of the SU(2)R gauge symmetry, the HR vacuum expectation value vR
generates a trilinear term involving three scalar messengers entering the vertex. The terms in Eq. (2) play a role in
the decays of baryons.

This model has been used to discuss processes with the emission of dark photons in Higgs physics [6], flavor changing
neutral currents [7], kaon [8] and Z boson [9] decays.

A. Dark matter, relic density and galaxy dynamics

The messenger fields are heavier than the dark fermions; the latter are stable and provide a multicomponent
candidate for dark matter whose relic density depends on the value of their couplings to the U(1)D dark photons and
SM fermions (into which they annihilate) and masses.

Not all of the dark fermions contribute to the relic density when, as we do here, the U(1)D coupling is taken larger
than the one in QED. If they are relatively light, their dominant annihilation is into dark photons with a thermally
averaged cross section approximately given by

〈σv0〉 '
πα2

D

2m2
Q

(3)

For a strength αD ' 0.1, all fermions with masses up to around 1 TeV have a large cross section and their relic density

Ωh2 ≈ 2.5× 10−10 GeV−2

〈σv0〉
(4)

is only a percent of the critical one; it is roughly 10−4 the critical one for dark fermions in the 1 GeV range, even less
for lighter states. These dark fermions are not part of dark matter; they have (mostly) converted into dark photons
by the time the universe reaches our age and can only be produced in high energy events like the decays we discuss.

Heavier (that is, with masses closer to those of the messengers) dark fermions can be dark matter. The dominant
annihilation for these is into SM fermions via the exchange of a messenger with a thermally averaged cross section
now approximately given by

〈σv0〉 '

(
g2L,R
4π

)2
π

2m2
S

(5)

instead of Eq. (3). The critical relic density can be reproduced if, assuming thermal production,(
g2L,R
4π

)2(
10 TeV

mS

)2

' 0.1 . (6)

Although dark matter is interacting via massless dark photons, limits from the collisionless dynamics of galaxies
are satisfied because the light dark fermions have a negligible density in the galaxy (and do not count) while for the
heavy dark fermions the bound on soft scattering [10], which is the strongest, is given (for N dark fermions of mass
mQ, GN being the Newton constant) by

G2
Nm

4
QN

8α2
D

[
ln

(
GNm

2
QN

2α2
D

)]−1
& 50 . (7)

The above bound can easily be satisfied because it is independent of the parameters entering the relic density. In
our case, the above bound means that for αD ' 0.1 the heavy dark fermions present in the relic density must have
masses larger than 8 TeV. This limit, together with Eq. (6), defines the allowed space of the parameters, namely, the
couplings gL,R must be large but still in the perturbative regime.
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B. Constraints on messenger masses

There are no bounds on the masses of the dark fermions because of their very weak interaction with the SM states.
The messenger states have the same quantum numbers and spin of the supersymmetric squarks. At the LHC they

are copiously produced in pairs through QCD interactions and decay at tree level into a quark and a dark fermion. The
final state arising from their decay is thus the same as the one obtained from the q̃ → qχ0

1 process. Therefore limits
on the messenger masses can be obtained by reinterpreting supersymmetric searches on first and second generation
squarks decaying into a light jet and a massless neutralino [11], assuming that the gluino is decoupled. In particular
we have used the upper limits on the cross section for various squark masses of [11] that the ATLAS collaboration
provided on HEPData. These limits have been used to compute the bounds as a function of the messenger mass
using next-to-leading order QCD cross section for squark pair production from the LHC Higgs Cross Section Working
Group 1.

We take into account the contributions to the total event yield given only by right-handed (degenerate) messengers
associated to the first generation of SM quarks, with the others set to a higher mass and thus with a negligible cross
section. This correspond to have only 2 light degrees of freedom, which are analogous to ũ1 and d̃1 in supersymmetry.
With this assumption we obtain a lower bound on their masses of 940 GeV, limit that increases up to 1.5 TeV by
assuming that messengers of both chiralities associated to the first and second generation of SM quarks are degenerate
in mass.

Interestingly, there remains an open window for having messengers living at a lower mass scale. This occurs
when the messengers couple dominantly to top quarks and have a mass around 200 GeV, such that the final state
kinematic presents low missing transverse energy due the compression of the spectrum, thus reducing the effectiveness
of supersymmetric searches. This region is currently under investigation by the LHC collaborations.

Limits from stellar cooling and primordial nucleosynthesis [12] are weaker than those we include in our analysis.
Limits from long-range (dipole type) forces between macroscopical objects are even weaker.

Stronger constraints come from flavor physics. We include those from meson mass mixing which are the most
stringent for the processes under consideration.

C. The importance of soft dark photon corrections

Corrections due to soft dark photon exchange and emission can be important in processes with dark fermions. The
strength of the coupling αD, which we take larger than in QED, makes them sizable in the process we are interested
in.

As in QED, the decay width dΓ0(sij) for a generic N -body decay is modified by a universal factor [13] that takes
into account corrections from soft photons emission and we have (we follow the notation of [14])

dΓ(sij , E) = Ω(sij , E) dΓ0(sij) , (8)

where the kinematical variables are

sij =

{
(pi + pj)

2 i 6= 0, j 6= 0

(p0 − pj)2 i = 0, j 6= 0
(9)

with pi the momenta of the final states and p0 that of the decaying particle. The corresponding variables

βij =

√
1−

4m2
im

2
j

(sij −m2
i −m2

j )
2

(10)

can also be defined. The energy E is the maximum energy that goes undetected in the process because of the physical
limitations of the detector.

Since we are interested in factors that can compensate possible phase-space suppression in the decay, we retain
only those soft-photon corrections that become important when the final states are produced near threshold (in the
regime where βij → 0) and write Eq. (8) as

Ω(sij , E) = ΩC(βij) (11)

1 Available at the web-page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections
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qi

Sq
L,R

Qqi

Qqi

M 0

qj

FIG. 1: The decay of a neutral meson M0 (KL or B0 in the text) into two dark fermions. There are two diagrams corresponding

to the exchange of the two messengers SQq

L and SQq

R .

where

ΩC(βij) =
∏

0<i<j

2παDqiqj
βij

1

exp
[
2παDqiqj

βij

]
− 1

(12)

is the (resummed) correction due to the (dark) Coulomb interaction [15] between pairs of fermions with charges qi
and qj .

We neglect all other (E and non E-depending) soft-photon corrections because they are subleading and important
only in the limit βij → 1.

III. THE DECAY OF NEUTRAL MESONS

All neutral mesons can decay into the dark sector by means of the terms in the Lagrangian in Eq. (1). As promising
as they would seem, the neutral pion and the ρ have too short a lifetime to give a measurable BR for their decay
into the dark sector. The best candidates are to be found in the kaon and B-meson sectors—even after taking into
account the constraint originating in their mass mixing. The D0 and the charmonium states are also candidates but
with a lower BR.

A. The decay width

The decay of neutral mesons can be estimated within the model of the dark sector introduced above. From the
Lagrangian in Eq. (1), after integrating out the heavy messenger fields, we can write two effective operators that give
a contribution. After a Fierz transformation to bring them in a form ready to be used, they are

Q̂ijL = Q̄iLγ
µQiLq̄

j
Rγµq

i
R

Q̂ijR = Q̄iRγ
µQiRq̄

j
Lγµq

i
L , (13)

where the indices of the SU(3) color group are implicitly summed over 2.
The Wilson coefficients of the two operators in Eq. (13) at the matching are

(cDL)ij =
g2LP

L
ij

2m2
DL

and (cDR)ij =
g2RP

R
ij

2m2
DR

, (14)

where the product of matrices is denoted as PL,Rij = ρL,Rij ρL,Rii .

The amplitude for the neutral meson M0
ij decay (with M0

ij a bound state of qiq̄j) into dark- and antidark-fermions

M0
ij → QiQ̄i is given by (see Fig. 1 and the operators in Eq. (13))

Mij
M0 = − i

4

(
g2LP

L
ij

m2
DL

[
ūQiγ

µ
RvQi

]
−
g2RP

R
ij

m2
DR

[ūQiγ
µ
LvQi ]

)
〈0|q̄jγ5γµqi|M0

ij(p)〉 , (15)

2 An analysis of meson decays with missing energy in terms of all possible effective operators—those in Eq. (13) included—is given in
[16]. The fermionic models they take into consideration have BR significantly smaller than those we find.
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where γµL,R = γµ(1± γ5)/2, ūQi and vQi are the Dirac spinors associated to the final fermion (antifermion) states Qi

(Q̄i) respectively, and the hadronic matrix element is given by

〈0|q̄iγ5γµqj |M0
ij(p)〉 = ifM0pµ , (16)

with pµ the meson 4-momentum. The parameter fM0 for the particular meson, can be obtained from lattice estimates.
The corresponding width is computed as

Γ(M0
ij → QiQ̄i) =

1

8π

|M̄ij
M0 |2|~ki|
m2
M0

ΩC(βij) (17)

with

|Mij
M0 |2 =

f2M0m2
M0m2

Qi

8m4
S

P 2
ij(g

2
L + g2R)2 (18)

where mM0 and mQi are the meson and dark fermion masses respectively, qi the charge of the dark fermion Qi, and

|~ki| = mM0vi/2, with vi =
√

1− 4m2
Qi/m

2
M0 the relative velocity between the dark fermions. The function ΩC(βij)

is defined in Eq. (12) with, in this case of two-body decay, βij = vi.
In Eq. (18), we have made the simplification of taking universal messenger masses mDR

= mDL
= mS and PLij =

PRij ≡ Pij , with furthermore ρL,Rij = ρL,Rji . In the model of [4] the diagonal ρL,Rii couplings are of order one, while the

off-diagonal ones should be ρL,Rij � 1 in order to preserve the hierarchy of the CKM matrix.

B. Constraints from the meson mass difference

A direct, and the strongest, constraint on the parameters of the model arises because the same amplitude driving
the meson decay also enters the box diagram that gives rise to the mass difference of the neutral meson. This quantity
is given by

∆mM0 =

[
g4L(ρLij)

2ρLiiρ
L
jj + g4R(ρRij)

2ρRiiρ
R
jj

m2
S

]
f2M0mM0

192π2
, (19)

where we have used the leading vacuum insertion approximation (BM0 = 1) to estimate the matrix element

〈M0|(q̄iLγµq
j
L) (q̄iLγµq

j
L)|M̄0〉 =

1

3
mM0f2M0BM0ηQCD (20)

and a similar one for right-handed fields. Since we are just after an order of magnitude estimate, in Eq. (19) we
neglect the running (and contributions from mixing) of the Wilson coefficient ηQCD of the 4-fermion operator. Given
the long-distance uncertainties, to satisfy the experimental bound on the mass difference, we only impose that the
new contribution does not exceed the measured value (and show what happens if this bound is made more stringent).

C. Branching rates for KL and B0

The general formulas in Eqs. (17) and (19) can be applied to the specific cases of interest: the invisible decays of
the KL and B0.

For the KL case, we have fK0 = 159.8 MeV and mK = 497.6 MeV [17]. We choose the final states to be both Qs

and consider the symmetric case giL = giR = λ. We take αD = 0.1 and charges qi = 1 to compute the function ΩC .
The total width is ΓKL = 1.287× 10−14 MeV [17].

This BR is constrained by the mixing parameter ∆mK = 3.48× 10−12 MeV [17] because the same structure enters,
see Eq. (19). Thus, assuming that the new contribution does not exceed the experimental value ∆mK , we obtain
from Eq. (19), the numerical bound

λ4P 2
sd

(mS [TeV])2
< 2.6× 10−4 . (21)
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FIG. 2: Values of the BR for the invisible decay of KL (left) and B0 (right). The coupling αD is taken to be 0.1. Two possible
choices for mS are shown. The horizontal colored bands indicate the constraint from the mass mixing for the two values of
mS (red mS = 1 GeV, blue mS = 2 GeV). The case of the same bound stronger at 10% of the experimental limit is shown
by the dashed horizontal lines. Because of chirality suppression, the width for the process goes to zero for vanishing masses of
the final fermions. In the opposite limit, as the sum of these masses goes to the threshold, the Coulomb corrections become
important and keep the width finite.

The left panel of Fig. 2 shows the BR(KL → QsQ̄s) for αD = 0.1 and a range of the parameters mQ and mS . The
limit from the constraint in Eq. (21) is shown in the same plot as colored bands. One can tighten this limit by the
desired factor by rescaling the bound by the same factor: as an example, the case of 10% of the experimental limit
is shown by the dashed horizontal lines. Depending on the messenger mass, values between 10−4 and 10−5 can be
reached.

There is yet no direct limit on this BR. An indirect value can be obtained from the sum of all the BR of the visible
decays. The uncertainty in this sum gives a limit of the order of 10−4. An experimental set-up to bring this limit
down to 10−6 has been proposed at the NA64 experiment at CERN [18].

For the B0 meson case we take the B0
d with a width ΓB0 = 4.33 × 10−10 MeV [17]. From the lattice fBd = 186

MeV [19] while mBd = 5279.61 MeV [17].
As before this BR is constrained by ∆mB0 = 3.35× 10−10 MeV [17] thus giving

λ4P 2
bd

(mS [TeV])2
< 1.7× 10−3 (22)

by means of Eq. (19).
The right panel of Fig. 2 shows the BR(B0 → QbQ̄b) for αD = 0.1 and a range of the parameters mQ and mS . As

before, the limit from the constraint in Eq. (22) is shown in the same plot as two colored bands (and one can tighten
this limit by the desired factor by rescaling the bound by the same factor: the case of 10% of the experimental limit
is shown by the dashed horizontal lines). Depending on the messenger mass, values between 10−5 and 10−6 can be
reached.

There have been several attempts to measure the invisible decay of B0, both from Belle and the BaBar collabora-
tions. The current limit is 10−5 [20].

Our estimate indicates that, inserting values for mS still allowed by collider searches and taking into account the
constraint from flavor physics, the two BR above fall within the explorable range of current or proposed experiments.
Both decays have a SM background which is quite negligible being, as it is, proportional to the neutrino masses
squared. They are, literally, an open window into the dark sector that should be vigorously pursued.

IV. THE DECAY OF THE NEUTRON

After integrating out the heavy messenger fields, the terms in the Lagrangians in Eq. (1) and Eq. (2) give rise to
two effective operators violating baryon number and contributing to the decay of the neutron. They correspond to
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d

d

u

Qd

Qd

Qu

Sd

Su

Sd
N

FIG. 3: The decay of the neutron n into three dark fermions. There are two contributions corresponding to the two possible
vertices in Eq. (2) of the three scalars.

the two possible vertices among the three scalar messengers in the diagram depicted in Fig. 3. These are

Q̂1 = εαβγ(Q̄U

Ru
α
L)(Q̄D

Rd
β
L)(Q̄D

Ld
γ
R)

Q̂2 = εαβγ(Q̄U

Lu
α
R)(Q̄D

Ld
β
R)(Q̄D

Ld
γ
R) (23)

with u and d the SM up- and down-quark fields respectively. The Greek indices stand for the SU(3) color group. The
Wilson coefficients of the two operators at the matching are

c1 =
2ηLg

2
LgRρ

L
UU(ρRDD)2vR

m2
DL
m2
DR
m2
UL

and c2 =
2ηRg

3
Rρ

L
UU(ρLDD)2vR

m4
DR
m2
UR

. (24)

where mUL
(mUR

) and mDL
(mDR

) are the corresponding up and down messenger masses, for the SL and SR messenger
respectively. The operators Eq. (23) are of dimension 9 and therefore very suppressed.

For the sake of simplicity we work in a symmetric limit with λ = gL = gR, ηL = ηR and all the messenger masses
equal to mS . In the same limit, the mixing matrices give a common factor ρLuu(ρRdd)

2 = ρLuu(ρLdd)
2 = ρ3 and there is a

unique scale µ equal to ηLvR = ηRvR. In this case, the amplitude for the decay of the neutron N

N(p)→ QU(k)QD(k1)QD(k2) (25)

is given by

MN = i
λ3ρ3µ

m6
S

(
α [ūQD (k1)P̂LuN(p)][ūQD (k2)P̂Lu

c
QU (k)] + β [ūQD (k1)P̂RuN(p)][ūQD (k2)P̂Ru

c
QU (k)]

)
(26)

where p, k, k1, k2 are the corresponding momenta in the reaction (25), the chiral projectors P̂R/L = (1 ± γ5)/2 and
ucQU is the corresponding conjugate spinor. In deriving the above amplitude, we used the hadronic matrix elements

between the vacuum and the neutron field, written as

〈0|εαβγ ūcαR d
β
Ld

γ
R|N〉 = α P̂LuN and 〈0|εαβγ ūcαL d

β
Rd

γ
R|N〉 = β P̂RuN (27)

in terms of the neutron wave function uN . The coefficients β and α have been estimated on the lattice to be of
opposite sign and both about 0.0144 GeV3 [21].

The squared amplitude summed over spins and mediated over initial ones is given by

1

2
|M̄N |2 = 2λ6ρ6

(
ηµ

m6
S

)2 {
(α2 + β2)(k1 · k2)(p · k) − 2αβmNm

2
QDmQU

}
ΩC(βij) , (28)

where mN ,mQD ,mQU , are the masses of neutron, dark-fermion QD and dark-fermion QU respectively.
The function ΩC(βij) is defined in Eq. (12) with qU = −2qD for qU normalized to one; in the case of the three-body

decay of the neutron, we have

ΩC(βij) = ΩC(β12)ΩC(β13)ΩC(β23) . (29)

This Coulomb correction requires the somewhat cumbersome definition of various coefficients. They are

β1j =

√√√√1−
4m2

QU
m2
QD

(s1j −m2
QU
−m2

QD
)2

(j = 2, 3)

β23 =

√√√√1−
4m4

QD

(s23 − 2m2
QD

)2
(30)
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with

s12 = m2
QU +m2

QD + 2EE2 (1 + ββ2 cos θ)

s13 = m2
QU +m2

QD + 2EE2 (1− ββ2 cos θ) (31)

and s23 = s. In Eq. (31) the energies are defined as

E =
m2
N − s−m2

QU

2
√
s

m , E2 =

√
s

2
(32)

and

β =

√
1−

m2
QU

E2
, β2 =

√
1−

4m2
QD

s
. (33)

The phase-space integral can be computed in the center of mass of the two QD dark fermions. The width is given
by

ΓN→QUQDQD =
1

29π4m2
N

∫ (mN−mQU )2

4m2
QD

ds

√
1−

4m2
QD

s

√√√√(m2
N −m2

QU
+ s

2mN

)2

− s
∫

dΩθ

[
1

2
|M̄N |2

]
, (34)

where s = (k1 + k2)2 and θ is the angle (in this system) between ~k1 (or ~k2) and ~k. The integral in Eq. (34) can be
evaluated numerically.

The possibility of having the neutron decay into the dark sector depends on the kinematically available decay
channels. If the sum of the masses of the dark fermions is smaller than the neutron mass, the decay can proceed and
we can compare its rate to searches for the invisible decay of the neutron. We discuss this process in section IV A.3

Since all limits on the neutron lifetime are based on neutrons bounded in nuclei, this decay can be prevented by
choosing the dark fermion masses so as to keep kinematically closed the decay of 9Be into its unstable isotope 8Be.
This transition has the largest energy difference (937.900 MeV) among the atomic elements and therefore closing it
also closes all the other possible decays of stable isotopes.

If the sum of the masses of the dark fermions just happens to be lager than 937.900 MeV but less than the neutron
mass, namely 939.565 MeV, the decay of a free neutron remains open. We discuss this admittedly rather artificial
case in section IV B because of the long-standing discrepancy in the free neutron lifetime determination.

A. Invisible decay of the neutron

The absence of an invisible decay of neutrons in 16O and 12C from SNO [23] and KamLaAND [24] put a stringent
limit of τ inv

N ∼> 1029 years on such a channel.
The operators in Eq. (23) are dimensionally suppressed and therefore naturally provide a width that can be very

small. For instance, for dark fermion masses mQU = mQD = 100 MeV, by means of Eq. (34) we find that

ΓN→invisible ' 4.9× 10−55
(
λρ

4π

)6(
100 TeV

mS

)10

GeV (35)

for ηµ = 0.1mS and ΩC = 1 (because we are far from the production threshold). The width in Eq. (35) must be
smaller than 10−61 GeV to satisfy the lifetime bound—which is achieved for couplings λρ ∼ 1 and mS ∼ 100 TeV.

Different values for the masses of different messengers make the estimates in Eq. (35) for the neutron decay and
those for the meson decay in section III compatible.

The operators in Eq. (23) provide an interesting example of operators violating the baryonic number that can live
at a scale of order 100 TeV—and therefore much smaller than the typical GUT scale—without further assumptions
on the size of the dimensionless couplings. The result in Eq. (35) shows that the study of the neutron invisible decay
provides a promising test for the disappearance of ordinary matter into the dark sector.

3 See [22] for an analysis of the decay of the neutron in states of a dark sector plus ordinary matter.
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B. The neutron lifetime puzzle

The lifetime of the neutron has been measured by counting either cooled neutrons stored in a container (the bottle
method) [17], see [25] for the most recent determination, or protons coming from neutron decaying while traveling
in a given volume (the beam method) [26, 27]. The two measurements do not agree and the discrepancy (the beam
result is about 8 seconds longer) has a significance of nearly 4σ.

A very interesting explanation would be the existence of an additional invisible decay channel of the neutron, as
proposed in [3], which will affect the beam method measurement but not the bottle method. In particular, the authors
of [3] assumed a dark decay of the neutron either into a dark fermion and a photon or into a dark scalar and a dark
fermion. This possibility was further elaborated in [28].4 The lifetime of the neutron is related to the axial coupling
determination [31].

Given the Lagrangian in Eq. (1) and Eq. (2), the decay of the neutron into the dark sector, within the model we
have introduced, can only take place by means of the diagram in Fig. 3 with the neutron decaying into three dark
fermions. This is not one of the processes previously envisaged either in [3] or [28]. The charge conservation built in
the model prevents a similar decay for the proton.

Astrophysical bounds from the dynamics of neutron stars [32] do not rule out this possibility because of Pauli
blocking. This is the same mechanism that prevents neutrons in a neutron star to β-decay. In a neutron star all the
fermions are mostly in a degenerate state. After the neutron decay has started, the presence of N dark fermions gives
rise to the corresponding Fermi energy

EF =
1

2mQ

(
3π2N

V

)2/3

' 10−19
N2/3

mQ
MeV2 , (36)

where V is the volume of the neutron star, which we take to have a radius of about 104 meters. When EF is larger
than the energy available in the decay (about 1 MeV), further neutron decays are effectively stopped. This happens
after (for mQ ' 100 MeV) about 1052 decays, that is after 1 out of 105 of the neutrons in the star have decayed.
This is too small a fraction to appreciably change the equation of state of the neutron star, change its mass limit and
activate the bounds in [32].

The double limit imposed by the 9Be stability and the mass of the proton

937.900 MeV < 2mD +mU < 939.565 MeV (37)

makes for a very narrow window where the sum of the masses of the dark fermions must be.
In this region the limits from the neutron lifetime discussed in the previous section need not apply (the decay is

closed by the beryllium bound) and mS is only constrained by the LHC data.
The nearness of the sum of these masses to the neutron mass gives a very strong suppression in the phase space

of the decay (of about 4 orders of magnitude), only partially compensated by the enhancement due to the Coulomb
interaction of the final states (which is partially suppressed by the repulsive component and about 1 order of magni-
tude).

For αD = 0.1, mQU = mQD ' 313 MeV (to satisfy the nuclear physics constraints), and after taking ηµ = 10mS—at
the very limit of the unitarity constraint—we find

ΓN→QUQDQD ' 4.9× 10−35
(
λρ

4π

)6(
1 TeV

mS

)10

GeV . (38)

For the width in Eq. (38) to be of order 10−30 GeV—the value necessary to explain the discrepancy in the neutron
lifetime data—we must take mS around 200 GeV, a value still allowed by the LHC data if the messenger decays
almost exclusively into a top quark, and λρ ' 6. This is the extreme choice for the model parameters alluded in
the abstract. If (most likely, when) the LHC will close this window, the neutron lifetime puzzle will no longer be
explained by the model of the dark sector we consider here.

4 See, also, [29, 30] for neutron decay in the context of neutron-antineutron oscillations.



10

Acknowledgments

We thank Jessie Shelton for bringing to our attention the possibility in our model of Pauli blocking the neutron
decay in neutron stars.

[1] R. Essig et al., “Working Group Report: New Light Weakly Coupled Particles,” arXiv:1311.0029 [hep-ph];
J. Alexander et al., “Dark Sectors 2016 Workshop: Community Report,” [arXiv:1608.08632[hep-ph]].

[2] S. Paul, “The Puzzle of Neutron Lifetime,” Nucl. Instrum. Meth. A 611, 157 (2009) [arXiv:0902.0169 [hep-ex]];
F. E. Wietfeldt and G. L. Greene, “Colloquium: The neutron lifetime,” Rev. Mod. Phys. 83, no. 4, 1173 (2011);
G.L. Greene and P. Geltenbort, “The Neutron Enigma”, Scientific American 314 (2016) 36.

[3] B. Fornal and B. Grinstein, “Dark Matter Interpretation of the Neutron Decay Anomaly,” arXiv:1801.01124 [hep-ph].
[4] E. Gabrielli, L. Marzola and M. Raidal, “Radiative Yukawa Couplings in the Simplest Left-Right Symmetric Model,” Phys.

Rev. D 95, no. 3, 035005 (2017) [arXiv:1611.00009 [hep-ph]].
[5] E. Gabrielli and M. Raidal, “Exponentially spread dynamical Yukawa couplings from nonperturbative chiral symmetry

breaking in the dark sector,” Phys. Rev. D 89, no. 1, 015008 (2014) [arXiv:1310.1090 [hep-ph]].
[6] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, “Dark-Photon searches via Higgs-boson production at the LHC,”

Phys. Rev. D 93, no. 9, 093011 (2016) [arXiv:1603.01377 [hep-ph]];
E. Gabrielli, M. Heikinheimo, B. Mele and M. Raidal, “Dark photons and resonant monophoton signatures in Higgs boson
decays at the LHC,” Phys. Rev. D 90, no. 5, 055032 (2014) [arXiv:1405.5196 [hep-ph]].

[7] E. Gabrielli, B. Mele, M. Raidal and E. Venturini, “FCNC decays of standard model fermions into a dark photon,” Phys.
Rev. D 94, no. 11, 115013 (2016) [arXiv:1607.05928 [hep-ph]].

[8] M. Fabbrichesi, E. Gabrielli and B. Mele, “Hunting down massless dark photons in kaon physics,” Phys. Rev. Lett. 119,
no. 3, 031801 (2017) [arXiv:1705.03470 [hep-ph]].

[9] M. Fabbrichesi, E. Gabrielli and B. Mele, “Z boson decay into light and darkness,” Phys. Rev. Lett. 120, no. 17, 171803
(2018) [arXiv:1712.05412 [hep-ph]].

[10] L. Ackerman, M. R. Buckley, S. M. Carroll and M. Kamionkowski, “Dark Matter and Dark Radiation,” Phys. Rev. D 79,
023519 (2009) [arXiv:0810.5126 [hep-ph]].

[11] M. Aaboud et al. [ATLAS Collaboration], “Search for squarks and gluinos in final states with jets and missing transverse
momentum using 36 fb−1 of

√
s=13 TeV pp collision data with the ATLAS detector,” arXiv:1712.02332 [hep-ex]; CMS

Collaboration [CMS Collaboration], CMS-PAS-SUS-16-036.
[12] S. Hoffmann, “Paraphotons and Axions: Similarities in Stellar Emission and Detection,” Phys. Lett. B 193, 117 (1987);

B. A. Dobrescu, “Massless gauge bosons other than the photon,” Phys. Rev. Lett. 94, 151802 (2005) [hep-ph/0411004];
M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, “Cool WISPs for stellar cooling excesses,” JCAP 1605, no. 05,
057 (2016) [arXiv:1512.08108 [astro-ph.HE]].

[13] S. Weinberg, Phys. Rev. 140, B516 (1965).
[14] G. Isidori, “Soft-photon corrections in multi-body meson decays,” Eur. Phys. J. C 53 (2008) 567 [arXiv:0709.2439 [hep-ph]].
[15] A. Sommerfeld, Ann. Phys. 403 (1931) 257; E. Fermi, “An attempt of a theory of beta radiation. 1.,” Z. Phys. 88, 161

(1934).
[16] A. Badin and A. A. Petrov, “Searching for light Dark Matter in heavy meson decays,” Phys. Rev. D 82, 034005 (2010)

[arXiv:1005.1277 [hep-ph]].
[17] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C 40, no. 10, 100001 (2016).
[18] S. N. Gninenko, “Search for invisible decays of π0, η, η′,KS and KL: A probe of new physics and tests using the Bell-

Steinberger relation,” Phys. Rev. D 91, no. 1, 015004 (2015) [arXiv:1409.2288 [hep-ph]];
S. N. Gninenko and N. V. Krasnikov, “Invisible KL decays as a probe of new physics,” Phys. Rev. D 92, no. 3, 034009
(2015) [arXiv:1503.01595 [hep-ph]].

[19] R. J. Dowdall et al. [HPQCD Collaboration], “B-Meson Decay Constants from Improved Lattice Nonrelativistic QCD with
Physical u, d, s, and c Quarks,” Phys. Rev. Lett. 110, no. 22, 222003 (2013) [arXiv:1302.2644 [hep-lat]].

[20] C. L. Hsu et al. [Belle Collaboration], “Search for B0 decays to invisible final states,” Phys. Rev. D 86, 032002 (2012)
[arXiv:1206.5948 [hep-ex]];
J. P. Lees et al. [BaBar Collaboration], “Improved Limits on B0 Decays to Invisible Final States and to νν̄γ,” Phys. Rev.
D 86, 051105 (2012) [arXiv:1206.2543 [hep-ex]].

[21] Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, “Improved lattice computation of proton decay matrix elements,” Phys.
Rev. D 96, no. 1, 014506 (2017) [arXiv:1705.01338 [hep-lat]].

[22] H. Davoudiasl, “Nucleon Decay into a Dark Sector,” Phys. Rev. Lett. 114, no. 5, 051802 (2015) [arXiv:1409.4823 [hep-ph]].
[23] S. N. Ahmed et al. [SNO Collaboration], “Constraints on nucleon decay via ’invisible’ modes from the Sudbury Neutrino

Observatory,” Phys. Rev. Lett. 92, 102004 (2004) [hep-ex/0310030].
[24] T. Araki et al. [KamLAND Collaboration], “Search for the invisible decay of neutrons with KamLAND,” Phys. Rev. Lett.

96, 101802 (2006) [hep-ex/0512059].
[25] A. P. Serebrov et al., “Neutron lifetime measurements with the big gravitational trap for ultracold neutrons,”

arXiv:1712.05663 [nucl-ex].

http://arxiv.org/abs/arXiv:1311.0029
http://arxiv.org/abs/arXiv:1608.08632
http://arxiv.org/abs/arXiv:0902.0169
http://arxiv.org/abs/arXiv:1801.01124
http://arxiv.org/abs/arXiv:1611.00009
http://arxiv.org/abs/arXiv:1310.1090
http://arxiv.org/abs/arXiv:1603.01377
http://arxiv.org/abs/arXiv:1405.5196
http://arxiv.org/abs/arXiv:1607.05928
http://arxiv.org/abs/arXiv:1705.03470
http://arxiv.org/abs/arXiv:1712.05412
http://arxiv.org/abs/arXiv:0810.5126
http://arxiv.org/abs/arXiv:1712.02332
http://arxiv.org/abs/hep-ph/0411004
http://arxiv.org/abs/arXiv:1512.08108
http://arxiv.org/abs/arXiv:0709.2439
http://arxiv.org/abs/arXiv:1005.1277
http://arxiv.org/abs/arXiv:1409.2288
http://arxiv.org/abs/arXiv:1503.01595
http://arxiv.org/abs/arXiv:1302.2644
http://arxiv.org/abs/arXiv:1206.5948
http://arxiv.org/abs/arXiv:1206.2543
http://arxiv.org/abs/arXiv:1705.01338
http://arxiv.org/abs/arXiv:1409.4823
http://arxiv.org/abs/hep-ex/0310030
http://arxiv.org/abs/hep-ex/0512059
http://arxiv.org/abs/arXiv:1712.05663


11

[26] J. Byrne and P. G. Dawber, “A Revised Value for the Neutron Lifetime Measured Using a Penning Trap,” Europhys. Lett.
33, 187 (1996).

[27] A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico, W. M. Snow and F. E. Wietfeldt, “Improved
Determination of the Neutron Lifetime,” Phys. Rev. Lett. 111, no. 22, 222501 (2013) [arXiv:1309.2623 [nucl-ex]].

[28] J. M. Cline and J. M. Cornell, “Dark decay of the neutron,” arXiv:1803.04961 [hep-ph].
[29] G. K. Leontaris and J. D. Vergados, “n-n̄ oscillations and the neutron lifetime,” arXiv:1804.09837 [hep-ph].
[30] Z. Berezhiani, “Neutron lifetime puzzle and neutron - mirror neutron oscillation,” arXiv:1807.07906 [hep-ph].
[31] A. Czarnecki, W. J. Marciano and A. Sirlin, “Neutron Lifetime and Axial Coupling Connection,” Phys. Rev. Lett. 120,

no. 20, 202002 (2018) [arXiv:1802.01804 [hep-ph]].
[32] D. McKeen, A. E. Nelson, S. Reddy and D. Zhou, “Neutron stars exclude light dark baryons,” arXiv:1802.08244 [hep-ph];

G. Baym, D. H. Beck, P. Geltenbort and J. Shelton, “Coupling neutrons to dark fermions to explain the neutron lifetime
anomaly is incompatible with observed neutron stars,” arXiv:1802.08282 [hep-ph];
T. F. Motta, P. A. M. Guichon and A. W. Thomas, “Implications of Neutron Star Properties for the Existence of Light
Dark Matter,” J. Phys. G 45, no. 5, 05LT01 (2018) [arXiv:1802.08427 [nucl-th]].

http://arxiv.org/abs/arXiv:1309.2623
http://arxiv.org/abs/arXiv:1803.04961
http://arxiv.org/abs/arXiv:1804.09837
http://arxiv.org/abs/arXiv:1807.07906
http://arxiv.org/abs/arXiv:1802.01804
http://arxiv.org/abs/arXiv:1802.08244
http://arxiv.org/abs/arXiv:1802.08282
http://arxiv.org/abs/arXiv:1802.08427

	I Motivations
	II A model for the dark sector
	A Dark matter, relic density and galaxy dynamics
	B Constraints on messenger masses
	C The importance of soft dark photon corrections

	III The decay of neutral mesons
	A The decay width
	B Constraints from the meson mass difference
	C Branching rates for KL and B0

	IV The decay of the neutron
	A Invisible decay of the neutron
	B The neutron lifetime puzzle

	 Acknowledgments
	 References

