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1 Introduction

Precision mapping of the material within the tracking volume of the CMS detector [1] is impor-
tant for the experiment’s measurement goals. The material affects the reconstruction of events
through multiple scattering, energy loss, electron bremsstrahlung, photon conversions, and nuclear
interactions (NIs), of the particles produced in proton-proton collisions. The analysis presented
here uses reconstructed NIs to precisely measure the positions of inactive elements surrounding the
proton-proton collision point, such as the beam pipe and the inner mechanical structures of the pixel
detector. This information is needed to validate simulations of the CMS detector and to identify any
shifts in the positions of inactive elements. It can also be used in searches for long-lived particles
with displaced vertices [2, 3].

An accurate simulation of the effects of inactivematerial is necessary for a proper reconstruction
of all particles produced in a proton-proton collision event. In particular, the material closest to
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the interaction region affects the track position resolution, which, in turn, strongly affects the
b tagging performance [4]. Substantial effort has been invested into the implementation of the
detailed Geant4 [5, 6] geometry used to simulate the detector response. Previous studies have
addressed the systematic uncertainties related to the tracker material simulation [7], validation of
the simulation with early data [8], and more accurate calibrations based on the data to improve the
resolution of calorimeter-based observables [9].

Identifying shifts in the positions of inactive elements is important not only for accurate
detector response simulation, but also for CMS tracker upgrade designs. Since the pixel detectors
are installed with the beam pipe already in place, an accurate measurement of the beam pipe position
is of paramount importance. As a consequence of the beam pipe mechanical characteristics and
support structure design, its final position can be different from the nominal one at the millimeter
level [10]. For the design of the Phase-1 upgrade of the pixel detector, which was installed in Spring
2017, NI imaging was used to conclude that the sagging of the beam pipe between the supports was
small enough to be of no concern. Both the original and new versions of the CMS pixel detector
are split into two half-cylinders and inserted by sliding these two halves into place by means of
appropriate rails. This installationmethod does not provide accuracy and reproducibility of the pixel
detector positioning below the level of a fewmillimeters. The evaluation and understanding of these
position uncertainties, which are comparable with mechanical clearances between the pixel detector
and the beam pipe, were important inputs for the design of the new support system and helped to
establish reliable installation procedures for the Phase-1 upgrade of the pixel detector. Clearances
may change during detector operation because of deformation due to gravity, and variations in
vacuum pressure, temperature, and magnetic field [10]. The innermost layer of the Phase-1 upgrade
of the pixel detector is even closer to the beam pipe than the previous innermost pixel layer [10],
but the clearances were well understood from the NI imaging of the pixel detector support tube.

Nuclear interaction reconstruction has been developed in the past [8, 11–13] as a powerful
tool for investigating inactive material in a tracking detector. Reconstructed NIs profit from higher
multiplicity and larger scattering angles of secondary tracks emerging from the NI vertex, resulting
in better vertex position resolution along the direction of the impinging particle compared to photon
conversion vertices [8]. Thus, the vertex resolution of reconstructed NIs is typically sub-millimeter,
and the large number of NIs leads to a precision of the order of 100 µm in determining the positions
of inactive elements of the detector. The position resolution has negligible statistical uncertainties
and is limited by systematic uncertainties.

In the alignment procedure, reconstructed tracks are used to measure the positions of the pixel
detector layers relative to the outer tracking system [14]. However, the only way to accurately
measure the positions of the inactive elements (such as the beam pipe) with respect to the tracking
detectors is to use NIs. This paper describes their effective use for a post-installation survey of the
critical detector region surrounding the interaction point.

The paper is organized as follows. In section 2 a brief description of the CMS detector and
its coordinate system is given. Section 3 summarizes the data sets used in the analysis and the
reconstruction method for the NIs is presented. Section 4 describes the position measurement
method, while in section 5 the actual measurements for the original pixel detector are presented.
In section 6 the systematic uncertainties are addressed. In section 7 the comparison of these
measurements with technical surveys is discussed, followed by a summary in section 8.
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2 CMS detector

The CMS detector is one of two general-purpose detectors operating at the LHC facility at CERN.
One of the central features of the CMS detector is a superconducting solenoid of 6m internal
diameter, providing a magnetic field of 3.8 T, which enables the measurement of charged particle
momenta by reconstructing their trajectories as they traverse the CMS tracking system. The CMS
experiment uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the
LHC plane), and the z axis along the counterclockwise beam direction. The azimuthal angle φ is
measured in the x-y plane, with φ = 0 along the positive x axis, and φ = π/2 along the positive y

axis. The radial coordinate in this plane is denoted by r .
The CMS tracking system, shown in figure 1 (upper), consists of two main detectors: the

smaller inner pixel detector and the larger silicon strip detector. The original pixel detector had
three barrel pixel (BPIX) layers and two endcap disks per side, covering the region from 4 to 15 cm
in radius, and spanning 98 cm along the LHC beam axis. The silicon strip tracking system has ten
barrel layers and twelve endcap disks per side, covering the region from 25 to 110 cm in radius,
and spanning 560 cm along the LHC beam axis. The tracking system acceptance extends up to a
pseudorapidity of |η | = 2.5. The silicon strip tracking system has four subsystems. The innermost
four barrel layers comprise the tracker inner barrel (TIB) detector, and the outer six barrel layers
form the tracker outer barrel (TOB) detector. The three endcap disks to either side of the TIB
detector form the tracker inner disks (TID− and TID+), and the nine endcap disks at each end
constitute the tracker endcap (TEC− and TEC+).

The particular structural elements studied in this paper are the inactive elements that surround
the BPIX detector, shown in figure 1 (lower): the pixel detector support tube, the BPIX detector
outer and inner shields, three BPIX detector layers, and the beam pipe. The beam pipe is the
innermost structure and, proceeding outward, the next structure is the BPIX detector inner shield.
The BPIX detector and its inner shield are composed of two semi-circular halves, which are called
‘far’ for the structure outside the LHC ring (x < 0) and ‘near’ for the structure inside of the LHC
ring (x > 0). Photographs of one of the halves of the BPIX detector are shown in figure 2. The
BPIX detector support rails are located on the outer edge of the BPIX detector, and hold its layers
in place. The pixel detector support tube encloses the BPIX detector and the support rails.

3 Data sample and nuclear interaction reconstruction

The data set used in this analysis was recorded in 2015 from proton-proton collisions at a center-of-
mass energy of 13 TeV at the LHC, and corresponds to an integrated luminosity of 2.5 fb−1. Studies
were also performed using Monte Carlo (MC) simulations with pythia 8 [15–17] based on single
charged pions generated uniformly in η and φ at different fixed momenta. The resulting single-pion
samples are processed through a Geant4-based detector simulation.

The data sample was selected using two main criteria. First, the density of particles should not
be too large because tracks coming from the primary interaction may be mismeasured and the NI
reconstruction algorithm may assign them to an NI vertex. These random combinations of primary
tracks are the main source of background, and what we label “misreconstructed” NIs. Second,
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Figure 1. (Upper) Schematic view of the CMS tracking detector [1], and (lower) closeup view of the region
around the original BPIX detector with labels identifying pixel detector support tube, BPIX detector outer
and inner shields, three BPIX detector layers, and beam pipe.

the sample should have a sufficient number of events to compensate for the low efficiency of the
NI reconstruction. The set of events obtained using a collection of triggers [18] that require at
least one high pT muon fulfills both of these criteria since these events tend to have fewer areas of
high-density hadronic activity than events triggered only by jets.

Previous studies show that the overall material thickness of the silicon tracking system varies
between 0.1–0.5 λI, where λI is the characteristic nuclear interaction length [19]. Simulations show
that approximately 5% of charged pions with transverse momentum pT ≈ 5GeV interact in the
tracking system [8]. Each NI can create a displaced vertex within the tracking volume, with an
incoming particle and a few outgoing particles. In this analysis we look for NI vertices that have at
least three associated charged particles, as discussed in more detail below.
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Figure 2. (Left) Photograph of one half of the BPIX detector showing longitudinal support, three layers,
and inner shield. (Right) Photograph showing an end of the BPIX detector while standing on the installation
cassette. Optical targets, indicated by the numbers 2001, 2002, and 2003, are used to locate the BPIX detector
within the CMS cavern. Photographs by Antje Behrens, CERN.

In the methodology used to reconstruct NI vertices, the first step is to find the tracks using
the CMS iterative tracking algorithm [20, 21]. This algorithm proceeds with a sequence of ten
iterations. For each iteration, a specific seeding pattern is identified requiring two or three hits
from pixel detector layers or strip detector stereo layers [20]. Those seeds are forward propagated
within the tracking volume and the tracks are retained if quantities such as the total number of hits,
pT, quality of the fit, the transverse impact parameter with respect to the primary vertex, d0, and
the number of missing hits, nlost, fulfill certain quality criteria. This last variable is obtained by
extrapolating the track’s trajectory outward toward the calorimeters and inward toward the beam
axis. The value of nlost is then the number of strip and pixel detector layers crossed by the trajectory
that have no measured hits.

At the end of each iteration, the hits associated with the identified tracks are masked to reduce
the combinatorics of the next step. The highest-quality tracks are identified in the earliest iterations,
while subsequent iterations select tracks with lower quality and larger combinatorics.

Tracks considered for NI reconstruction benefit from all ten iterations and are required to
have pT > 200MeV to reduce the number of misreconstructed NIs. They are classified into three
categories according to their position relative to the NI vertex:

• Incoming tracks: we require d0 < 0.2 cm, and at least three hits, with at most one hit after
the NI vertex.

• Outgoing tracks: we require d0 > 0.2 cm, at least six hits, with at most one hit before the NI
vertex, and nlost < 10.
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Figure 3. Schematic view of NI vertex reconstruction: (left) a cluster of PC positions (PC1, PC2, and PC3)
with the distance of closest approach dm (labeled dm1), shown for PC1; (center) the algorithm uses the three
PC points to identify an aggregate position PG; (right) after refitting the track helices, the best vertex P′G is
found with indicated incoming direction from the primary vertex position, PV, and outgoing system. Black
curves correspond to reconstructed charged particle tracks.

• Merged tracks: we require d0 < 0.2 cm, at least four hits, with at least two hits before, and
two after the NI vertex, and nlost < 10.

For an NI in the strip detector, the incoming charged particles may be reconstructed as short tracks
seeded from pixel detector triplets or pairs of hits. For an NI in the pixel detector the incoming
charged particle leaves too few hits to be reconstructed. It can happen, though, that the hits from the
incoming charged particle are assigned by the tracking algorithm to an outgoing track that is much
longer. In that case, a merged track is obtained. The tracking of the outgoing charged particles
typically uses strip-only or mixed pixel-strip detector seeding. Finally, in NI cases where most of the
momentum of the incoming charged hadron is transferred to an outgoing one, the trajectories of the
incoming and outgoing tracks may be assigned by the tracking algorithm to a single merged track.

A vertex reconstructed from the list of selected tracks identifies the position of the NI. For each
pair of tracks the points of closest approach are identified. The length of the segment connecting
these two points provides the distance of closest approach, dm [20]. If dm < 0.5 cm, we consider
the possibility that both tracks come from the same vertex. The center, PC, of the segment is then
considered as the best estimate of the position of this vertex. This step is sketched in figure 3 (left).

A three-dimensional (3D) clustering procedure is used to iteratively aggregate the PC positions
of vertex candidates. In practice, we start from the innermost PC (labeled PC1) with respect to the
primary vertex position, PV, and look for the presence of points within a cylinder of ±5 cm along
the direction of the vector −−−−→PVPC and 1 cm in radius. The dimensions of this cylinder are defined
to take into account the resolution of the track parameters. If several points are found, the closest
to PC1 is selected, and the barycenter position (PG) between this point and PC1 is calculated. The
algorithm is iterated starting from PG. The search stops when no additional points are found within
the cylinder. This step is sketched in figure 3 (center). All points selected during the search are
removed from the list of PC values and the algorithm is restarted.
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Each PG with its associated tracks is passed to the adaptive vertex fitter (AVF) [20], which
refits the helices of the tracks assuming a point close to PG as the common vertex. An example is
sketched in figure 3 (right). The AVF provides a list of vertex candidates with their best position
estimates, P′G, as its output.

The set of outgoing tracks from a vertex candidate is referred to as the outgoing system. The
Lorentz four-vectors of those tracks, assuming a pion mass for each track, define the kinematic
properties of the outgoing system. The incoming or merged track is referred to as the incoming
system. It provides the direction and kinematic properties of the impinging particle. In case no
incoming or merged track is present, the vector

−−−−→
PVP′G defines the incoming direction.

This list of vertex candidates is filtered with the following quality criteria designed to select NI
vertices and reject conversions, decays in flight, and misreconstructed NI vertices:

• At least three tracks are required, including incoming, merged, or outgoing tracks.

• An NI candidate with more than one incoming and/or merged track is rejected.

• The outgoing system must have an invariant mass of at least 1GeV and pT > 500MeV.

• The angle between the incoming and outgoing directions shall not exceed 15◦.

• Vertex candidates located well inside the nominal beam pipe radius are removed since there
is no material in that region.

With these criteria, 5.40 million events are found with at least one NI and these events yield a total
of 5.71 million NIs.

The position resolution of the reconstructed NI vertices is estimated using the single-pion
simulation. The positions of the actual NI and its reconstruction are recorded and the differences
are compared in different regions of the detector. Within the beam pipe, the typical resolution
perpendicular to the direction of the particle’s propagation is of the order of 50 µm. The resolution
degrades at larger radius due to the smaller number of pixel detector hits included in the tracking.
Within the pixel detector volume, the resolution is approximately 100 µm, and it increases to
200 µm within the pixel detector support tube. The perpendicular vertex position resolution is the
main factor in determining how well the centers of the different structures can be located. The
vertex position resolution along the direction of propagation of the incoming track is worse than in
the perpendicular direction because the combining of the individual track locations is less precise in
this direction. The resolutions along the track direction are 300 µm within the beam pipe, 500 µm
within the pixel detector, and 1000 µmwithin the pixel detector support tube. These resolutions are
smaller than the element thicknesses in the different structures under consideration and the impact
on the uncertainties associated with the measurement procedure remains limited.

The purity of the NI sample depends on the region under consideration and the signal-over-
background ratio is about 1.5, 0.5, and 8 for the beam pipe, BPIX detector inner shield, and pixel
detector support tube, respectively. The misreconstruction rate decreases as track density decreases
and so it is smaller at higher radius. The misreconstruction rate for each measurement is estimated
from data by looking at a region to the side of the structure under consideration, where no material
is expected.
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Figure 4. Hadrography of the tracking system in the x-y plane in the barrel region (|z | < 25 cm). The density
of NI vertices is indicated by the color scale. The signatures of the beam pipe, the BPIX detector with its
support, and the first layer of the TIB detector can be observed above the background of misreconstructed
NIs.

The “hadrography” in the x-y plane of the tracking system in the barrel region (|z | < 25 cm) is
provided in figure 4. The signatures of the beam pipe, the BPIX detector with its support, and the
first layer of the TIB detector can be seen.

4 Analysis method

In this analysis we focus on the measurement of the positions of the inactive elements within
the inner tracking system. All the inactive elements under consideration except for the support
rails have a cylindrical geometry with their axes being collinear to the beam axis. For all the
structures but the support rails, the axis position is within a few millimeters of (0, 0), the origin of
the CMS offline coordinate system, which is discussed in section 7.1. By design, the thicknesses
of the structures do not exceed a few millimeters to keep the amount of material within the inner
tracking system to a minimum. These properties of the components under consideration allow a
significant simplification of the fitting technique. Instead of a complex fit of a 3D structure, we fit
the parameters of a function in the x-y plane using shapes such as circles, half-circles, or ellipses.

The slight displacement of the structures’ axes with respect to the beam axis induces differences
in the azimuthal hadron fluxes seen by different elements of the structure. We correct for that effect
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locally by reweighting events [8] using a geometric factor for each bin i, Fi, that accounts for the
small flux effect. To a first approximation we can write Fi = 1/r2

i,bs, where rbs is the radial distance
calculated with respect to the average over the data-taking period of the beam spot position that was
computed using the method from ref. [20]. For the 2015 data-taking period, the average beam spot
position in the transverse plane was xbs = 0.8mm and ybs = 0.9mm [22]. The beam spot position
varied during the year by distances of less than 0.1mm.

The measurement of each cylindrical structure follows the same steps:

1. The NI vertices are selected within a ring of a few centimeters around the structure and a
binned position distribution in i is made in the x-y plane. The chosen bin sizes are smaller
than the thicknesses of the objects being studied, but large enough to allow for stable fitting
procedures. The two-dimensional (2D) bin size in the x-y plane used for the beam pipe and
BPIX detector inner shield measurements is 500 × 500 µm2. For the pixel detector support
tube the bin size is 1700 × 1700 µm2, and for the BPIX detector support rails a bin size of
800 × 800 µm2 is used.

2. The resulting distribution is sliced into 40 regions in φ. The slices where additional structures
such as cooling pipes or collars, are visible near the main structure are rejected from the
analysis.

3. In each slice, the 2D distribution is projected along the φ coordinate and the distribution
of ρi(x0, y0) values is considered, where ρi(x0, y0) =

√
(xi − x0)

2 + (yi − y0)
2 is the radial

position of the center of bin i in the relative coordinates of the structure, with origin (x0, y0).
The signal region is defined using ρmin and ρmax values chosen around the expected position of
the structure. The combinatorial background is estimated using signal sidebands in ρi(x0, y0),
which are fit by an exponential function, yielding a value Bi of background events under the
signal in the x-y plane for each bin i.

4. A χ2 is defined for a circular shape:

χ2 =
∑

i:ρmin<ρi(x0,y0)<ρmax

max[0, (Ni − Bi − nσ
√

Bi)] Fi/Fref (ρi(x0, y0) − R)2

σ2
NI

, (4.1)

where σNI = 100 µm is the typical NI vertex resolution, Ni is the number of events in bin i,
nσ is the number of standard deviations above the nominal background, and R is the radius of
the structure. In the case of an ellipse, R becomes dependent on xi and yi through a relation
parametrized by the semi-minor axis (Rx) and semi-major axis (Ry). The correction factor
Fi/Fref is defined to mitigate the small differences in hadron flux between bins. To keep this
factor as close as possible to 1, we take Fref to be the value of the flux at the expected radius
R around the beam spot position. During the minimization procedure we do not recalculate
Fref. The overall impact of the flux factor on the final result is small.

5. We subtract the mean background plus twice the expected background uncertainty (using
nσ = 2) to maximize the signal purity and improve the visibility of the structures.

6. A minimization of the χ2 is subsequently performed with R, x0, and y0, as free parameters.
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Figure 5. The beam pipe region viewed in the x-y plane for |z | < 25 cm before background subtraction.
The density of NI vertices is indicated by the color scale. (0, 0) is the origin of the CMS offline coordinate
system, which is discussed in section 7.1. The blue point in the center of the distribution corresponds to the
average beam spot position of xbs = 0.8mm and ybs = 0.9mm in 2015.

5 Measurements of pixel detector positions

5.1 Measurement of the beam pipe position

The density of NI vertices before background subtraction, reconstructed in the BPIX detector
(|z | < 25 cm) in the region of the beam pipe ring, projected onto the x-y plane, is shown in figure 5.
The section of the pipe observed in the figure is machined as a thin beryllium cylinder, 0.8mm
thick. The pipe is maintained by collars located at z = ±1.5m, which are outside of the region that
is investigated by this analysis. The structure is therefore modeled by a simple circle in the x-y
plane. The combinatorial background appears in blue in the figure. Since the axis of the pipe is
shifted by approximately 1 mmwith respect to the coordinate system, we consider the whole region
between ρmin = 2.0 and ρmax = 2.4 cm for the fit.

An example of a φ slice is shown in figure 6. We clearly see a peak at around ρ(x0, y0) = 2.25 cm
that represents the location of the beam pipe. The combinatorial background under the peak is
estimated from the right sideband defined by 2.4 < ρ(x0, y0) < 3.0 cm. An exponential function is
fitted to the sideband region and extrapolated into the signal region.

In figure 7, the fit results for a circle of radius R and center (x0, y0) are shown in the x-y plane
(upper), and r-φ coordinates (lower). The radius is measured with a precision of 30 µm, well below
the thickness of the beam pipe. The radius measurement matches exactly the design value of the
beam pipe, which is 22.1mm [10]. The center of the beam pipe is shifted by 1.24mm in x and
0.27mm in y. The effect of this shift is visible in the sinusoidal modulation of the r-φ distribution,
which is well modeled by the fit.
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Figure 6. The density of NI vertices versus ρ(x0, y0) for a φ slice of the beam pipe located near φ = 0 (black
line) for |z | < 25 cm before background subtraction. The green hatched area corresponds to the signal region,
the red hatched area corresponds to the sideband region used to fit the background, and the blue hatched area
corresponds to the estimated background in the signal region.

5.2 Measurement of the BPIX detector inner shield position

Figure 8 shows the density of reconstructed NI vertices in the region of the BPIX detector inner
shield for |z | < 25 cm as projected onto the x-y plane. The inner shield can be identified at around
r = 3.8 cm and protects the sensitive modules of the first BPIX detector layer visible in the region
around r = 4 cm. The small bumps around the shield that are visible in figure 8 correspond to the
cables connected to the first BPIX detector layer. The twelve φ sectors that contain the cables are
removed from the fit described below.

The background for the remaining φ sectors is estimated from the left sideband defined by
3.00 < ρ(x0, y0) < 3.55 cm. This region between the beam pipe and the BPIX detector inner shield
is empty of any structure, while the region between the inner shield and first BPIX detector layer is
very small and occupied by cables. The signal-over-background ratio for the BPIX detector inner
shield is less favorable than for the beam pipe because the shield has a smaller amount of material.

In figure 9, the result of the fit to the BPIX detector inner shield with two half-circles is shown
in the x-y plane (upper), and r-φ coordinates (lower). The radii of the halves are assumed to be
equal and represented by the parameter R. The possibilities that the radii could be different and
that we have two half-ellipses instead of circles were tested and represent the dominant systematic
uncertainty, which amounts to 170 µm. The centers of each half-circle, (xfar0 , yfar0 ) and (xnear0 , ynear0 ),
are determined from the fit. The fit values for yfar0 and ynear0 show that the halves are vertically
aligned to within 100 µm. The geometric shapes of the two half-circles used in the fit overlap, as
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Figure 7. The beam pipe regionwith the fitted values for a circle of radius R and center(x0, y0) for |z | < 25 cm.
The x-y plane after background subtraction (upper), and the r-φ coordinates before background subtraction
(lower), are shown. The density of NI vertices is indicated by the color scale. The red line shows the
fitted circle. The blue point in the center of the x-y plane corresponds to the average beam spot position of
xbs = 0.8mm and ybs = 0.9mm in 2015.
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Figure 8. The BPIX detector inner shield region viewed in the x-y plane for |z | < 25 cm before background
subtraction and removal of the φ regions with additional structures. The density of NI vertices is indicated
by the color scale. The inner shield itself is the visible circle of radius r = 3.8 cm. Modules in the first BPIX
detector layer are visible at larger radius. The small bumps that can be seen around the shield correspond to
cables connected to the first BPIX detector layer.

seen in figure 9 (upper). However, each half of the actual BPIX detector inner shield spans less than
a half-circle in arc length, resulting in a small gap between the halves that can be seen in figures 8
and 9 (lower).

5.3 Measurements of the positions of the pixel detector support tube and the BPIX detector
support rails

The density of NI vertices, reconstructed in the barrel tracking detector (|z | < 25 cm), in the region
of the pixel detector support tube, projected onto the x-y plane, is shown in figure 10. The BPIX
detector is placed within the cylinder of the pixel detector support tube using the top and bottom
rails visible at y ≈ ±19 cm. The region around the rails (twelve φ sectors) is removed from the
fitting procedure for the pixel detector support tube.

When the pixel detector support tube was manufactured, it was circular, but it was deformed
into an ellipse under its own weight after installation. The pixel detector support tube was fitted
with an ellipse because of this deformation, and a difference of 1.0mm is seen between the two
semi-axes. In figure 11, the result of the fit to the pixel detector support tube is shown in the x-y
plane (upper), and r-φ coordinates (lower). The semi-minor axis appears to be aligned with the x
axis and the semi-major axis with the y axis. The position of the center of the pixel detector support
tube is shifted by a few millimeters with respect to the coordinate system.

The method used to measure the positions of the BPIX detector support rails is different than
for the other inactive elements since the rails are more complex structures to model. The rails are
mounted on support structures that are aligned with the x axis, therefore we can identify the y
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Figure 9. The BPIX detector inner shield with the fitted values for two half-circles of common radius R and
centers (xfar0 , yfar0 ) and (xnear0 , ynear0 ) for |z | < 25 cm. The x-y plane after background subtraction (upper), and
the r-φ coordinates before background subtraction (lower), are shown. The density of NI vertices is indicated
by the color scale. The red and black lines at around r = 3.8 cm show the fitted half-circles on the far and
near sides, respectively. The blue point at the center of the x-y plane corresponds to the average beam spot
position of xbs = 0.8mm and ybs = 0.9mm in 2015. Modules in the first BPIX detector layer are visible
in (lower) at larger radius.
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Figure 10. The region of the pixel detector support tube viewed in the x-y plane for |z | < 25 cm before
background subtraction and removal of the φ regions with additional structures. The density of NI vertices
is indicated by the color scale. Two circular structures are visible. The circle with the smaller radius
corresponds to the BPIX detector outer shield, while the one with the larger radius is the pixel detector
support tube (also visible in figure 4).

coordinate (top rail y and bottom rail y) of this support structure. In practice we define top and
bottom rail y as the inner coordinate of the support structure, estimated by finding the position with
the maximum y derivative in figure 12. The measurement is performed separately for the y < 0
and y > 0 sides. Since the support structure is very thin, it is included in a single bin of width
800 µm. The uncertainty for a uniform/flat distribution is 1/

√
12 of the bin size, i.e., 0.02 cm. This

uncertainty includes effects from the fitting procedure and from small structures within the rails.
The results are shown in figure 12 for the combined tracking detector barrel and endcap regions.
We also performed separate measurements for the barrel and endcap regions, and the results were
consistent with those obtained from the combined regions.

5.4 Results

Table 1 summarizes the results of the fits. The values of the parameters are tabulated for the fits
to the beam pipe with a circle, the BPIX detector inner shield with two half-circles, and the pixel
detector support tube with an ellipse. Only systematic uncertainties are provided since the statistical
uncertainties are negligible (below 10 µm). Table 2 summarizes the final results where the BPIX
detector support rails were fitted with a horizontal line. As an estimate of the systematic uncertainty
we take half the bin width in y; the statistical uncertainties are once again negligible.

6 Systematic uncertainties

The precision of themeasurements presented in table 1 is determined by the systematic uncertainties.
These uncertainties are associated with the procedures for the background subtraction, the shape
assumptions, parameter fitting, and NI vertex reconstruction.

– 15 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Figure 11. The pixel detector support tube with the fitted values for an ellipse with semi-minor axis Rx,
semi-major axis Ry, and center (x0, y0) for |z | < 25 cm. The x-y plane after background subtraction (upper),
and the r-φ coordinates before background subtraction (lower), are shown. The density of NI vertices is
indicated by the color scale. The red line shows the fitted ellipse. The blue point in the center of the x-y
plane corresponds to the average beam spot position of xbs = 0.8mm and ybs = 0.9mm in 2015.
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Figure 12. The BPIX detector support rails after background subtraction in the x-y plane for the combined
tracking detector barrel and endcap regions. Horizontal red lines correspond to the fit of the BPIX detector
support rails. The density of NI vertices is indicated by the color scale.

Table 1. Results of the fit to the beam pipe with a circle, the BPIX detector inner shield with two half-circles,
and the pixel detector support tube with an ellipse. Only systematic uncertainties are provided since the
statistical uncertainties are negligible.

Object R (cm) x0 (mm) y0 (mm)
Beam pipe 2.211 ± 0.003 1.24 ± 0.03 0.27 ± 0.03
BPIX detector inner shield, far 3.774 ± 0.017 0.44 ± 0.17 −0.98 ± 0.17
BPIX detector inner shield, near 3.774 ± 0.017 −0.93 ± 0.17 −0.91 ± 0.17
Pixel detector support tube Rx: 21.703 ± 0.007 −0.75 ± 0.07 −3.15 ± 0.07

Ry: 21.803 ± 0.007

Table 2. Results of the fitted y coordinate of the bottom and top BPIX detector support rails with a horizontal
line. Only systematic uncertainties are provided since the statistical uncertainties are negligible.

Bottom rail y (cm) Top rail y (cm)
−19.72 ± 0.02 19.08 ± 0.02

Uncertainties arising from the subtraction and estimation of the background are determined
by varying the shape and normalization of the background, and refitting the resulting signal. As
a cross-check, instead of using an exponential fit, a simple horizontal line is fit in the sideband
region and extrapolated into the signal region to determine the combinatorial background under
the signal peak. The largest difference seen in the fitted values for each structure is taken as the
systematic uncertainty due to the background shape. The normalization of the background was also
varied. The number of background events in each bin was varied by two standard deviations in the
statistical uncertainty and the resulting signal was refitted. The maximum difference in the fitted
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Table 3. Systematic uncertainties in the position and radiusmeasurements of three inactive detector elements.

Source of systematic uncertainty Beam pipe BPIX detector Pixel detector
(mm) inner shield (mm) support tube (mm)

Background shape 0.02 0.02 0.04
variation

Background subtraction <0.01 0.06 0.01
Average background <0.01 0.02 <0.01

in three neighbor φ bins
Structure shape <0.01 0.07 (position) —

variation 0.14 (Rnear,Rfar)
Fit procedure 0.01 0.01 0.04
Vertex reconstruction resolution 0.01 0.01 0.04
Total 0.03 0.17 0.07

values is taken as the systematic uncertainty associated with the estimated size of the background
subtraction. A third background variation was performed by using the background estimated from
neighboring φ bins. Again, the difference in fitted values is taken as a systematic uncertainty. The
uncertainties from these variations on the background are listed in table 3. The combined effect of
these three sources does not exceed 60 µm.

The uncertainties in the measurements that were introduced by the assumptions made about
the shapes of the beam pipe and BPIX detector inner shield are also estimated by refitting the data
using different shapes. The uncertainties in the shapes of the beam pipe and BPIX detector inner
shield are estimated by fitting the beam pipe with an ellipse, instead of a circle, and the BPIX
detector inner shield with two half-ellipses, instead of two half-circles. In the case of the beam
pipe, it is observed that the two semi-axes of the ellipse are equal to within 10 µm, which supports
the use of a circular shape, and this difference is added to the systematic uncertainty of the radius
measurement. The value of Rx was fixed for the BPIX detector inner shield fits to the half-ellipse,
because otherwise the fit was not stable. The results from the ellipse and half-ellipse fits were
compared with the results from the circle and half-circle fits. The largest difference was taken
as the systematic uncertainty from the shape of the structure. The pixel detector support tube is
already modeled with an ellipse, and therefore no extra systematic uncertainty is assigned to the
modeling of its shape. The systematic uncertainties determined by varying the assumed shapes of
the structures are listed in table 3.

The systematic uncertainties associatedwith the fit procedure are determined using pseudo-data
where the shapes and positions of the objects are fixed from the experimentally measured values.
Uncertainties for the fits to a circular shape are measured by generating a beam pipe centered at
(0, 0), a beam pipe centered at the measured (x, y), a BPIX detector inner shield generated with the
values measured from the near side, and a BPIX detector inner shield generated with the values
measured from the far side. The largest difference between the input parameters and the fit results
was taken as the systematic uncertainty for the circle fit. The systematic uncertainty from the fit
to an elliptical shape was determined similarly. Two pixel detector support tubes were generated.
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One was centered at (0, 0) with the semi-axes similar to the measured values, and the other was
centered at the measured center of the pixel detector support tube with semi-axes similar to the
measured values. The uncertainties found from fitting the simulated data are listed in table 3 in the
“Fit procedure” row.

Another source of systematic uncertainty comes from the reconstruction of the secondary
vertex position for the NI. The finite position resolution of the reconstructed vertices and the fitting
procedure itself may introduce biases in the position measurements. The effects of these potential
biases are estimated by measuring the structure properties in MC simulations based on single pions
generated where a cylindrical model is assumed for the beam pipe, BPIX detector inner shield and
pixel detector support tubes centered on the beam axis. Pions with momenta of 10 and 100GeV
are simulated. The simulated beam pipe, BPIX detector inner shield, and pixel detector support
tube are centered at (0, 0). The largest deviations from (0, 0) in the fits are taken as the systematic
uncertainties, and are presented in table 3 in the “Vertex reconstruction resolution” row.

The systematic uncertainty in the position measurements for the BPIX detector support rails is
conservatively estimated to be 1/

√
12 of the bin size.

During the 2015 data taking, CMS had cooling problems with its magnet, resulting in the
magnet being cycled on and off several times. Since the changes in magnetic field could potentially
affect the position of the beam pipe, the data were split into two halves chronologically to see if the
position in the later data differed from that in the earlier data. Within the measurement uncertainties,
no change in position was observed.

7 Comparison with technical surveys

After the installation of the new CMS central beam pipe [23] during the 2013–2015 LHC shutdown,
a number of measurements were taken in order to better understand the position and stability under
different supporting configurations of the central beam pipe itself and later also of the BPIX detector.
The pixel detector support tube was not surveyed at this time because NI measurements had shown
no motion of it with respect to earlier surveys and it is not possible to adjust its position in any case.

7.1 CMS survey coordinate system

The CMS coordinate system used by the surveyors is the same as that described in section 2. The
local geometry of the CMS cavern is a local transformation from the global geometry of the LHC.
The coordinate system used for offline analysis in CMS is based on a 3D best fit reconstruction from
high pT tracks coming from the interaction region of the TOB centroid. The reconstructed TOB
centroid defines the CMS detector central axis and, based on measurements taken by the surveyors
at CMS after the installation of the tracking system in 2009 in the CMS coordinate system, is made
to coincide with the latter in the offline code via simple rigid translations and rotations. The two
coordinate systems (CMS offline system and CMS coordinate system) should then coincide within
the uncertainties that are dominated by the surveyors measurements. The systematic uncertainty is
estimated to be ±0.75mm and it should be added to any other quoted uncertainties when comparing
results obtained within the two systems.
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7.2 Central beam pipe

The CMS central beam pipe spans the central detector region over 6.2m and is held vertically and
horizontally by metal wires attached to collars positioned at ±1.6m from the center and at the two
extremities (±3.1m) by flanges connected to the endcap sections of the beam pipe.

Measurements of the position of the beam pipe were taken using a theodolite and measuring
four points for each collar and flange. A best fit to a circle gives the position of the center of the
beam pipe in the four positions along the z axis. The accuracy of this measurement is estimated to
be ±0.5mm. Table 4 summarizes the results of the measurements of the CMS central beam pipe
on January 12, 2015 after the re-installation of the original pixel detector (both barrel and endcaps
parts) and with all supports in their final configuration.

Table 4. Results from the survey of the CMS central beam pipe positions on January 12, 2015.

Support x ( mm) y ( mm) z ( mm)
Flange +z (+3.1m) 0.2 0.2 3131.7
Collar +z (+1.6m) 0.8 0.2 —
Collar −z (−1.6m) 0.7 0.1 —
Flange −z (−3.1m) −0.8 0.2 −3136.9

Although these results should be directly compared with the NI measurements taken shortly
thereafter during 2015 data taking, there are several considerations to be made, potentially leading
to a somewhat different position of the beam pipe during data taking:

• The CMS endcaps needed to be closed, and in the process, various beam pipe supports are
temporarily removed and exchanged.

• The magnetic field was turned on, compressing the endcaps inside the solenoid toward the
interaction point (hence the need for various supports along the beam pipe).

• Vacuum was created inside the beam pipe before the beam can circulate.

• The ambient temperature in the tracking system and central beam pipe volume went down to
around 0◦ C during data taking.

Notwithstanding these differences, the survey coordinates of the center of the beam pipe are
compatible with the NI measurements. The x and y coordinates in table 1 for |z | < 25 cm agree
within uncertainties with the inner beam pipe (collar) positions given in table 4.

7.3 BPIX detector

In order to be able to measure the position of the BPIX detector right after installation, optical
targets were glued onto the end flanges of the detector, which are visible from outside the pixel
detector support tube using a theodolite positioned on the pixel detector installation platform at
each end. The BPIX detector is divided into two separate parts labeled far and near as discussed in
section 2. The detector itself spans the interaction region over about 50 cm in the z direction, but
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the services, running along the outside surface of the pixel detector supply tube, extend to the end
of the pixel detector volume at z = ±3.0m.

Three survey target points, indicated by the numbers 2001, 2002, and 2003, are visible in
figure 2 (right): one survey mark and two mechanical flat screws were used to define the plane of
the end flange of the detector, and the positions are measured using photogrammetry techniques in
the laboratory before installation. The three points on each of the four end flanges of the detector
(near +z, near −z, far +z, and far −z) were then referenced to the center axis of the BPIX detector
with an estimated accuracy of ±0.2mm. The detector was installed on December 11, 2014 and its
position measured with the theodolite. The three points at each end define a plane and a center,
and the two planes combined define a center line in 3D space. Each side (far and near) is treated
independently yielding two center lines in 3D space, one extrapolated from measurements of the
far side and one from measurements of the near side. The accuracy of the two extrapolated center
lines is estimated to be ±1.0mm. From these measurements the survey determined that the overall
detector center is low by 1.1mm (y = −1.1mm for both the far and near halves), in good agreement
with the y0 results shown in table 1. In the x direction, the average of the far and near center
positions is −0.7mm in the survey, which agrees within the uncertainties with the average value of
−0.2mm from the NI measurements.

8 Summary

Nuclear interactions have a reputation of being undesirable events that degrade the quality of the
reconstruction of charged and neutral hadrons. In this analysis, it has been demonstrated that they
can be used to produce a high-precision map of the material inside the tracking system. Such maps
can be useful for validating detector simulations and identifying any shifts in detector elements
during operation.

Using a data set that corresponds to an integrated luminosity of 2.5 fb−1 of proton-proton
collisions at a center-of-mass energy of 13 TeV, a large sample of secondary hadronic interactions
was collected. After background subtraction, the positions of the secondary vertices were used to
determine the locations of inactive elements with a precision of the order of 100 µm. The positions
of the beam pipe and the inner tracking system structures (pixel detector support tube, and BPIX
inner shield and support rails) were determined with a precision that depends on the structure under
study. No significant position bias was identified through the technique, and statistical uncertainties
were negligible. The positions of the structures under consideration were probed with a precision
better than the typical installation tolerances and are found to be compatible with previous survey
measurements.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance
of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes
for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the
computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-
tively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring

– 21 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

support for the construction and operation of the LHC and the CMS detector provided by the follow-
ing funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES,
FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC
(China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT
(Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Fin-
land); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece);
NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and
NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV,
CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand);
PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom,
RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain);
MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST,
STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine);
STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the
Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No.
675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von
Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la
Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie
door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the
“Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and
Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János
Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excel-
lence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105
(Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program
of the Foundation for Polish Science, cofinanced from European Union, Regional Development
Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National
Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,
2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National
Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento
de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509
and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs
cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fel-
lowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project
Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens
Foundation (U.S.A.); the Hellenic Foundation for Research and Innovation, HFRI; the Fondazione
Ing. Aldo Gini.

References

[1] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004.

[2] CMS collaboration, Search for long-lived charged particles in proton-proton collisions at
√

s = 13TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382].

– 22 –

https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1103/PhysRevD.94.112004
https://arxiv.org/abs/1609.08382


2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

[3] CMS collaboration, Search for new long-lived particles at
√

s = 13 TeV, Phys. Lett. B 780 (2018) 432
[arXiv:1711.09120].

[4] CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13
TeV, 2018 JINST 13 P05011 [arXiv:1712.07158].

[5] GEANT4 collaboration, S. Agostinelli et al., GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A
506 (2003) 250.

[6] J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

[7] CMS collaboration, Altered scenarios of the CMS Tracker material for systematic uncertainties
studies, CMS-NOTE-2010-010 (2010).

[8] CMS collaboration, Studies of tracker material, CMS-PAS-TRK-10-003 (2010).

[9] CMS collaboration, Performance of Photon Reconstruction and Identification with the CMS Detector
in Proton-Proton Collisions at

√
s = 8TeV, 2015 JINST 10 P08010 [arXiv:1502.02702].

[10] CMS collaboration, CMS technical design report for the pixel detector upgrade,
CERN-LHCC-2012-016 (2012).

[11] ATLAS collaboration, A study of the material in the ATLAS inner detector using secondary hadronic
interactions, 2012 JINST 7 P01013 [arXiv:1110.6191].

[12] ATLAS collaboration, A measurement of material in the ATLAS tracker using secondary hadronic
interactions in 7 TeV pp collisions, 2016 JINST 11 P11020 [arXiv:1609.04305].

[13] ATLAS collaboration, Study of the material of the ATLAS inner detector for Run 2 of the LHC, 2017
JINST 12 P12009 [arXiv:1707.02826].

[14] CMS collaboration, Alignment of the CMS tracker with LHC and cosmic ray data, 2014 JINST 9
P06009 [arXiv:1403.2286].

[15] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys.
Commun. 178 (2008) 852 [arXiv:0710.3820].

[16] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159
[arXiv:1410.3012].

[17] CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering
measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815].

[18] CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [arXiv:1609.02366].

[19] CMS tracker collaboration, The simulation of the CMS silicon tracker, in the proceedings of the
2007 IEEE Nuclear Science Symposium Conference Record, October 26–November 3, Honolulu,
U.S.A. (2007).

[20] CMS collaboration, Description and performance of track and primary-vertex reconstruction with the
CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569].

[21] CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector,
2017 JINST 12 P10003 [arXiv:1706.04965].

[22] CMS collaboration, Tracking POG plot results on 2015 data, CMS-DP-2016-012 (2016).

[23] M. Gallilee et al., LHC detector vacuum system consolidation for long shutdown 1 (LS1) in
2013-2014, in the proceedings of the 3rd International Conference on Particle accelerator (IPAC
2012), May 2–25, New Orleans, U.S.A. (2012).

– 23 –

https://doi.org/10.1016/j.physletb.2018.03.019
https://arxiv.org/abs/1711.09120
https://doi.org/10.1088/1748-0221/13/05/P05011
https://arxiv.org/abs/1712.07158
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1109/TNS.2006.869826
http://cds.cern.ch/record/1278158
http://cds.cern.ch/record/1279138
https://doi.org/10.1088/1748-0221/10/08/P08010
https://arxiv.org/abs/1502.02702
http://dx.doi.org/10.2172/1151650
https://doi.org/10.1088/1748-0221/7/01/P01013
https://arxiv.org/abs/1110.6191
https://doi.org/10.1088/1748-0221/11/11/P11020
https://arxiv.org/abs/1609.04305
https://doi.org/10.1088/1748-0221/12/12/P12009
https://doi.org/10.1088/1748-0221/12/12/P12009
https://arxiv.org/abs/1707.02826
https://doi.org/10.1088/1748-0221/9/06/P06009
https://doi.org/10.1088/1748-0221/9/06/P06009
https://arxiv.org/abs/1403.2286
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-016-3988-x
https://arxiv.org/abs/1512.00815
https://doi.org/10.1088/1748-0221/12/01/P01020
https://arxiv.org/abs/1609.02366
http://dx.doi.org/10.1109/NSSMIC.2007.4436649
https://doi.org/10.1088/1748-0221/9/10/P10009
https://arxiv.org/abs/1405.6569
https://doi.org/10.1088/1748-0221/12/10/P10003
https://arxiv.org/abs/1706.04965
http://cds.cern.ch/record/2155558


2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,
A. Escalante Del Valle, M. Flechl, R. Frühwirth1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1,
A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer,
J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart, H. Steininger, A. Taurok, W. Waltenberger,
J. Wittmann, C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
W. Beaumont, E.A. DeWolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert,
H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, E.S. Bols, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris,
D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen,
S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
Y. Allard, D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney,
G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, L. Moureaux,
N. Postiau, Z. Song, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang, Y. Yang

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino,
M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H.Bakhshiansohi, O.Bondu, S. Brochet, G.Bruno, C.Caputo, A.Caudron, P.David, S.DeVisscher,
C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri,
A. Mertens, D. Michotte, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, N. Szilasi,
M. Vidal Marono, S. Wertz, J. Zobec

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E.M. Da Costa,
G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza,

– 24 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim,
H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel,
E.J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,
P.G. Mercadanteb, S.F. Novaesa, SandraS. Padulaa, D. Romero Abadb

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova,
G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang5, X. Gao5, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao,
Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang,
J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C.Avila, A.Cabrera, C.A.CarrilloMontoya, L.F. Chaparro Sierra, C. Florez, C.F.GonzálezHernán-
dez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Ceci, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis,
H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger7, M. Finger Jr.7

– 25 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
S. Elgammal8, A. Ellithi Kamel9, E. Salama8,10

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
I. Ahmed11, S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht,
M. Kadastik, L. Perrini, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,
S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud,
P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander,
A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay,
Palaiseau, France
A.Abdulsalam12, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cas-
sagnac, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona,
P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram13, J. Andrea, D. Bloch, C. Bonnin, J.-M. Brom, E.C. Chabert, L. Charles,
V. Cherepanov, C. Collard, E. Conte13, J.-C. Fontaine13, D. Gelé, U. Goerlach, L. Gross, J. Hosselet,
M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
Nucléaire de Lyon, Villeurbanne, France
G. Baulieu, S. Beauceron, C. Bernet, G. Boudoul, L. Caponetto, N. Chanon, R. Chierici,
D. Contardo, P. Depasse, T. Dupasquier, H. El Mamouni, J. Fay, L. Finco, G. Galbit, S. Gascon,
M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, N. Lumb,

– 26 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

L. Mirabito, B. Nodari, A.L. Pequegnot, S. Perries, A. Popov14, V. Sordini, M. Vander Donckt,
S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili15

Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, W. Karpinski, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk,
G. Pierschel, M. Preuten, M.P. Rauch, S. Schael, C. Schomakers, J. Schulz, G. Schwering,
M. Teroerde, B. Wittmer, M. Wlochal, V. Zhukov14

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh,
A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, L.Mastrolorenzo, M.Merschmeyer,
A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch,
A. Schmidt, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, O. Hlushchenko, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn,
A. Nowack, C. Pistone, O. Pooth, H. Sert, A. Stahl11, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke,
U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras16, V. Botta, A. Camp-
bell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, M.M. Defranchis,
C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood,
E. Eren, E. Gallo17, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff,
K. Hansen, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort,
J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann18, R. Mankel, H. Maser,
I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, C. Muhl,
A. Mussgiller, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, O. Reichelt, M. Savitskyi,
P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, N. Stefaniuk, H. Tholen,
A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev, A. Zuber

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, A. Benecke, H. Biskop, V. Blobel, P. Buhmann, M. Centis Vignali,
T. Dreyer, A. Ebrahimi, F. Feindt, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann,
A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,
D.Marconi, M.Matysek, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu,
A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie,
G. Steinbrück, F.M. Stober, M. Stöver, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald,
J. Wellhausen, I. Zoi

– 27 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Karlsruher Institut fuer Technology
S.M. Abbas, M. Akbiyik, L. Ardila, M. Balzer, C. Barth, T. Barvich, M. Baselga, S. Baur, T. Blank,
F. Boegelspacher, E. Butz, M. Caselle, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dier-
lamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann11,
S.M. Heindl, U. Husemann, F. Kassel11, I. Katkov14, S. Kudella, S. Maier, M. Metzler, H. Mildner,
M.U. Mozer, Th. Müller, M. Neufeld, M. Plagge, G. Quast, K. Rabbertz, O. Sander, D. Schell,
M. Schröder, T. Schuh, I. Shvetsov, G. Sieber, H.J. Simonis, P. Steck, R. Ulrich, M. Wassmer,
S. Wayand, M. Weber, A. Weddigen, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, P. Assiouras, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas,
G. Paspalaki, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, N. Saoulidou, E. Tziaferi, K. Vellidis

National Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos, Y. Tsipolitis

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos,
I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University,
Budapest, Hungary
M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath19, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi,
G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók20, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, A. Kaur,
M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, S. Sharma, J.B. Singh, G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R. Dalal, R.B. Garg, M. Gola, G. Jain, S. Keshri, A. Kumar,
S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah, R. Sharma

– 28 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj24, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep24, D. Bhowmik,
S. Dey, S. Dutt24, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy,
S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur24

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar,
RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity25,
G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar25

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, M. Khakzad, M. Mohammadi Najafabadi,
M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Baria, Università di Barib, Politecnico di Baric, Bari, Italy
M. Abbresciaa,b, C. Calabriaa,b, P. Cariolaa, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b,
N. De Filippisa,c, M. De Palmaa,b, G. De Robertisa, A. Di Florioa,b, F. Erricoa,b, L. Fiorea,
A. Gelmia,b, G. Iasellia,c, S. Lezkia,b, F. Loddoa, G. Maggia,c, M. Maggia, S. Martiradonnaa,b,
G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa, A. Ranieria,
G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,11, R. Vendittia, P. Verwilligena, G. Zitoa

INFN Sezione di Bolognaa, Università di Bolognab, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b,
R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b,
M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, P. Giacomellia, C. Grandia,
L. Guiduccia,b, F. Iemmia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,
A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

INFN Sezione di Cataniaa, Università di Cataniab, Catania, Italy
S. Albergoa,b, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, M.A. Saizua,28, A. Tricomia,b, C. Tuvea,b

– 29 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

INFN Sezione di Firenzea, Università di Firenzeb, Firenze, Italy
G. Barbaglia, M. Brianzia, K. Chatterjeea,b, R. Ciaranfia, V. Ciullia,b, C. Civininia,
R. D’Alessandroa,b, E. Focardia,b, G. Latino, P. Lenzia,b, F. Manolescua,11, M. Meschinia,
S. Paolettia, L. Russoa,29, E. Scarlinia,b, G. Sguazzonia, D. Stroma, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera11

INFN Sezione di Genovaa, Università di Genovab, Genova, Italy
F. Ferroa, F. Raveraa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicoccaa, Università di Milano-Bicoccab, Milano, Italy
A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,11, S. Di Guidaa,d,11,
M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b,
S. Malvezzia, R.A. Manzonia,b, A. Massironia,b, D. Menascea, L. Moronia, M. Paganonia,b,
D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Zuolo

INFN Sezione di Napolia, Università di Napoli ‘Federico II’b, Napoli, Italy, Università della
Basilicatac, Potenza, Italy, Università G. Marconid, Roma, Italy
S. Buontempoa, N. Cavalloa,c, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa,b, G. Galatia,b,
A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,11, P. Paoluccia,11, C. Sciaccaa,b,
E. Voevodinaa,b

INFN Sezione di Padovaa, Università di Padovab, Padova, Italy, Università di Trentoc, Trento,
Italy
P. Azzia, N. Bacchettaa, L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, A. Bragagnolo, R. Carlina,b,
P. Checchiaa, M. Dall’Ossoa,b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b,
U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b,
N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, A. Tiko, E. Torassaa, M. Zanettia,b,
P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy
A. Braghieria, F. De Canioa, L. Gaionia, A. Magnania, M. Manghisonia, P. Montagnaa,b,
S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, E. Riceputia, P. Salvinia, G. Traversia,
I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy
L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, S. Bizzagliaa, C. Cecchia,b, B. Checcuccia,
D. Ciangottinia,b, L. Fanòa,b, M. Ionicaa, P. Laricciaa,b, R. Leonardia,b, E. Manonia,
G. Mantovania,b, S. Marconia,b, V. Mariania,b, M. Menichellia, A. Morozzia,b, F. Moscatellia,
D. Passeria,b, P. Placidia,b, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, L. Storchia

INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy
K.Androsova, P.Azzurria, G.Bagliesia, A.Bastia, R.Beccherle, L.Bianchinia, T. Boccalia, L. Bor-
rello, F. Bosia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, F. Fioria,c, L. Gianninia,c,
A. Giassia, M.T. Grippoa, F. Ligabuea,c, G. Magazzua, E. Mancaa,c, G. Mandorlia,c, E. Mazzonia,

– 30 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

A. Messineoa,b, A. Moggia, F. Morsania, F. Pallaa, F. Palmonaria, F. Raffaellia, A. Rizzia,b,
P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Sapienza Università di Romab, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, N. Dacia, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza,
S. Gellia,b, E. Longoa,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, F. Pandolfia,
R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b

INFN Sezione di Torinoa, Università di Torinob, Torino, Italy, Università del Piemonte
Orientalec, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b,
C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, G. Dellacasaa, N. Demariaa,
B. Kiania,b, C. Mariottia, S. Masellia, G. Mazzaa, E. Migliorea,b, V. Monacoa,b, E. Monteila,b,
M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, A. Paternoa,c, M. Pelliccionia,
G.L. Pinna Angionia,b, A. Rivettia, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b,
V. Solaa, A. Solanoa,b, A. Staianoa

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, F. Vazzolera,b,
A. Zanettia

Kyungpook National University
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,
D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju,
Korea
H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea
J. Goh, T.J. Kim

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park,
Y. Roh

Sejong University, Seoul, Korea
H. Kim

Seoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo,
U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea
H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu

– 31 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali30, F. Mohamad Idris31, W.A.T.Wan Abdullah, M.N. Yusli,
Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz32,
R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, G. Ramirez-Sanchez, R Reyes-Almanza,
A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib,
M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper,
P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk33, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura,
M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, M.D. Da Rocha Rolo, A. Di Francesco, P. Faccioli,
B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,
G. Strong, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M.Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev,
A. Malakhov, V. Matveev34,35, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,
N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

– 32 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova37, P. Levchenko, V. Murzin, V. Oreshkin,
I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov,
A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov,
A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin35

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin35, I. Dremin35, M. Kirakosyan35, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, LomonosovMoscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, L. Dudko, A. Ershov, A. Gribushin,
A. Kaminskiy38, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, V. Savrin,
A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov39, T. Dimova39, L. Kardapoltsev39, D. Shtol39, Y. Skovpen39

State Research Center of Russian Federation, Institute for High Energy Physics of NRC
“Kurchatov Institute”, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin,
D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin,
A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,
Serbia
P. Adzic40, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid,
Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes,
M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernán-
dez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,
D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares,
A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

– 33 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. FernandezMenendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fer-
nández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez,
P.J. Fernández Manteca, A. García Alonso, J. Garcia-Ferrero, G. Gomez, J. Gonzalez Sanchez,
R.W. Jaramillo Echeverria, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Ar-
bol, F. Matorras, D. Moya, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro,
E. Silva Jiménez, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Albert, E. Auffray, P. Baillon, A.H. Ball, D. Barney, S. Baron,
A. Behrens, J. Bendavid, J. Bendotti, G.M. Berruti, M. Bianco, G. Blanchot, V. Bobillier, A. Bocci,
J. Bonnaud, C. Botta, F. Boyer, T. Camporesi, A. Caratelli, J.P. Castro Fonseca, M. Cepeda,
D. Ceresa, G. Cerminara, E. Chapon, Y. Chen, J. Christiansen, K. Cichy, E. Conti, G. Cucciati,
D. d’Enterria, A.D’Auria, A.Dabrowski, J. Daguin, V.Daponte, A.David, R.DeOliveira Francisco,
A. De Roeck, N. Deelen, S. Detraz, D. Deyrail, M. Dobson, T. du Pree, M. Dünser, N. Dupont,
A. Elliott-Peisert, P. Everaerts, F. Faccio, F. Fallavollita41, N. Frank, G. Franzoni, J. Fulcher,
W. Funk, T. Gadek, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, A. Honma,
G. Hugo, V. Innocente, A. Jafari, P. Janot, L.M. Jara Casas, J. Kaplon, O. Karacheban18, J. Kieseler,
K. Kloukinas, V. Knünz, A. Kornmayer, L.J. Kottelat, M.I. Kovács, M. Krammer1, P.N. Krohg,
S. Kulis, C. Lange, P. Lecoq, P. Lenoir, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli,
A. Marchioro, I. Mcgill, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, S. Michelis, P. Milenovic42,
F. Moortgat, M. Mulders, J.K. Murdzek, H. Neugebauer, J. Ngadiuba, J. Noel, L.J. Olantera,
A. Onnela, S. Orfanelli, L. Orsini, F. Pantaleo11, L. Pape, E. Perez, F. Perez Gomez, J.F. Pernot,
M. Peruzzi, P. Petagna, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Porret,
H. Postema, D. Rabady, A. Racz, T. Reis, P. Rodrigues Simoes Moreira, G. Rolandi43, M. Rovere,
H. Sakulin, V. Samothrakis, S. Scarfi’, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma,
P. Silva, C. Soos, P. Sphicas44, A. Stakia, J. Steggemann, M. Tosi, D. Treille, P. Tropea, J. Troska,
A. Tsirou, F. Vasey, V. Veckalns45, M. Vergain, B. Verlaat, M. Verweij, P.M. Vicente Leitao,
P. Vichoudis, K. Wyllie, W.D. Zeuner, L. Zwalinski

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl†, L. Caminada46, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli,
D. Kotlinski, U. Langenegger, B. Meier, T. Rohe, S. Streuli, S.A. Wiederkehr

ETH Zurich — Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
F. Bachmair, M. Backhaus, L. Bäni, R. Becker, P. Berger, B. Casal, N. Chernyavskaya,
D.R. Da Silva Di Calafiori, G. Dissertori, M. Dittmar, L. Djambazov, M. Donegà, C. Dorfer,
C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau,
M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin,
L. Perrozzi, S. Pigazzini, M. Quittnat, M. Reichmann, U. Röser, D. Ruini, D.A. Sanz Becerra,
M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson,
R. Wallny, D.H. Zhu

– 34 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler47, K. Boesiger, D. Brzhechko, M.F. Canelli, V. Chiochia, A. De Cosa,
R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, R. Maier, I. Neutelings, D. Pinna,
G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, Y. Yang, A. Zucchetta

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov,
S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Arun Kumar, R.-S. Lu, M. Miñano Moya,
E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci48, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis,
G.Gokbulut, Y.Guler, E. Gurpinar, I. Hos49, E.E.Kangal50, O.Kara, A.Kayis Topaksu, U.Kiminsu,
M. Oglakci, G. Onengut, K. Ozdemir51, S. Ozturk52, D. Sunar Cerci48, B. Tali48, U.G. Tok,
S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak53, G. Karapinar54, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya55, O. Kaya56, S. Tekten, E.A. Yetkin57

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen58

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov,
Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
T. Alexander, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon,
H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold59, S. Paramesvaran,
B. Penning, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith, J. Taylor

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev60, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan,
K. Harder, S. Harper, J. Linacre, K. Manolopoulos, E. Olaiya, D. Petyt, C.H. Shepherd-
Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

– 35 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso,
D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall,
G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash61,
A. Nikitenko6, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski,
G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee11, N. Wardle,
D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, C. Hoad, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid,
L. Teodorescu, S. Zahid

Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. Mcmaster, N. Pastika,
C. Smith

Catholic University of America, Washington DC, U.S.A.
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, U.S.A.
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, U.S.A.
D. Arcaro, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, U.S.A.
G. Altopp, G. Benelli, B. Burkle, X. Coubez, D. Cutts, I. Fugate, S. Ghosh, M. Hadley, J. Hakala,
A. Heintz, U. Heintz, N. Hinton, J.M. Hogan62, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee,
Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir63, E. Scotti, E. Spencer, R. Syarif, D. Yu

University of California, Davis, Davis, U.S.A.
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok,
J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander,
C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, J. Thomson,
K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, U.S.A.
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll,
S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, U.S.A.
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli,
E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei,
S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, U.S.A.
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein,
G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani,

– 36 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech64, J. Wood, F. Würthwein, A. Yagil,
G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, U.S.A.
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, O. Colegrove, A. Dishaw,
V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, S. Kyre, A. Ovcharova, H. Qu,
J. Richman, D. Stuart, I. Suarez, S. Wang, D. White, J. Yoo

California Institute of Technology, Pasadena, U.S.A.
D. Anderson, A. Bornheim, J. Bunn, J.M. Lawhorn, H.B. Newman, T.Q. Nguyen, M. Spiropulu,
J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, U.S.A.
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. MacDonald,
T. Mulholland, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, U.S.A.
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson,
D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker,
P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, U.S.A.
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee,
L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla†, K. Burkett, J.N. Butler, A. Canepa,
G.B. Cerati, H.W.K. Cheung, F. Chlebana, J. Chramowicz, W. Cooper, M. Cremonesi, G. Derylo,
J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, C. Gingu, H. Gonzalez, E. Gottschalk, L. Gray,
D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu,
B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel,
C.M. Lei, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, S. Los, J. Lykken, K. Maeshima,
N. Magini, J.M. Marraffino, D. Mason, M. Matulik, P. McBride, P. Merkel, S. Mrenna, S. Nahn,
V. O’Dell, J. Olsen, K. Pedro, C. Pena, O. Prokofyev, A. Prosser, G. Rakness, L. Ristori, R. Rivera,
A. Savoy-Navarro65, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel,
S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering,
C. Vernieri, M. Verzocchi, R. Vidal, E. Voirin, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, U.S.A.
D.Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes,M. Carver,
D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, P. Ma, K. Matchev,
H. Mei, G. Mitselmakher, K. Shi, D. Sperka, L. Thomas, J. Wang, S. Wang

Florida International University, Miami, U.S.A.
Y.R. Joshi, S. Linn

– 37 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

Florida State University, Tallahassee, U.S.A.
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez,
T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, U.S.A.
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer,
A. Evdokimov, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin,
S. Macauda, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, U.S.A.
M. Alhusseini, B. Bilki66, W. Clarida, K. Dilsiz67, S. Durgut, R.P. Gandrajula, M. Haytmyradov,
V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul68, Y. Onel,
F. Ozok69, A. Penzo, C. Rude, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, U.S.A.
I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V.Gritsan,W.T.Hung,
P. Maksimovic, C. Martin, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, U.S.A.
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, Z. Flowers, E. Gibson, S. Khalil,
A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz,
J.D. Tapia Takaki, Q. Wang, G. Wilson

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, Y.Maravin, D.R.Mendis, T.Mitchell, A.Modak, A.Mohammadi, L.K. Saini,
N. Skhirtladze, R. Taylor

Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng,
R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, U.S.A.
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza,
I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu,
M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey,
B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland,
G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch,
S. Zhaozhong

University of Minnesota, Minneapolis, U.S.A.
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans,
S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

– 38 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, L.M. Cremaldi, S. Oliveros, L. Perera, D. Summers

University of Nebraska-Lincoln, Lincoln, U.S.A.
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin,
I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, U.S.A.
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, D. Nguyen, A. Parker, S. Rappoccio,
B. Roozbahani

Northeastern University, Boston, U.S.A.
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, D.M.Morse, T. Orimoto, R. Teixeira De Lima,
T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, U.S.A.
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, S. Sevova, K. Sung,
M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, U.S.A.
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams,
K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko34, M. Planer,
A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf,
A. Woodard

The Ohio State University, Columbus, U.S.A.
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji,
T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, U.S.A.
S. Cooperstein, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A.Kalogeropoulos, D. Lange,
J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland,
C. Tully

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik, S. Norberg, J.E. Ramirez Vargas

Purdue University, West Lafayette, U.S.A.
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller,
N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, U.S.A.
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, U.S.A.
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin,
T. Nussbaum, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

– 39 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel,
M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, G. Petrillo,
P. Tan, R. Taus, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.
A. Agapitos, E. Bartz, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl,
E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash,
M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas,
P. Thomassen, M. Walker

University of Tennessee, Knoxville, U.S.A.
A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, U.S.A.
O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado,
S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon71, R. Mueller, I. Osipenkov, Y. Pakhotin,
R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov

Texas Tech University, Lubbock, U.S.A.
N.Akchurin, J. Damgov, F. DeGuio, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee,
T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, U.S.A.
P. D’Angelo, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken,
J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, U.S.A.
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu,
T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, U.S.A.
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin —Madison, Madison, WI, U.S.A.
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber,
M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long,
R. Loveless, A. Maurisset, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7: Also at Joint Institute for Nuclear Research, Dubna, Russia
8: Now at British University in Egypt, Cairo, Egypt

– 40 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

9: Now at Cairo University, Cairo, Egypt
10: Now at Ain Shams University, Cairo, Egypt
11: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, LomonosovMoscowStateUniversity, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University,

Budapest, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at Shoolini University, Solan, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University,

Tehran, Iran
28: Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest,

Romania
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
32: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
34: Also at Institute for Nuclear Research, Moscow, Russia
35: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI),

Moscow, Russia
36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
37: Also at University of Florida, Gainesville, U.S.A.
38: Also at INFN Sezione di Padovaa, Università di Padovab , Università di Trento (Trento)c , Padova, Italy
39: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
40: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
41: Also at INFN Sezione di Paviaa, Università di Paviab , Pavia, Italy
42: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,

Serbia
43: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
44: Also at National and Kapodistrian University of Athens, Athens, Greece
45: Also at Riga Technical University, Riga, Latvia
46: Also at Universität Zürich, Zurich, Switzerland
47: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
48: Also at Adiyaman University, Adiyaman, Turkey
49: Also at Istanbul Aydin University, Istanbul, Turkey
50: Also at Mersin University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey

– 41 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
0
0
3
4

52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Istanbul Bilgi University, Istanbul, Turkey
58: Also at Hacettepe University, Ankara, Turkey
59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
61: Also at Monash University, Faculty of Science, Clayton, Australia
62: Also at Bethel University, St. Paul, U.S.A.
63: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
64: Also at Utah Valley University, Orem, U.S.A.
65: Also at Purdue University, West Lafayette, U.S.A.
66: Also at Beykent University, Istanbul, Turkey
67: Also at Bingol University, Bingol, Turkey
68: Also at Sinop University, Sinop, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea

– 42 –


	Introduction
	CMS detector
	Data sample and nuclear interaction reconstruction
	Analysis method
	Measurements of pixel detector positions
	Measurement of the beam pipe position
	Measurement of the BPIX detector inner shield position
	Measurements of the positions of the pixel detector support tube and the BPIX detector support rails
	Results

	Systematic uncertainties
	Comparison with technical surveys
	CMS survey coordinate system
	Central beam pipe
	BPIX detector

	Summary
	The CMS collaboration

