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A unitary transformation Ψ[E] = exp(iΩ[E]/g)F [E] is used to simplify the Gauss law constraint
of non-abelian gauge theories in the electric field representation. This leads to an unexpected
geometrization because ωa

i ≡ −δΩ[E]/δEai transforms as a (composite) connection. The geometric
information in ωa

i is transferred to a gauge invariant spatial connection Γi
jk and torsion by a suitable

choice of basis vectors for the adjoint representation which are constructed from the electric field
Eai. A metric is also constructed from Eai. For gauge group SU(2), the spatial geometry is the
standard Riemannian geometry of a 3-manifold, and for SU(3) it is a metric preserving geometry
with both conventional and unconventional torsion. The transformed Hamiltonian is local. For
a broad class of physical states, it can be expressed entirely in terms of spatial geometric, gauge
invariant variables.

CERN–TH. 7238/94 April 1994

I. INTRODUCTION

The canonical commutation relations and Gauss law constraint of Hamiltonian gauge theories in temporal gauge
are invariant under spatial diffeomorphisms of the canonical variables Aa

i (x) and Eai(x). This local GL(3) symmetry
is broken in the Hamiltonian in a simple way because of the appearance of the Cartesian metric δij of flat space, and
the energy density transforms as a GL(3) tensor density. In this paper we discuss a formulation of non-abelian gauge
theories in which the Gauss law constraint is easily implemented and the Hamiltonian is expressed in terms of variables
which are gauge invariant or covariant and also geometric, i.e. they are GL(3) tensors, connections or curvatures.
The resulting theory has an elegant mathematical structure but it is far from clear that the spatial geometry will
be helpful for dynamical calculations or offer any advantages over such well-developed approaches as lattice gauge
theories.

We choose to work in the electric representation of gauge theories in which states Ψ[Eai] are functionals of the
electric field. In common with an earlier non-geometric approach to the SU(2) theory [1] the key element of our
work is a unitary transformation Ψ[E] = exp(iΩ[E]/g)F [E] of the theory which simplifies the form of the Gauss
law constraint. The phase Ω[E] is a local GL(3) invariant functional of the electric field, whose variation under
infinitesimal gauge transformations is δΩ[E] =

∫

d3x θa∂iE
ai. These gauge and GL(3) properties of Ω[E] imply
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that the quantity ωa
i [E] = −δΩ[E]/δEai transforms as a Lie algebra valued connection on the initial value surface

IR3. Thus a composite gauge connection ωa
i [E] appears and plays a central role in our formulation although the

fundamental variable Eai transforms homogeneously under gauge transformations. The Hamiltonian is local but, as
in earlier work [1,2] it involves functional derivatives δ/δEai up to fourth order.

For gauge group SU(2), ωa
i [E] is simply the standard Riemannian spin connection on a three-manifold with frame

1-form ea
i (x) related to the electric field by Eai = εabcεijkeb

je
c
k/2. One can argue that under fairly general assumptions

one can restrict to wave functionals F [Gij , ̺] where Gij = ea
i ea

j is a composite metric and ̺ = detEai. Such states
satisfy the Gauss law constraint, and the Hamiltonian acting on them can be rewritten in terms of the Christoffel
connection Γk

ij and curvature Rk
ℓij . Thus a Riemannian spatial geometry underlies SU(2) gauge theory.

It is actually known [3,4] from work on Ashtekhar variables in gravity that the spin connection on a 3-manifold
is the variational derivative of the local functional Ω[E]. It is not lost upon us that the Ashtekhar approach makes
gravity look a lot like gauge theory, while our approach makes gauge theory look a lot like gravity.

One could view the structure described above as the accidental consequence of the fact that the gauge group SU(2)
cöıncides with the tangent space group of a three-manifold. However we are able to give a formula for the phase
Ω[E] for a general gauge group G. The formula is not entirely explicit because it involves the inverse of a matrix of
dimension 3 dimG × 3 dimG which is a quadratic function of Eai. But it is explicit enough to see that the general
structure of the theory is similar to SU(2), but that the associated spatial geometry, which we outline for SU(3), is
more complicated. It can be described as a metric-preserving geometry with an unconventional torsion.

One may also study the spatial geometry of a magnetic formulation of gauge theory. Indeed we drew our inspiration
from a recent study [5] of the SU(2) theory in which a curious Einstein space geometry with torsion appeared. The
geometry is correct, but the application made to Hamiltonian dynamics in [5] failed because of the Wu-Yang ambiguity
[6] which is generically continuous in three spatial dimensions [7]. A new magnetic formulation [8] avoids the problem
and leads to a Hamiltonian which is second order in functional derivatives δ/δGij with respect to a composite metric
variable, but is non-local.

We also wish to cite recent papers involving a geometrical approach to gauge theories in the Lagrangian formalism
by Lunev [9] and others [10,11] in which a spatial metric has appeared in studies of gauge theories. Finally, there are
recent extensive studies of Hamiltonian dynamics for gauge theory in light-cone gauge [12].

II. THE UNITARY TRANSFORMATION AND ITS CONSEQUENCES

The canonical variables of a non-abelian gauge theory are the vector potential Aa
i (x) and electric field Eai(x) which

satisfy the commutation relations
[

Aa
i (x), Ebj(x′)

]

= iδabδj
i δ

(3)(x − x′). (2.1)

In temporal gauge, Aa
0(x) = 0, the generator of spatial gauge transformations with parameter θa(x) is

G[θ] =
∫

d3x θa(x) Ga(x)

Ga(x) =
1

g
DiE

ai(x) =
1

g

(

∂iE
ai(x) + g fabcAb

i (x)Eci(x)
)

,
(2.2)

and Eq. (2.1) implies the quantum gauge transformation rules

δAa
i (x) = −i [G[θ], Aa

i (x)] =
1

g

(

∂iθ
a(x) + g fabcAb

i (x)θc(x)
)

δEai(x) = −i
[

G[θ], Eai(x)
]

= fabcEbi(x)θc(x).
(2.3)

Using the magnetic field

Bai(x) = εijk

(

∂jA
a
k(x) +

1

2
gfabcAb

j(x)Ac
k(x)

)

(2.4)

which transforms homogeneously, i.e. as the electric field in Eq. (2.3), the Hamiltonian can be written as

H =
1

2

∫

d3x δij

(

Eai(x)Eaj(x) + Bai(x)Baj(x)
)

. (2.5)

We now observe that Eqs. (2.1-2.4) are covariant under coordinate transformations xi → yα on the domain IR3

provided that

2



1. Aa
i (x) transforms as a covariant vector

A′a
α (y) =

∂xi

∂yα
Aa

i (x) (2.6)

which is implied by the 1-form interpretation A
a = Aa

i dxi of the vector potential and

2. Eai(x) transforms as a contravariant vector density

E′aα(y) =

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

∂yα

∂xi
Eai(x) (2.7)

which is consistent with its implementation as a functional derivative Eai(x) = −iδ/δAa
i (x) in the familiar

magnetic representation of (2.1).

Note that the gauge parameters θa(x) transform as GL(3) scalars and that Ga(x) is a scalar density. No connection
Γi

jk is required in Eq. (2.2) because Eai is a density of weight one. The magnetic field is also a contravariant vector
density of weight one.

The Hamiltonian fails to be GL(3) invariant because the fixed cartesian metric appears, but one sees that the energy
density transforms as the δij trace of a contravariant symmetric tensor density of weight two. The Hamiltonian is
gauge invariant, viz., [G[θ], H ] = 0, and the dynamical problem of gauge theories can be formally stated as the problem
of diagonalizing H on the physical subspace of gauge invariant states Ψ which satisfy the Gauss law constraint

Ga(x)Ψ =
1

g
(∂iE

ai(x) + g fabcAb
i (x)Eci(x))Ψ = 0 . (2.8)

Our goal here is to formulate this dynamical problem in a way which maintains the GL(3) properties of the theory.
We work in electric field representation with state functionals Ψ[E]. Then Eai(x) is realized by simple multiplication

and Aa
i (x) = iδ/δEai(x) by functional differentiation. It would be easy to implement the Gauss law constraint if the

gauge generator contained only the second term

Ḡa(x) = −ifabcEbi(x)
δ

δEci(x)
(2.9)

because this operator simply generates local group rotations without spatial transport. Note that both Ga(x) and
Ḡa(x) satisfy the group algebra in the local form

[

Ga(x),Gb(x′)
]

= ifabcδ(3)(x− x′)Gc(x). (2.10)

In the spirit of [1], we shall make a unitary transformation on the states and operators of the theory in order to
simplify the gauge generators. We write

Ψ[E] = exp(iΩ[E]/g) F [E]

O(x) = exp(iΩ[E]/g) Ō(x) exp(−iΩ[E]/g)
(2.11)

and require that

Ga(x) exp(iΩ[E]/g) F [E] = exp(iΩ[E]/g) Ḡa(x) F [E]. (2.12)

The phase Ω[E] thus satisfies

exp(−iΩ[E]/g) Ga(x) exp(iΩ[E]/g) = Ga(x) +
i

g
[Ga(x), Ω[E] ]

= Ḡa(x)
(2.13)

This is equivalent to the requirement that the gauge variation of Ω[E] be

δΩ[E] = −i [G[θ] , Ω[E] ] =

∫

d3x θa(x)∂iE
ai(x) . (2.14)
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We also require that the phase Ω[E] be GL(3) invariant, so that the unitary transformation preserves the behavior
of the theory under spatial diffeomorphisms. Note that for an abelian gauge group U(1) any Ω[E] is gauge invariant,
so that we cannot satisfy Eq. (2.14). Thus our treatment must be restricted to non-abelian groups. A unitary
transformation of similar structure appears in a recent study of a 1 + 1 dimensional gravity theory [13].

We will now show that the form of the resulting theory is essentially determined by these two requirements on
Ω[E]. In subsequent sections we will give local formulae for the phase, i.e. of the form Ω[E] =

∫

d3x f(E(x), ∂E(x))
first for gauge group SU(2) and then for general G.

So we now assume the existence of a GL(3) invariant phase whose gauge variation is given by Eq. (2.14), and work
out the structure of the unitary transformed theory. The transformed canonical variables are

Ēai(x) = exp(−iΩ[E]/g) Eai(x) exp(iΩ[E]/g) = Eai(x)

Āa
i (x) = exp(−iΩ[E]/g) Aa

i (x) exp(iΩ[E]/g)

= Aa
i (x) +

i

g
[Aa

i (x), Ω[E] ]

= Aa
i (x) − 1

g

δ

δEai(x)
Ω[E]

≡ i
δ

δEai(x)
+

1

g
ωa

i (x)

(2.15)

The quantity ωa
i (x) is the variational derivative of a GL(3) invariant functional with respect to a vector density so

ωa
i (x) is a covariant vector under spatial diffeomorphisms. Its gauge variation is

δωa
i (x)/g = i

[

G[θ], δΩ[E]
δEai(x)

]

/g

= [G[θ], [Ω[E], Aa
i (x)] ]

= [Ω[E], [G[θ], Aa
i (x)] ]− [ [G[θ], Ω[E] ] , Aa

i (x)]

= −i [Ω[E], Diθ
a(x)] /g − i

[∫

d3y θb(y)∂jE
bj(y), Aa

i (x)
]

= −fabc δ

δEbi(x)
Ω[E] θc(x) +

1

g
∂iθ

a(x)

=
1

g

(

∂iθ
a(x) + fabcωb

i (x)θc(x)
)

≡ 1

g
D̂iθ

a(x)

(2.16)

Thus ωa
i [E]/g is a local composite function of Eai which transforms as a gauge potential. One could almost derive

this result by inspection of Eq. (2.15), since the gauge variation of Āa
i is

δĀa
i = −i

[

Ḡ[θ], Āa
i

]

=
1

g

(

∂iθ
a + g fabcĀb

iθ
c
)

. (2.17)

Since iδ/δE transforms homogeneously, the second term in Eq. (2.15), ω/g, must transform as a potential. However
the longer derivation in Eq. (2.16) has the virtue of emphasizing that if the gauge variation of any functional Ω[E] is
given by Eq. (2.14) then δΩ/δEai transforms as a gauge connection.

In the unitary transformed theory, D̂i will denote a gauge covariant derivative formed with the composite connection
ωa

i . The magnetic field formed using Eq. (2.4) with A replaced by ω/g and removing a factor 1/g will be denoted by

B̂ai = εijk
(

∂jω
a
k + 1

2fabcωb
jω

c
k

)

. It also follows from the trivial relation

δΩ[E] =

∫

d3x
δΩ[E]

δEai
δEai (2.18)

and use of Eq. (2.14) with δEai = fabcEbiθc that a “Bianchi identity” holds in the form

D̂iE
ai = 0. (2.19)

The transformed Hamiltonian is

H̄ =
1

2

∫

d3x δij(Ē
aiĒaj + B̄aiB̄aj). (2.20)

4



The electric term is quite simple. One can define the gauge invariant symmetric tensor variable

ϕij = EaiEaj (2.21)

and express the electric energy density as the multiplication operator 1
2δijϕ

ij .

The magnetic field B̄ai(x) applied to a state F [E] is

B̄aiF [E] = εijk
(

∂jĀ
a
k + 1

2g fabcĀb
jĀ

c
k

)

F [E]

=

[

1

g
B̂ai + i εijkD̂j

δ

δEak
− g

2
εijkfabc δ

δEbj

δ

δEck

+ i g εijkfabc δωc
k

δEbj

]

F [E]

(2.22)

The beginning of a geometric structure is evident in the first two terms, namely the composite magnetic field and
the ω-covariant derivative of δF/δE. The third term contains the second functional derivative δ2/δEδE which is
characteristic of the electric representation of non-abelian theories [1,2]. The Hamiltonian therefore contains terms up
to fourth order in δ/δE. The fourth term in Eq. (2.22) comes from the operator reordering

[

δ/δEbj(x), ωc
k(x)

]

which

was necessary to obtain the the D̂j covariant derivative. As will be seen explicitly for the SU(2) case, this ordering
term involves the singular objects ∂δ(0) and δ(0) and is one troublesome feature of a nonlinear theory with functional
derivatives. Similar terms also were present in [1]. Our derivation of the Hamiltonian has been rather formal and
requires regularization. We shall argue in the appendix that this particular ordering term vanishes if covariant point
splitting regularization is used, but one must study the additional ordering terms in the magnetic energy density
which is quadratic in B̄.

We will discuss the Hamiltonian further in later sections, after we elucidate its spatial geometric structure. We
close this section with a remark concerning the uniqueness of GL(3)-invariant functionals ,which satisfy Eq. (2.14).
One must not expect a unique solution for a given gauge group , but the difference Ω′[E] − Ω[E] between any two
functionals which satisfy the requirements must be both gauge and GL(3)-invariant. For example, one could have

Ω′[E]− Ω[E] ∝
∫

d3x(det ϕij)1/4. (2.23)

III. THE SU(2) THEORY

In this section we study the SU(2) gauge theory in more detail. We first give explicit formulae for the phase Ω[E]
and composite gauge connection ωa

i and then develop the associated spatial geometry which turns out to be the
standard Riemannian geometry of a 3-manifold.

The simplest phase candidate one can write using the electric field Eai and its matrix inverse Ea
i , i.e. EaiEb

i = δab,
turns out to be successful. This is

Ω[E] =
1

2

∫

d3x εabc Eai(x)Ebj(x)∂iE
c
j (x) . (3.1)

It is GL(3) invariant because the integrand has density weight +1 and terms arising from the ∂i derivative of the
coördinate change of Ec

j , which is a covariant vector density, cancel. Although we need only the infinitesimal gauge

variation to confirm Eq. (2.14), it is no more difficult to study the finite gauge transformation Eai → T abEbi where
T ab is an SO(3) matrix. We have

Ω[TE] =
1

2

∫

d3x εabc T aāT bb̄
{

T cc̄EāiE b̄j∂iE
c̄
j + ∂iT

cb̄Eāi
}

= Ω[E]− 1

2

∫

d3x εabc (T−1∂iT )bcEai . (3.2)

Group invariance of the structure constants was used to obtain the first term, and the invariant 1-forms T−1∂T appear
in the second term, whose infinitesimal limit is Eq. (2.14).
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We already know that ωa
i = −δΩ/δEai is an SO(3) gauge connection, so it should not be a great surprise that it

turns out to be a familiar object. We define a new variable ea
i by

Eai =
1

2
εijkεabceb

je
c
k , (3.3)

so that ea
i has dimension +1, and is a gauge covariant, GL(3) vector. These are exactly the properties of the frame

1-form (dreibein) on a 3-manifold with tangent space group SO(3) and metric

Gij = ea
i ea

j . (3.4)

By straightforward computation one can show that

ωa
i = − δΩ

δEai
= −1

2
εabc

{

ebj∂ie
c
j − ebjec

kΓk
ij

}

= −1

2
εabcωbc

i . (3.5)

Here Γk
ij is the Christoffel symbol for the metric Gij , and ωab

i is just the standard spin connection on a Riemannian
3-manifold. Thus the composite gauge potential ωa

i of SU(2) gauge theory is the well-known spin connection, and we
now see that a conventional Riemannian spatial geometry underlies SU(2) gauge theory.

A corollary of our discussion above is the fact that in three spatial dimensions the spin connection is the variational
derivative of the local functional Ω[E] of Eq. (3.1). This was established in studies [3,4] of the Ashtekar formalism for
gravity in which the form of Ω[E] with Eq. (3.3) inserted was used, viz.,

Ω[E] =
1

2

∫

d3x εijk ea
i (x)∂je

a
k(x) , (3.6)

showing that Ω[E] is the integral of a natural 3-form.
Actually we have been a little too hasty in the above. The definition Eq. (3.3) actually implies that detEai ≥ 0,

whereas both signs of detE occur in gauge theory. So we should actually define

Eai = ±1

2
εijkεabceb

je
c
k , (3.7)

with ± according to whether detE > 0 or < 0. For each sign above, there are two solutions for e[E] which differ by
a sign. We make the convention to choose the solution with det ea

i > 0, so that we take

ea
i = ±

√

| detEai| Ea
i (3.8)

as the solution to Eq. (3.7). One can show that Eqs. (3.4) and (3.5) remain valid (but Eq. (3.6) acquires a ± sign),
so that ωa

i is the same standard connection for both signs of detE. Since ωa
i is an even function of the frame, it can

be reexpressed as an even function of Eai and the sign in Eq. (3.8) cancels.
Note that

Eai = ±eai det e (3.9)

is a “densitized” inverse frame. One can show using Eqs. (3.5) and (3.7) that the total covariant derivative vanishes,
i.e.,

∇iE
ak ≡ ∂iE

ak + Γ′k
ijE

aj + εabcωb
i E

c
k = 0 , (3.10)

where Γ′k
ij is a not-often-used but standard connection for the covariant differentiation of densities, namely

Γ′k
ij = −1

2
δk
j ∂i ln detGmn + Γk

ij

=
1

4
(δk

i ∂j − ϕkℓϕij∂l) ln detϕmn +
1

2
ϕkℓ [∂iϕjℓ + ∂jϕiℓ − ∂ℓϕij ] , (3.11)

6



where, for reasons stated below, we have used the relation ϕij = detG Gij between the tensor density ϕij introduced
in the previous section and the inverse metric Gij . One can solve Eq. (3.10) for ωa

i and obtain a form equivalent to
Eq. (3.5). The fact that ∇iE

ak = 0 solidifies the geometric interpretation of the electric field.
It is easy to see [5] that the curvature tensors of Γ′ and Γ cöıncide, since the density term cancels:

Rℓ
kij(Γ

′) = ∂[iΓ
′ℓ
j]k + Γ′ℓ

m[iΓ
′m
j]k = Rℓ

kij(Γ) (3.12)

One can also show that the composite magnetic field, defined above Eq. (2.18) is related to the standard curvature by

B̂ai = −1

2
εijkεabcRbc

jk(ω)

= −1

2

detE√
detϕ

εijkε̂mnqE
aqRmn

jk(Γ) (3.13)

= 2
det E√
detϕ

Eaq(Ri
q −

1

2
δi
qR) . (3.14)

The standard curvature of the spin connection in the first line is converted to space indices using the frame and (3.7),
and the representation of the curvature of a 3-manifold in terms of its Ricci and scalar contractions

Rijkℓ = GikRjℓ −GiℓRjk −GjkRiℓ + GjℓRik −
R

2
(GikGjℓ −GiℓGjk) (3.15)

is used in the final step. Note that ε̂mnq has components ±1, 0, and transforms as a tensor density of weight −1.
Let us now consider whether Eai or ea

i , obtained through Eq. (3.8), is the better variable for the dynamics of SU(2)
gauge theory in this approach. Certainly ea

i is more geometric and has lower dimension, but provisionally we prefer
the electric field Eai because the parity transformation Eai(x)→ −Eai(−x) is very awkward to implement on ea

i . So
we shall use Eai, ϕij and Γ′k

ij for the rest of the paper. It is not difficult to convert to ea
i , Gij and Γk

ij if that proves
to be desirable.

Finally we come to the question of implementing the Gauss law constraint, ḠaF [E] = 0, within this approach to
SU(2) gauge theory. We shall describe several classes of gauge invariant states, but we are not certain that they
comprise the “general solution” of the constraint.

Following similar discussions [5,14] for the magnetic representation, we note that Eai contains 9 components. Since
there are 3 gauge group “angles”, we would expect that it takes 6 functions to describe the gauge invariant content of
an electric field configuration. The symmetric tensor ϕij has 6 independent components. Although detE is another
local gauge invariant, one has detϕ = (det E)2, and only the sign of detE is independent of ϕij . However this sign
is a complication for us. To handle it we introduce ̺(x) = detEai(x) as an unconstrained field variable which is a
scalar density of weight 2. The most general functional of the local invariants can then be written as F [ϕij , ̺] and
the constraint ̺2 = detϕ will be enforced in the functional measure.

Let us consider the “electric” Chern-Simons functional of the composite spin connection

CS[ω] =
1

16π2

∫

d3x εijk

[

ωa
i ∂jω

a
k +

1

3
εabcωa

i ωb
jω

c
k

]

, (3.16)

normalized to give B̂ai = 8π2δ(CS)/δωa
i . With Tω denoting the finite gauge transformation of ω under Eai → T abEbi,

we have

CS[Tω] = CS[ω]− 1

96π2

∫

d3x εijk
[

T da∂iT
dbT eb∂jT

ecT fc∂kT fa
]

. (3.17)

The last term is the integer-valued winding number, so CS[ω] is certainly infinitesimally gauge-invariant, and satisfies
[Ga(x), CS[ω] ] = 0. But

CS[Tkω] = CS[ω] + k (3.18)

for a gauge transformation Tk with winding number k. All of the above is standard [15]. One then sees that states of
the form

F [E, θ] ≡ eiθCS[ω] F [ϕ, ̺] (3.19)
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transform as

F [TkE, θ] = eikθ F [E, θ]. (3.20)

Thus, as in the magnetic representation [15], the Chern-Simons functional, here a composite functional of Eai, can
be used to relate states with nontrivial response to large gauge transformations to invariant states, here F [ϕ].

We also want to discuss briefly a third class of states which obey the Gauss law constraint, namely functionals
constructed from “electric” Wilson loops:

W [ω, C] = Tr

[

P exp i

∮

dxiωi

]

ωi =
1

2
τaωa

i (3.21)

where τ1, τ2, τ3 are Pauli matrices and C is a closed curve in IR3. Certainly [Ga(x), W [ω, C] ] = 0, and state functionals
formed from W [ω, C] satisfy the gauge constraint. Nevertheless, it appears that these states are already included in
the class F [ϕ]. The reason for this is that from the relation ϕij(x) = Eai(x)Eaj(x), the tensor field ϕij(x) along a
curve C determines the electric field up to multiplication by an O(3) matrix Rab(x). Since ωa

i is quadratic in Eai, it
is not sensitive to an improper factor in Rab, so ωa

i is determined up to an SO(3) gauge transformation, and W [ω, C]
is thus uniquely determined by ϕij . Independently of this one can ask the general question of the relation between
electric Chern-Simons and Wilson loop functionals and their magnetic analogues. They do not appear to be simply
related by the functional Fourier transform [1] between magnetic and electric representations of the theory.

We now wish to discuss the form of the Hamiltonian H̄ of Eq. (2.20) acting on states F [ϕ, ̺]. We need to express
B̄ai(x)F [ϕ, ̺] of Eq. (2.22) in terms of ϕij and ̺ using the chain rule using the chain rule

δ

δEak
F [ϕ] =

δϕpq

δEak

δF

δϕpq
+

δ̺

δEak

δF

δ̺

= 2Eap δF

δϕpq
+ ̺Ea

k

δF

δ̺
(3.22)

Using also Eqs. (3.10-3.13) one can obtain by a straightforward calculation the expression

B̄aiF [ϕ, ̺] = 2

{

1

g

̺√
detϕ

Eap(Ri
p −

1

2
δi
pR) + iεijk

(

Eap∇j
δ

δϕkp
+

̺

2
Ea

k∇j
δ

δ̺

)

−gεijkεpqr̺Ea
r

(

δ2

δϕjpδϕkq
+ ̺ϕkq δ2

δϕjpδ̺

)

−1

2
g̺ Eai δ2

δ̺δ̺
− g Eaiδ(0)

δ

δ̺

}

F [ϕ, ̺] (3.23)

We have dropped the δ(0) ordering term of Eq. (2.22) in Eq. (3.23), because of the provisional conclusion of the
Appendix, that this term vanishes after regularization. The salient feature of this equation is that spatial covariant
derivative appropriate to the tensor and density character of δF / δϕkp and δF / δ̺ have automatically appeared
through (3.10). These derivatives are

∇j
δF

δϕkp
= ∂j

δF

δϕkp
− Γ′q

jp

δF

δϕkp
− Γq

jk

δF

δϕpq

∇j
δF

δ̺
= (∂j +

1

4
∂j ln detϕ)

δF

δ̺
(3.24)

A new δ(0) term has also appeared in (3.23). Since its coefficient is covariant, it does not vanish by the point-spitting
argument used in the appendix. We can say little more about this term now except that it should be studied in the
context of a more systematic regularization procedure.

We now consider the magnetic energy density

EM F [ϕ] =
1

2
δı̄iB̄

aı̄B̄aiF [ϕ] . (3.25)

8



Even without a detailed computation, one sees that the gauge indices cancel, e.g. EaiEaj = ϕij , so that the full
Hamiltonian can be rewritten entirely in terms of the spatial geometric variables ϕ, Γ′ and R together with ̺ which
is also essentially geometric. The elimination of all non gauge-invariant variables is is a remarkable transformation of
the original theory, although the result is complicated and the geometrization imperfect because of the presence of ̺.

The Hamiltonian simplifies a great deal if one restricts to wave functions F [ϕ] which are independent of ̺. Not
only do 4 of the 7 terms in (3.23) drop, but the remaining ̺ dependence is actually helpful. Namely all imaginary
“interference terms” in EM cancel in the sum of the two configurations ̺(x) and −̺(x), and EM becomes a sum of two
positive terms depending only on ϕ. Although the restriction to F [ϕ] does not follow from any symmetry, it could
possibly be justified a posteriori in the vacuum sector because it leads to a lower variational energy than F [ϕ, ̺]. In
any case the simplifying assumption may be useful in a first exploration of the dynamics.

One can also transform the functional measure used to compute matrix elements of H̄ in states F [ϕ]. Dimensional
and GL(3) symmetry arguments are sufficient to give at each point x

∏

a,k

dEak(x) = d̺(x)
∏

i≤j

dϕij(x)δ(̺(x)2 − detϕ(x)) (3.26)

This is to be understood as an identity valid when the integrand depends only on ϕ and ̺. An irrelevant numerical
constant has been dropped.

The phase Ω[E] of Eq. (3.1) involves the matrix inverse of the electric field, so our transformation is singular when
detEai = 0. The composite connection ωa

i as well as Γ′k
ij are also singular here. One can see upon closer inspection of

the magnetic energy density Eq. (3.23) that the singular terms always involve spatial derivatives ∂iϕ
jk. As in [1,14]

we believe that these singularities are the functional analogue of the angular momentum barrier for central forces
in quantum mechanics. Any finite energy wave functional must “know how to behave itself” as such singular field
configurations are approached, otherwise it would not have finite energy.

IV. GENERAL GAUGE GROUPS

The extension of the present methodology to gauge groups larger than SU(2) is important for two reasons. First
the realistic color group of the strong interactions is SU(3). Second, we must show that the geometrization found for
SU(2) is not an accidental consequence of the fact that SO(3) (≈ SU(2)) is the tangent space group of a 3-dimensional
Riemannian space.

Technically, it was easy to construct the phase Ω[E] for SU(2) because the electric field Eai(x) is a 3 × 3 matrix
with a matrix inverse Ea

i (x) which respects gauge and GL(3) covariance. For larger groups, Eai(x) is a rectangular
matrix, and there is no inverse. The major problem in constructing the phase Ω[E] for other semi-simple groups is to
find an appropriate substitute for the inverse. In this section we present such a construction.

To begin with, we attempt to generalize Eq. (3.1) where, however, since we do not have an Ea
i (x) available, we

write instead

Ω[E] ≡ 1

2

∫

d3x
fabcEai(x)Ebj(x)

(detϕ)1/4
∂iR

c
j(x) ≡ 1

2

∫

d3x εijkLa
i (x)∂jR

a
k(x) , (4.1)

with the variable Ra
i (x) to be determined so that Ω[E] is GL(3) invariant with gauge variation Eq. (2.14). The

quantity La
i (x) above is simply shorthand for

La
i (x) =

1

2
ε̂ijk

fabcEbj(x)Eck(x)

(detϕ)1/4
. (4.2)

We have divided by (detϕ)1/4 in order to make La
i (x) a covariant vector rather than a density, and we see from the last

equality in Eq. (4.1) that Ω[E] is the integral of a 3-form, and therefore GL(3) invariant, if Ra
i (x) is also a covariant

vector. Note that it was not necessary to insert the determinantal factor for SU(2) because Ra
i (x) in that case is

the matrix inverse of Eai(x), and this was sufficient for GL(3) invariance. Ra
i (x) is now fixed as a function of Eai(x)

by our first requirement on Ω[E], namely, that it satisfy Eq. (2.14). We now examine that requirement. The gauge
variation of Ω[E] in Eq. (4.1) is easily computed if we assume that Ra

i (x) transforms in the adjoint representation:

δΩ[E] = −1

2

∫

d3x εijk fabc La
i (x)Rb

j(x)∂kθc(x) . (4.3)
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The requirement that this is of the form of Eq. (2.14) gives the following condition on Ra
i (x):

1

2
εijk fabc La

i (x)Rb
j(x) ≡ M ck,bj(x)Rb

j(x) = Eck(x) . (4.4)

This is a linear system and there is a unique solution for Ra
i (x) provided that the determinant of the 3 dimG×3 dimG

direct product matrix M is non-vanishing. It is also easy to show from the structure R = M−1E that Ra
i (x) has the

required gauge and GL(3) properties assumed above. An analytic calculation of M−1 would be necessary to have a
truly explicit construction of the phase Ω[E]. This is a difficult task, and we shall be content here with the fact that
we have reduced the problem to this point.

We end this section with a possible alternative procedure to determine the phase Ω[E]. Again, faced with the same
initial problem of not having an “inverse” electric field Ea

i , we try another generalization of the SU(2) phase, by
writing an ansatz identical in form to Eq. (3.6):

Ω[E] =
1

2

∫

d3x εijk ea
i (x)∂je

a
k(x) , (4.5)

with the difference that now the variables ea
i (x) form a 3 × dimG matrix, as yet undefined. The requirement that

this phase has the correct gauge transformation Eq. (2.14), then determines ea
i implicitly in a similar way as for Ra

i

above. This requirement reads:

Eai =
1

2
εijkfabceb

je
c
k . (4.6)

One must then solve this set of 3 dimG quadratic equations to obtain e[E]. We have not been able to do this (despite
considerable effort for the group SU(3)), but we find that it is an intriguing algebra problem with a group-theoretic
flavor. It is formally identical to the problem of finding, for a general group G, the gauge potential Aa

i (ea
i here) given

a constant magnetic field Bai (here Eai). The solution to this would yield a phase Ω[E] which would automatically
have the proper gauge and GL(3) transformation properties, and could possibly lead to a simpler formulation of the
theory than the one based on Eq. (4.1).

V. SU(3) GAUGE THEORY

We now explore the SU(3) theory in order to ascertain the spatial geometry associated with a larger gauge group.
The first step is to use the group theory and the physics to define a basis of eight vectors for the adjoint representation
of the group. The basis is then used to define the connection, torsion, and curvature of the geometry. Then we identify
the class of gauge invariant states analogous to F [ϕij ] of Sec. 3, and show that the Hamiltonian acting on these states
can be expressed in terms of gauge invariant and geometric quantities. The attitude we shall take is that all geometric
information is contained in the SU(3) gauge connection ωa

i calculated from Ω[E] in Eq. (4.1). The basis of eight
vectors is a generalized frame used to transfer this information to geometric variables with spatial indices only. This
attitude is consistent with the situation for SU(2), but little thought was required there because the geometry was
completely standard.

The first three 8-vectors of the basis are simply the three spatial components Eai of the electric field. These are
linearly independent for generic field configurations in which the rectangular matrix has rank 3. Using the d-symbols
of SU(3) we construct six additional 8-vectors

Eajk ≡ dabcEbjEck . (5.1)

First, we orthogonalize these with respect to the first three by defining

Êajk ≡ Eajk − Eamϕmnϕnjk , (5.2)

where ϕmn is the matrix inverse of ϕij and

ϕijk ≡ dabcEaiEbjEck . (5.3)

The six Êajk span an orthogonal subspace to that of Eai. Within that subspace, the trace Êa = Êamnϕmn is
generically linearly related to the 5 traceless combinations
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Êa{ij} ≡ Êaij − 1

3
ϕijÊa , (5.4)

and these are generically linearly independent. So as a basis of 8 vectors we take the set

{ Eai, Êa{jk} } . (5.5)

when the mutual orthogonality is useful, and otherwise the set

{Eai , Ea{ij} = Eaij − 1

3
ϕijϕmnEamn }. (5.6)

We shall not characterize precisely the non-generic configurations in which the five Ea{jk} fail to be linearly indepen-
dent. Presumably this occurs when the span of any two of the three vectors Eai determines an SU(2) subalgebra of
SU(3).

Connections for the SU(3) geometry are defined by the pair of equations

D̂iE
ak ≡ −Γ̂′k

ijE
aj − T ak

i (5.7)

EajT ak
i ≡ 0 , (5.8)

which is equivalent to the fact that D̂iE
ak can be expanded uniquely in the basis of Eq. (5.5). Note that Eqs. (5.7-5.8)

comprise 72+ 27 equations for 27 + 72 components of Γ̂′ and T . One can see that Γ̂′k
ij transforms as a connection (for

densities of weight one), while T ak
i is a gauge adjoint GL(3) tensor density.

We now contract Eq. (5.7) with Eaℓ and symmetrize in kℓ, which leads to

∂iϕ
kℓ + Γ̂′k

ijϕ
jℓ + Γ̂′ℓ

ijϕ
kj = 0 . (5.9)

This is simply the metric compatible relation between Γ̂′ and the “densitized metric” ϕij . It then follows from simple

algebra that Γ̂′ takes the form of a (densitized) connection with torsion, namely

Γ̂′k
ij = Γ′k

ij −Kk
ij , (5.10)

where Γ′k
ij is just the Riemannian Γ′ of Eq. (3.11) and K is the contortion tensor, which satisfies the antisymmetry

property

Kijk = −Kikj (5.11)

Kijk ≡ K ℓ
ij Gℓk . (5.12)

Because of orthogonality to Eai, T ak
i is determined entirely by the spatial tensor density

K
{mn}k

i ≡ Êa{mn}T ak
i = −Êa{mn}D̂iE

ak . (5.13)

Using the components Êa
i , Êa

{mn} of the 8× 8 matrix inverse of the basis Eq. (5.5) we see that

T ak
i = Êa

{mn}K
{mn}k

i . (5.14)

We regard T ak
i or K

{mn}k
i as a new type of torsion. The Bianchi identity Eq. (2.19) implies that all torsions are

traceless:

K i
ij = T ai

i = K
{mn}i
i = 0 . (5.15)

The torsions are local functions of E and ∂E which can be found from the definition Eq. (5.7-5.8), once we have
the explicit form of ωa

i . In turn this requires the construction of the matrix Ra
i [E] which enters the phase Ω[E] of

Eq. (4.1). Note that Eq. (5.7) can be expressed in terms of the total covariant derivative ∇i of Eq. (3.10), but now
we have

∇iE
ak = −T ak

i , (5.16)

so the frame is no longer covariantly constant, but ϕij and also Gij are, since Eq. (5.9) is equivalent to
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∇iϕ
jk = 0 . (5.17)

The next step is to study the curvature by taking a further gauge derivative of Eq. (5.7) and antisymmetrizing to
obtain

[D̂i, D̂j]E
ak = −

{

Rk
ℓijE

aℓ + D̂[iT
ak
j] + Γ′k

[iℓT
aℓ
j]

}

= fabcε̂ijmB̂bmEck . (5.18)

The sum of the last two terms in the first line is GL(3) covariant, and we have used the gauge Ricci identity to obtain
the last line.

We now wish to obtain the SU(3) generalization of Eq. (3.13) and express the composite magnetic field B̂ in terms
of the curvature and torsion. This is awkward because Eck itself does not have an inverse, but the full frame Eq. (5.6)
can be brought to use as follows. The gauge covariant derivative of Eq. (5.1) can be evaluated as

D̂jE
akℓ = −Γ′k

jmEamℓ − Γ′ℓ
jmEakm + 2dabcEbkT cℓ

j (5.19)

and one also finds

[D̂i, D̂j ]E
akℓ = −

{

Rk
mijE

amℓ + Rℓ
mijE

akm + 2dabcEbk
(

D̂[iT
cℓ
j] + Γ′ℓ

[imT cm
j]

)}

= fabcε̂ijmB̂bmEckℓ . (5.20)

With {...} denoting symmetrization and removal of the trace, we obtain

fabcε̂ijmB̂bmEc{kℓ} = −
{

R
{k
mijE

aℓ}m + dabcEb{k
(

D̂[iT
cℓ}
j] + Γ

′ℓ}
[imT cm

j]

)}

. (5.21)

Using the components of the inverse matrix Ea
k , Ea

{kℓ} it is now simple to obtain B̂ from Eqs. (5.18, 5.21):

B̂ai = −1

6
fabcεijk

{

Eb
m

[

Rm
njkEcn + D̂[jT

cm
k] + Γ′m

[jnT cn
k]

]

+Eb
{mn}

[

Rm
ℓijE

cnℓ + dcdeEbm
(

D̂[jT
cn
k] + Γ′n

[jℓT
cℓ
k]

)]}

. (5.22)

This is the desired expression for the composite magnetic field. One can go further and substitute the representation
of Eq. (3.15) for Rm

njk, which holds with torsion [5], and one can use Eq. (5.14) to express DT + Γ′T in terms of the

total spatial covariant derivative of K
{mn}k

i and ∇Êa
{mn}. We shall not write the final resulting formula. Note that

the matrix M of Eq. (4.4) is singular for electric fields which vanish except in an SU(2) subalgebra of SU(3), and
Eq. (5.22) is also singular in this case.

The next stage of the discussion concerns gauge invariant states and local variables [14] for SU(3). We start
with the observation that the gauge invariant content of an SU(3) electric field configuration can be described by
24 − 8 = 16 variables. The symmetric tensor densities ϕij and ϕijk contain precisely 6 + 10 = 16 algebraically
independent components. Hence all invariants are algebraic functions of these fundamental ones. Among the other
local invariants which appear in the Hamiltonian are the “efterminant” and “extended metric”

eft E ≡ 1

6
fabcε̂ijkEaiEbjEck

ϕjk;ℓm ≡ EajkEaℓm . (5.23)

However both practically and theoretically the study of relations among SU(3) invariants is more complicated than in
the SU(2) case. For instance, the ring of local polynomial invariants is not a finite extension of the ring of polynomials
in ϕij and ϕijk, although this problem can be circumvented. Moreover only a finite number of invariants can appear
in the Hamiltonian and the full complexity of the ring of invariants is probably not needed. To give a more definite
answer to these questions, we would need an explicit expression for the SU(3) phase.

In the following, we are nevertheless able to illustrate partly our purpose (geometrization) by working out the
expectation value of the Hamiltonian between states of the form F [ϕij , ϕijk] (generalizations of the states F [ϕij ]
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considered for SU(2)) depending only on the simplest fundamental invariants. Even if they are not the most general
states, they might encode some interesting physics. We need the chain rule

δ

δEak
F =

δϕpq

δEak

δF

δϕpq
+

δϕpqr

δEak

δF

δϕpqr

= 2 Eap δF

δϕpq
+ 3 dabcEbpEcq δF

δϕpqk
. (5.24)

After some algebra one finds that the second term in B̄aiF of Eq. (2.22) can be expressed in terms of SU(3) connections
and torsions as

iεijkD̂j
δF

δEak
= iεijk

{

2Eap∇j
δF

δϕpk
− T ap

j

δF

δϕpq

+3 Eapq∇j
δF

δϕpqk
− 6 dabcEbpEc

mnK
{mn}q
j

δF

δϕpqk

}

, (5.25)

where ∇j
δF

δϕpk has been defined in Eq. (3.24), and

εijk∇j
δF

δϕpqk
= εijk

[

∂j
δF

δϕpqk
− Γ′r

jp

δF

δϕrqk
− Γ′r

jq

δF

δϕprk

]

. (5.26)

Similarly, the third term in Eq. (2.22) can be written as

− g

2
εijkfabc δ2F

δEbjδEck
= −g

2
εijkfabc

{

4EbpEcq δ2F

δϕpjδϕqk

+12EbpEcrs δ2F

δϕpjδϕrsk
+ 9EbpqEcrs δ2F

δϕpqjδϕrsk

}

. (5.27)

No δ(0) ordering terms arise in Eq. (5.27), and we assume that the fourth term in Eq. (2.22) vanishes after regular-
ization as discussed in the Appendix for SU(2).

Consider now the magnetic energy density Eq. (3.25) with each factor B̄ai expressed as the sum of Eqs. (5.22-5.25-
5.27). It is clear that all gauge indices are contracted out in local invariant variables such as ϕpq;rs, fabcEapqEbrEcs

and several others. So the expectation value involves the fundamental invariants and possibly some auxiliary ones
which may (or may not) disappear (as in the SU(2) case) if one sums over all configurations Eai giving the same value

of ϕij and ϕijk. This discussion also applies to the torsions K k
ij and K

{jk}ℓ
i which should be expressible in terms of the

fundamental invariants, some auxiliary ones, and their first spatial derivatives (in torsion-free covariant combinations).
Symbolic manipulation programs can be useful to help find the required expressions which are necessary to express
the SU(3) gauge theory in complete geometric form.

This discussion has shown that our geometric ideas can be extended to the gauge group SU(3), and that there is
an interesting spatial geometry associated with this realistic color group. The theory is not yet in entirely explicit
form. For this one must obtain the matrix Ra

j and the inverse frame components for Eqs. (5.5) and (5.6) as functions

of Eai, and one must solve the problem of independent SU(3) invariants discussed in the previous paragraph. These
“mechanical” problems are not necessarily easy, and we believe that the effort to solve them is justified only if the
spatial geometry is shown to be useful for the dynamics in the SU(2) theory of Sec. 3, which is far simpler.

VI. DISCUSSION

We have shown that it is possible to reexpress the geometry of non-abelian gauge theories in terms of a 3-dimensional
spatial geometry. The first and most important step was the unitary transformation Ψ[E] = exp(iΩ[E]/g)F [E] which
allowed us to impose the Gauss law constraint on F [E] and to exploit the fact that ωa

i = −δΩ/δEai transforms as a
composite gauge connection.
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For gauge group SU(2), ωa
i is just the standard spin connection of a Riemannian 3-manifold. We were naturally led

to define metric- and connection-like variables ϕij and Γ′i
jk which are equivalent to the ordinary Riemannian metric

and Christoffel connection. The SU(2) theory essentially geometrizes itself, and a conventional Riemannian geometry
underlies the theory.

For larger gauge groups, and for SU(3) in particular, the same approach leads to a metric-preserving geometry with
torsion of both standard and novel type. The construction of Secs. 4 and 5 was not quite explicit because certain
“mechanical problems” of analytic matrix inversion and relations among group invariants remain to be solved. Apart
from these problems, it is also possible that another choice of phase Ω[E] or basis Eai, Ea{ij} could lead to a simpler
formulation.

Our initial motivation, beginning in [5], was to express the Hamiltonian in gauge invariant variables in order to
develop a new approach to the non-perturbative dynamics of gauge theories. What has been achieved so far is just
a formal structure, of some elegance we believe, but there are many difficulties to be overcome before it can be
applied to real physics. The non-linear transformation to variables ϕij = EaiEaj may exacerbate the problem of
Lorentz covariance in the Hamiltonian formalism. A suitable cutoff procedure must be found and one must cope
with a Hamiltonian which is up to fourth order in functional derivatives. The fundamental unitary transformation is
non-perturbative, so the composite magnetic field B̂ai appears in (2.22) with coefficient 1/g, and there are singular
terms up to order 1/g2 in the Hamiltonian, as in [1,2]. These terms make it problematic to perform short distance
calculations to test whether the transformed theory has the expected short distance behavior. But since these singular
terms are the result of the exact treatment of the non-abelian gauge invariance, they may represent a significant non-
perturbative aspect of the theory. Finally, the notion [1] that the behavior of physical wave functions at the singular
points of the unitary transformation used is controlled by the energy barrier terms in H requires exploration. All of
these problems appear to be substantial but we hope that the geometric structure of the formal theory provides the
impetus to solve them.
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APPENDIX A:

In this appendix we show explicitly for gauge group SU(2) that the singular term in B̄ai, when properly regularized,
vanishes. The singular term comes from the ill-defined quantity

εijkεabc δωc
k(x)

δEbj(x)
(A1)

It is easy to see that the rest of B̄ai has the gauge and tensorial properties of a magnetic field. Formally the singular
term also does. So we have to look for a regularization that preserves these properties. The most obvious candidate
would be to point-split, i.e., work with

εijkεabc δωc
k(y)

δEbj(x)
(A2)

and take the limit x = y. However the quantity

δωc
k(y)

δEbj(x)
= − δ2Ω

δEbj(x)δEck(y)
(A3)

does not transform as a geometric object at point x but as a “bi-geometric” object at points x and y (a gauge and
contravariant spatial vector at x and y). This is clear from its definition but can also be checked on the explicit form
of the second variation of Ω involving δ(x− y) and its first derivative. So the contraction of (A3) with εijkεabc, which
is covariant with respect to gauge and GL(3) transformations at a single point, is not geometric. This is significant
because (A3) is singular as y ← x.
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A remedy for this is to introduce a linear operator Mk′cc′

k (x, y) such that if T c′

k′ is a gauge and contravariant spatial

vector at y then Mk′cc′

k (x, y)T c′

k′ = T̃ c
k has the same geometric properties at x. Then

Mk′cc′

k (x, y)
δ2Ω

δEbj(x)δEc′k′ (y)
≡

[

δ2Ω

δEbj(x)δEck(y)

](cov)

(A4)

will be a geometric object at x.
In general a smooth choice of M is possible only locally. One must choose gauge and affine connections, and use

these to parallel-transport T c′

k′ along a path from y to x. So there are many ambiguities in the definition of M . But
as stressed above,

δ2Ω

δEbj(x)δEck(y)
(A5)

is a local distribution of order 1, so that all what is needed is Mk′cc′

k (x, x) and
(

∂(y)Mk′cc′

k

)

(x, x), and this only

involves the gauge and affine connections at point x.
To compute the second variation of Ω, the simplest way is to Taylor expand Ω[E + E′ + E′′] to first order in E′

and E′′. The result is
∫ ∫

d3x d3y
δ2Ω

δEbj(x)δEck(y)
E′bj(x)E′′ck(y) =

−1

2

∫

d3z εdef
[

E′dℓ(∂ℓE
′′em)Ef

m − Edℓ(∂ℓE
′′em)Eg

mE′gnEf
n − E′dℓ(∂ℓE

em)Eg
mE′′gnEf

n

+Edℓ(∂ℓE
em)Eh

mE′hnEg
nE′′gpEf

p + 4 terms with E′ ↔ E′′
]

.

(A6)

Now, because the left-hand side is a geometric object, the right-hand side does not change if one replaces everywhere
ordinary partial derivatives by total (gauge and affine) covariant derivatives acting on densities, making every term
geometric.

As we have seen in Sec. 3, the electric formulation of the SU(2) theory has brought natural (gauge and affine)
connections to the fore, and it is more than natural to use these to define M and to rewrite (A6). In the covariant
form

∫ ∫

d3x d3y
δ2Ω

δEbj(x)δEck(y)
E′bj(x)E′′ck(y) =

−1

2

∫

d3z εdef
[

E′dℓ(∂ℓE
′′em + Γ′m

ℓp E′′ep + εeahωa
ℓ E′′hm)Ef

m

−Edℓ(∂ℓE
′′em + Γ′m

ℓp E′′ep + εeahωa
ℓ E′′hm)Eg

mE′gnEf
n + 2 terms with E′ ↔ E′′

]

.

(A7)

The second derivative of Ω is obtained by substituting δabδi
jδ(x− z) for E′ai(z) (resp. δacδi

kδ(y− z) for E′′ai(z)) in
the right-hand side (A6). Note that these objects have the right geometric properties. We find

δ2Ω

δEbj(x)δEc′k′(y)
=

−1

2
εbef

{

(∂
(x)
j δec′δm

k′ + Γ′m
jk′ (x)δec′ + εeac′ωa

j (x)δm
k′ )δ(x− y)

}

Ef
m(x)

+
1

2
εdef

{

(∂
(x)
ℓ δec′δm

k′ + Γ′m
ℓk′(x)δec′ + εeac′ωa

ℓ (x)δm
k′ )δ(x − y)

}

Edℓ(x)Eb
m(x)Ef

j (x)

+ 2 terms with (b↔ c′)(j ↔ k′)(x↔ y) (A8)

The result is a distribution of order 1, and when we parallel-transport it, we can expand

Mk′cc′

k (x, y) = Mk′cc′

k (x, x) + (yℓ − xℓ)
(

∂
(y)
ℓ Mk′cc′

k

)

(x, x) + · · ·

= δk′

k δcc′ − (yℓ − xℓ)(Γk′

ℓk(x)δcc′ + ωcc′

ℓ (x)δk′

k ) + · · · (A9)
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where the missing terms annihilate δ(x− y) and its first derivative, and consequently do not contribute. One should
also expand the electric field in (A8) as

Eai(y) = Eai(x) + (yℓ − xℓ)(∂ℓE
ai)(x) + · · ·

= Eai(x) + (yℓ − xℓ)(−Γ′i
ℓmEam + ωad

ℓ Edi) + · · · (A10)

(and the corresponding equation for Ea
i ), so that the evaluation point is always x. Then all that remains is a lengthy

but straightforward computation. All the terms involving ω cancel either because of the antisymmetry of the structure
constants of SU(2) or because of the Jacobi identity. The terms involving Γ correspond to those involving Γ′ with
opposite signs, so that the final result is

[

δ2Ω

δEbj(x)δEck(y)

](cov)

=

−1

2
εdefef

m(x)
{

δbdδceδℓ
jδ

m
k − δcdδbeδℓ

kδm
j + (δbdδm

k ec
j(x)− δcdδm

j eb
k(x))eeℓ(x)

}

∂
(x)
ℓ

δ(x− y)√
G

(A11)

This is manifestly a tensorial object, and it is antisymmetric under the simultaneous exchange (b ↔ c)(j ↔ k).
Hence the contraction with εijkεabc vanishes identically, and the regulated version of

εijkεabc δωc
k(x)

δEbj(x)
(A12)

vanishes as announced above.
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