
H
E

P-
T

H
-9

40
50

28

Spatial Geometry of the Electric Field Representation of Non-Abelian Gauge

Theories�

Michel Bauery, Daniel Z. Freedmanz

CERN { TH-Division, CH-1211 Gen�eve 23, SWITZERLAND

and

Peter E. Haagensen
Departament d'Estructura i Constituents de la Mat�eria,

Facultat de F��sica, Universitat de Barcelona

Diagonal, 647 08028 Barcelona, SPAIN

A unitary transformation 	[E] = exp(i
[E]=g)F [E] is used to simplify the Gauss law constraint

of non-abelian gauge theories in the electric �eld representation. This leads to an unexpected

geometrization because !a
i � ��
[E]=�E

ai transforms as a (composite) connection. The geometric
information in !a

i is transferred to a gauge invariant spatial connection �i
jk and torsion by a suitable

choice of basis vectors for the adjoint representation which are constructed from the electric �eld
Eai. A metric is also constructed from Eai. For gauge group SU(2), the spatial geometry is the

standard Riemannian geometry of a 3-manifold, and for SU(3) it is a metric preserving geometry

with both conventional and unconventional torsion. The transformed Hamiltonian is local. For
a broad class of physical states, it can be expressed entirely in terms of spatial geometric, gauge

invariant variables.

CERN{TH. 7238/94 April 1994

I. INTRODUCTION

The canonical commutation relations and Gauss law constraint of Hamiltonian gauge theories in temporal gauge
are invariant under spatial di�eomorphisms of the canonical variables Aa

i (x) and E
ai(x). This local GL(3) symmetry

is broken in the Hamiltonian in a simple way because of the appearance of the Cartesian metric �ij of 
at space, and
the energy density transforms as a GL(3) tensor density. In this paper we discuss a formulation of non-abelian gauge
theories in which the Gauss law constraint is easily implemented and the Hamiltonian is expressed in terms of variables
which are gauge invariant or covariant and also geometric, i.e. they are GL(3) tensors, connections or curvatures.
The resulting theory has an elegant mathematical structure but it is far from clear that the spatial geometry will
be helpful for dynamical calculations or o�er any advantages over such well-developed approaches as lattice gauge
theories.
We choose to work in the electric representation of gauge theories in which states 	[Eai] are functionals of the

electric �eld. In common with an earlier non-geometric approach to the SU (2) theory [1] the key element of our
work is a unitary transformation 	[E] = exp(i
[E]=g)F [E] of the theory which simpli�es the form of the Gauss
law constraint. The phase 
[E] is a local GL(3) invariant functional of the electric �eld, whose variation under
in�nitesimal gauge transformations is �
[E] =

R
d3x �a@iE

ai. These gauge and GL(3) properties of 
[E] imply
that the quantity !ai [E] = ��
[E]=�Eai transforms as a Lie algebra valued connection on the initial value surface
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IR3. Thus a composite gauge connection !ai [E] appears and plays a central role in our formulation although the
fundamental variable Eai transforms homogeneously under gauge transformations. The Hamiltonian is local but, as
in earlier work [1,2] it involves functional derivatives �=�Eai up to fourth order.
For gauge group SU (2), !ai [E] is simply the standard Riemannian spin connection on a three-manifold with frame

1-form eai (x) related to the electric �eld by Eai = "abc"ijkebje
c
k=2. One can argue that under fairly general assumptions

one can restrict to wave functionals F [Gij] where Gij = eai e
a
j is a composite metric (we actually use the tensor variable

'ij = detG Gij for reasons explained in Sec. 3). Such states satisfy the Gauss law constraint, and the Hamiltonian
acting on them can be rewritten in terms of the Christo�el connection �kij and curvature Rk

`ij. Thus a Riemannian

spatial geometry underlies SU (2) gauge theory. It is actually known [3,4] from work on Ashtekhar variables in gravity
that the spin connection on a 3-manifold is the variational derivative of the local functional 
[E]. It is not lost upon
us that the Ashtekhar approach makes gravity look a lot like gauge theory, while our approach makes gauge theory
look a lot like gravity.
One could view the structure described above as the accidental consequence of the fact that the gauge group SU (2)

co��ncides with the tangent space group of a three-manifold. However we are able to give a formula for the phase

[E] for a general gauge group G. The formula is not entirely explicit because it involves the inverse of a matrix of
dimension 3 dimG � 3 dimG which is a quadratic function of Eai. But it is explicit enough to see that the general
structure of the theory is similar to SU (2) but that the associated spatial geometry, which we outline for SU (3), is
more complicated. It can be described as a metric-preserving geometry with an unconventional torsion.
One may also study the spatial geometry of a magnetic formulation of gauge theory. Indeed we drew our inspiration

from a recent study [5] of the SU (2) theory in which a curious Einstein space geometry with torsion appeared. The
geometry is correct, but the application made to Hamiltonian dynamics in [5] failed because of the Wu-Yang ambiguity
[6] which is generically continuous in three spatial dimensions [7]. A new magnetic formulation [8] avoids the problem
and leads to a Hamiltonian which is second order in functional derivatives �=�Gij with respect to a composite metric
variable, but is non-local.
We also wish to cite recent papers involving a geometrical approach to gauge theories in the Lagrangian formalism

by Lunev [9] and others [10,11] in which a spatial metric has appeared in studies of gauge theories. Finally, there are
recent extensive studies of Hamiltonian dynamics for gauge theory in light-cone gauge [12].

II. THE UNITARY TRANSFORMATION AND ITS CONSEQUENCES

The canonical variables of a non-abelian gauge theory are the vector potential Aa
i (x) and electric �eld E

ai(x) which
satisfy the commutation relations �

Aa
i (x); E

bj(x0)
�
= i�ab�

j
i �

(3)(x� x0): (2.1)

In temporal gauge, Aa
0(x) = 0, the generator of spatial gauge transformations with parameter �a(x) is

G[�] =
R
d3x �a(x) Ga(x)

Ga(x) = 1

g
DiE

ai(x) =
1

g

�
@iE

ai(x) + g fabcAb
i (x)E

ci(x)
�
;

(2.2)

and Eq. (2.1) implies the quantum gauge transformation rules

�Aa
i (x) = �i [G[�]; Aa

i (x)] =
1

g

�
@i�

a(x) + g fabcAb
i (x)�

c(x)
�

�Eai(x) = �i
�
G[�]; Eai(x)

�
= fabcEbi(x)�c(x):

(2.3)

Using the magnetic �eld

Bai(x) = "ijk
�
@jA

a
k(x) +

1

2
gfabcAb

j(x)A
c
k(x)

�
(2.4)

which transforms homogeneously, i.e. as the electric �eld in Eq. (2.3), the Hamiltonian can be written as

H =
1

2

Z
d3x �ij

�
Eai(x)Eaj(x) + Bai(x)Baj(x)

�
: (2.5)

We now observe that Eqs. (2.1-2.4) are covariant under coordinate transformations xi ! y� on the domain IR3

provided that

2



1. Aa
i (x) transforms as a covariant vector

A0a
� (y) =

@xi

@y�
Aa
i (x) (2.6)

which is implied by the 1-form interpretation Aa = Aa
i dx

i of the vector potential and

2. Eai(x) transforms as a contravariant vector density

E0a�(y) =

����@x@y
���� @y

�

@xi
Eai(x) (2.7)

which is consistent with its implementation as a functional derivative Eai(x) = �i�=�Aa
i (x) in the familiar

magnetic representation of (2.1).

Note that the gauge parameters �a(x) transform as GL(3) scalars and that Ga(x) is a scalar density. No connection
�ijk is required in Eq. (2.2) because Eai is a density of weight one. The magnetic �eld is also a contravariant vector
density of weight one.
The Hamiltonian fails to be GL(3) invariant because the �xed cartesian metric appears, but one sees that the energy

density transforms as the �ij trace of a contravariant symmetric tensor density of weight two. The Hamiltonian is
gauge invariant, viz., [G[�];H] = 0, and the dynamical problem of gauge theories can be formally stated as the problem
of diagonalizing H on the physical subspace of gauge invariant states 	 which satisfy the Gauss law constraint

Ga(x)	 =
1

g
(@iE

ai(x) + g fabcAb
i (x)E

ci(x))	 = 0 : (2.8)

Our goal here is to formulate this dynamical problem in a way which maintains the GL(3) properties of the theory.
We work in electric �eld representation with state functionals 	[E]. Then Eai(x) is realized by simple multiplication

and Aa
i (x) = i�=�Eai(x) by functional di�erentiation. It would be easy to implement the Gauss law constraint if the

gauge generator contained only the second term

�Ga(x) = �ifabcEbi(x)
�

�Eci(x)
(2.9)

because this operator simply generates local group rotations without spatial transport. Note that both Ga(x) and
�Ga(x) satisfy the group algebra in the local form

�
Ga(x);Gb(x0)

�
= ifabc�(3)(x� x0)Gc(x): (2.10)

In the spirit of [1], we shall make a unitary transformation on the states and operators of the theory in order to
simplify the gauge generators. We write

	[E] = exp(i
[E]=g) F [E]

O(x) = exp(i
[E]=g) �O(x) exp(�i
[E]=g)
(2.11)

and require that

Ga(x) exp(i
[E]=g) F [E] = exp(i
[E]=g) �Ga(x) F [E]: (2.12)

The phase 
[E] thus satis�es

exp(�i
[E]=g) Ga(x) exp(i
[E]=g) = Ga(x) + i

g
[Ga(x);
[E] ]

= �Ga(x)
(2.13)

This is equivalent to the requirement that the gauge variation of 
[E] be

�
[E] = �i [G[�] ;
[E] ] =
Z
d3x �a(x)@iE

ai(x) : (2.14)
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We also require that the phase 
[E] be GL(3) invariant, so that the unitary transformation preserves the behavior of
the theory under spatial di�eomorphisms. Note that for an abelian gauge group U (1) any 
[E] is gauge invariant, so
that we cannot satisfy Eq. (2.14). Thus our treatment must be restricted to non-abelian groups.
We will now show that the form of the resulting theory is essentially determined by these two requirements on


[E]. In subsequent sections we will give local formulae for the phase, i.e. of the form 
[E] =
R
d3x f(E(x); @E(x))

�rst for gauge group SU (2) and then for general G.
So we now assume the existence of a GL(3) invariant phase whose gauge variation is given by Eq. (2.14), and work

out the structure of the unitary transformed theory. The transformed canonical variables are

�Eai(x) = exp(�i
[E]=g) Eai(x) exp(i
[E]=g) = Eai(x)

�Aa
i (x) = exp(�i
[E]=g) Aa

i (x) exp(i
[E]=g)

= Aa
i (x) +

i

g
[Aa

i (x);
[E] ]

= Aa
i (x)�

1

g

�

�Eai(x)

[E]

� i
�

�Eai(x)
+

1

g
!ai (x)

(2.15)

The quantity !ai (x) is the variational derivative of a GL(3) invariant functional with respect to a vector density so
!ai (x) is a covariant vector under spatial di�eomorphisms. Its gauge variation is

�!ai (x)=g = i
h
G[�]; �
[E]

�Eai(x)

i
=g

= [G[�]; [
[E]; Aa
i (x)] ]

= [
[E]; [G[�]; Aa
i (x)] ]� [ [G[�];
[E] ] ; Aa

i (x)]

= �i [
[E]; Di�
a(x)] =g � i

�R
d3y �b(y)@jE

bj(y); Aa
i (x)

�

= �fabc �

�Ebi(x)

[E] �c(x) +

1

g
@i�

a(x)

=
1

g

�
@i�

a(x) + fabc!bi (x)�
c(x)

�
� 1

g
D̂i�

a(x)

(2.16)

Thus !ai [E]=g is a local composite function of Eai which transforms as a gauge potential. One could almost derive
this result by inspection of Eq. (2.15), since the gauge variation of �Aa

i is

� �Aa
i = �i

�
�G[�]; �Aa

i

�
=

1

g

�
@i�

a + g fabc �Ab
i�

c
�
: (2.17)

Since i�=�E transforms homogeneously, the second term in Eq. (2.15), !=g, must transform as a potential. However
the longer derivation in Eq. (2.16) has the virtue of emphasizing that if the gauge variation of any functional 
[E] is
given by Eq. (2.14) then �
=�Eai transforms as a gauge connection.

In the unitary transformed theory, D̂i will denote a gauge covariant derivative formed with the composite connection
!ai . The magnetic �eld formed using Eq. (2.4) with A replaced by !=g and removing a factor 1=g will be denoted by

B̂ai = "ijk
�
@j!

a
k +

1
2
fabc!bj!

c
k

�
. It also follows from the trivial relation

�
[E] =

Z
d3x

�
[E]

�Eai
�Eai (2.18)

and use of Eq. (2.14) with �Eai = fabcEbi�c that a \Bianchi identity" holds in the form

D̂iE
ai = 0: (2.19)

The transformed Hamiltonian is

�H =
1

2

Z
d3x �ij( �E

ai �Eaj + �Bai �Baj): (2.20)

The electric term is quite simple. One can de�ne the gauge invariant symmetric tensor variable
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'ij = EaiEaj (2.21)

and express the electric energy density as the multiplication operator 1
2
�ij'

ij .

The magnetic �eld �Bai(x) applied to a state F [E] is

�BaiF [E] = "ijk
�
@j �A

a
k +

1
2
g fabc �Ab

j
�Ac
k

�
F [E]

=

�
1

g
B̂ai + i "ijkD̂j

�

�Eak
� g

2
"ijkfabc

�

�Ebj

�

�Eck

+ i g "ijkfabc
�!ck
�Ebj

�
F [E]

(2.22)

The beginning of a geometric structure is evident in the �rst two terms, namely the composite magnetic �eld and
the !-covariant derivative of �F=�E. The third term contains the second functional derivative �2=�E�E which is
characteristic of the electric representation of non-abelian theories [1,2]. The Hamiltonian therefore contains terms up
to fourth order in �=�E. The fourth term in Eq. (2.22) comes from the operator reordering

�
�=�Ebj(x); !ck(x)

�
which

was necessary to obtain the the D̂j covariant derivative. As will be seen explicitly for the SU (2) case, this ordering
term involves the singular objects @�(0) and �(0) and is one troublesome feature of a nonlinear theory with functional
derivatives. Similar terms also were present in [1]. Our derivation of the Hamiltonian has been rather formal and
requires regularization. We shall argue in the appendix that this particular ordering term vanishes if covariant point
splitting regularization is used, but one must study the additional ordering terms in the magnetic energy density
which is quadratic in �B.
We will discuss the Hamiltonian further in later sections, after we elucidate its spatial geometric structure. We

close this section with a remark concerning the uniqueness of GL(3)-invariant functionals ,which satisfy Eq. (2.14).
One must not expect a unique solution for a given gauge group , but the di�erence 
0[E] � 
[E] between any two
functionals which satisfy the requirements must be both gauge and GL(3)-invariant. For example one could have


0[E]�
[E] /
Z
d3x(det'ij)1=4: (2.23)

III. THE SU(2) THEORY

In this section we study the SU (2) gauge theory in more detail. We �rst give explicit formulas for the phase 
[E]
and composite gauge connection !ai and then develop the associated spatial geometry which turns out to be the
standard Riemannian geometry of a 3-manifold.
The simplest phase candidate one can write using the electric �eld Eai and its matrix inverse Ea

i , i.e. E
aiEb

i = �ab,
turns out to be successful. This is


[E] =
1

2

Z
d3x "abc Eai(x)Ebj(x)@iE

c
j(x) : (3.1)

It is GL(3) invariant because the integrand has density weight +1 and terms arising from the @i derivative of the
co�ordinate change of Ec

j , which is a covariant vector density, cancel. Although we need only the in�nitesimal gauge

variation to con�rm Eq. (2.14), it is no more di�cult to study the �nite gauge transformation Eai ! T abEbi where
T ab is an SO(3) matrix. We have


[TE] =
1

2

Z
d3x "abc T a�aT b�b

n
T c�cE�aiE

�bj@iE
�c
j + @iT

c�bE�ai
o

= 
[E]� 1

2

Z
d3x "abc (T�1@iT )

bcEai : (3.2)

Group invariance of the structure constants was used to obtain the �rst term, and the invariant 1-forms T�1@T appear
in the second term, whose in�nitesimal limit is Eq. (2.14).
We already know that !ai = ��
=�Eai is an SO(3) gauge connection, so it should not be a great surprise that it

turns out to be a familiar object. We de�ne a new variable eai by
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Eai =
1

2
"ijk"abcebje

c
k ; (3.3)

so that eai has dimension +1, and is a gauge covariant, GL(3) vector. These are exactly the properties of the frame
1-form (dreibein) on a 3-manifold with tangent space group SO(3) and metric

Gij = eai e
a
j : (3.4)

By straightforward computation one can show that

!ai = � �


�Eai
= �1

2
"abc

�
ebj@ie

c
j � ebjeck�

k
ij

	

= �1
2
"abc!bci : (3.5)

Here �kij is the Christo�el symbol for the metric Gij, and !abi is just the standard spin connection on a Riemannian
3-manifold. Thus the composite gauge potential !ai of SU (2) gauge theory is the well-known spin connection, and we
now see that a conventional Riemannian spatial geometry underlies SU (2) gauge theory.
A corollary of our discussion above is the fact that in three spatial dimensions the spin connection is the variational

derivative of the local functional 
[E] of Eq. (3.1). This was established in studies of the Ashtekar formalism for
gravity in which the form of 
[E] with Eq. (3.3) inserted was used, viz.,


[E] =
1

2

Z
d3x "ijk eai (x)@je

a
k(x) ; (3.6)

showing that 
[E] is the integral of a natural 3-form.
Actually we have been a little too hasty in the above. The de�nition Eq. (3.3) actually implies that detEai � 0,

whereas both signs of detE occur in gauge theory. So we should actually de�ne

Eai = �1
2
"ijk"abcebje

c
k ; (3.7)

with � according to whether detE > 0 or < 0. For each sign above, there are two solutions for e[E] which di�er by
a sign. We make the convention to choose the solution with det eai > 0, so that we take

eai = �
p
j detEaij Ea

i (3.8)

as the solution to Eq. (3.7). One can show that Eqs. (3.4) and (3.5) remain valid (but Eq. (3.6) acquires a � sign),
so that !ai is the same standard connection for both signs of detE. Since !ai is an even function of the frame, it can
be reexpressed as an even function of Eai and the sign in Eq. (3.8) cancels.
Note that

Eai = �eai det e (3.9)

is a \densitized" inverse frame. One can show using Eqs. (3.5) and (3.7) that the total covariant derivative vanishes,
i.e.,

riE
ak � @iE

ak + �0kijE
aj + "abc!biE

c
k = 0 ; (3.10)

where �0kij is a not-often-used but standard connection for the covariant di�erentiation of densities, namely

�0kij = �1
2
�kj @i lndetGmn + �kij

= +
1

4
�k[i@j] ln det'

mn +
1

2
'k` [@i'j` + @j'i` � @`'ij ] ; (3.11)

where, for reasons stated below, we have used the relation 'ij = detG Gij between the tensor density 'ij introduced
in the previous section and the inverse metric Gij. One can solve Eq. (3.10) for !ai and obtain a form equivalent to
Eq. (3.5). The fact that riE

ak = 0 solidi�es the geometric interpretation of the electric �eld.
It is easy to see [5] that the curvature tensors of �0 and � co��ncide, since the density term cancels:
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R`
kij(�

0) = @[i�
0`
j]k + �0`m[i�

0m
j]k = R`

kij(�) (3.12)

One can also show that the composite magnetic �eld, de�ned above Eq. (2.18) is related to the standard curvature by

B̂ai = �1
2
"ijk"abcRbc

jk(!)

= �1
2
"ijk"̂mnqE

aqRmn
jk(�)

= 2Eaq(Ri
q �

1

2
�iqR) : (3.13)

The standard curvature of the spin connection in the �rst line is converted to space indices using the frame, and the
representation of the curvature of a 3-manifold in terms of its Ricci and scalar contractions

Rijk` = GikRj` � Gi`Rjk �GjkRi` + Gj`Rik �
R

2
(GikGj` � Gi`Gjk) (3.14)

is used in the �nal step. Note that "̂mnq has components �1; 0, and transforms as a tensor density of weight �1.
Let us now consider whether Eai or eai , obtained through Eq. (3.8), is the better variable for the dynamics of SU (2)

gauge theory in this approach. Certainly eai is more geometric and has lower dimension, but provisionally we prefer
the electric �eld Eai because the parity transformation Eai(x)!�Eai(�x) is very awkward to implement on eai . So
we shall use Eai; 'ij and �0kij for the rest of the paper. It is not di�cult to convert to eai; Gij and �kij if that proves
to be desirable.
Finally we come to the question of implementing the Gauss law constraint, �GaF [E] = 0, within this approach to

SU (2) gauge theory. We shall describe several classes of gauge invariant states, but we are not certain that they
comprise the \general solution" of the constraint.
Following similar discussions [5,13] for the magnetic representation, we note that Eai contains 9 components. Since

there are 3 gauge group \angles", we would expect that it takes 6 functions to describe the gauge invariant content of
an electric �eld con�guration. The symmetric tensor 'ij has 6 independent components. Although detE is another
local gauge invariant, one has det' = (detE)2, and only the sign of detE is independent of 'ij . So the most general
functional of the local invariants takes the form

F [Eai] = F+['
ij] +

Z
d3x (detE(x)) F�['

ij; x) : (3.15)

For states which are invariant under spatial translations, 'ij(x) ! 'ij(x + a), the two terms in Eq. (3.15) have
opposite parity and can be considered separately. For simplicity we work only with the even parity term below, and
refer to it as F ['].
Let us consider the \electric" Chern-Simons functional of the composite spin connection

CS[!] =
1

16�2

Z
d3x "ijk

�
!ai @j!

a
k +

1

3
"abc!ai !

b
j!

c
k

�
; (3.16)

normalized to give B̂ai = 8�2�(CS)=�!ai . With T! denoting the �nite gauge transformation of ! under Eai ! T abEbi,
we have

CS[T!] = CS[!] � 1

96�2

Z
d3x "ijk

�
T da@iT

dbT eb@jT
ecT fc@kT

fa
�
: (3.17)

The last term is the integer-valued winding number, so CS[!] is certainly in�nitesimally gauge-invariant, and satis�es
[Ga(x); CS[!] ] = 0. But

CS[Tk!] = CS[!] + k (3.18)

for a gauge transformation Tk with winding number k. All of the above is standard [14]. One then sees that states of
the form

F [E; �] � ei�CS[!] F ['] (3.19)

transform as
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F [TkE; �] = eik� F [E; �]: (3.20)

Thus, as in the magnetic representation [14], the Chern-Simons functional, here a composite functional of Eai, can
be used to relate states with nontrivial response to large gauge transformations to invariant states, here F ['].
We also want to discuss brie
y a third class of states which obey the Gauss law constraint, namely functionals

constructed from \electric" Wilson loops:

W [!;C] = Tr

�
P exp i

I
dxi!i

�

!i =
1

2
�a!

a
i (3.21)

where �1; �2; �3 are Pauli matrices and C is a closed curve in IR3. Certainly [Ga(x);W [!;C] ] = 0, and state functionals
formed from W [!;C] satisfy the gauge constraint, but it is not clear to us whether such states are an independent
class of physical states or whether they can be expressed in the form F [']. Another general question concerns the
relation between the electric Chern-Simons and Wilson loop functionals and their magnetic analogues. They do not
appear to be simply related by the functional Fourier transform [1] between magnetic and electric representations of
the theory.
The discussion above has ended in a less de�nite way than we would like, and we now return to a question on which

de�nite calculations can be presented. Namely we wish to discuss the form of the Hamiltonian �H of Eq. (2.20) acting
on states F [']. We need to express �Bai(x)F ['] of Eq. (2.22) in terms of ' using the chain rule

�

�Eak
F ['] =

�'pq

�Eak

�F

�'pq

= 2Eap �F

�'pq
(3.22)

and also Eqs. (3.10-3.13). It is not di�cult to obtain

�BaiF ['] = 2

�
1

g
Eap(Ri

p �
1

2
�
p
iR) + i"ijkEaprj

�

�'kp

�g"ijk"pqrEa
r detE

�

�'jq
�

�'kr

�
F ['] (3.23)

where

rj

�F

�'kp
= @j

�F

�'kp
� �

0q
jp

�F

�'kp
� �

q
jk

�F

�'pq
(3.24)

is exactly the standard spatial covariant derivative of a tensor density of weight �1, which is what �F=�' is. The �
q
jk

connection term cancels in Eq. (3.23) due to symmetry. We have dropped the �(0) ordering term of Eq. (2.22) in Eq.
(3.23), because of the provisional conclusion of the Appendix, that this term vanishes after regularization.
We now consider the magnetic energy density

EM F ['] =
1

2
��{i �B

a�{ �BaiF ['] : (3.25)

Even without a detailed computation, one sees that the gauge indices cancel, e.g. EaiEaj = 'ij , so that the full
Hamiltonian can be rewritten entirely in terms of the spatial geometric variables ';�0 and R. Whether useful or not,
this is a remarkable transformation of the original gauge theory. See the �nal section for further discussion of this
Hamiltonian.
One can also transform the functional measure used to compute matrix elements of �H in states F [']. This can be

done via the manipulation, at each point x,Z Y
a;k

dEak f ['] =

Z Y
m�n

d'mn f [']

Z Y
a;k

dEak
Y
i�j

�('ij �EaiEaj)

= 2�2
Z Y

m�n

d'mn 1p
det'

f ['] ; (3.26)
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where the second line is obtained after directly performing the integral over �('ij �EaiEaj) by expanding in compo-
nents.
The phase 
[E] of Eq. (3.1) involves the matrix inverse of the electric �eld, so our transformation is singular when

detEai = 0. The composite connection !ai as well as �0kij are also singular here. One can see upon closer inspection of

the magnetic energy density Eq. (3.23) that the singular terms always involve spatial derivatives @i'
jk. As in [1,13]

we believe that these singularities are the functional analogue of the angular momentum barrier for central forces
in quantum mechanics. Any �nite energy wave functional must \know how to behave itself" as such singular �eld
con�gurations are approached, otherwise it would not have �nite energy.

IV. GENERAL GAUGE GROUPS

The extension of the present methodology to gauge groups larger than SU (2) is important for two reasons. First
the realistic color group of the strong interactions is SU (3). Second, we must show that the geometrization found for
SU (2) is not an accidental consequence of the fact that SO(3) (� SU (2)) is the tangent space group of a 3-dimensional
Riemannian space.
Technically, it was easy to construct the phase 
[E] for SU (2) because the electric �eld Eai(x) is a 3 � 3 matrix

with a matrix inverse Ea
i (x) which respects gauge and GL(3) covariance. For larger groups, Eai(x) is a rectangular

matrix, and there is no inverse. The major problem in constructing the phase 
[E] for other semi-simple groups is to
�nd an appropriate substitute for the inverse. In this section we present such a construction.
To begin with, we attempt to generalize Eq. (3.1) where, however, since we do not have an Ea

i (x) available, we
write instead


[E] � 1

2

Z
d3x

fabcEai(x)Ebj(x)

(det')1=4
@iR

c
j(x) �

1

2

Z
d3x "ijkLai (x)@jR

a
k(x) ; (4.1)

with the variable Ra
i (x) to be determined so that 
[E] is GL(3) invariant with gauge variation Eq. (2.14). The

quantity Lai (x) above is simply shorthand for

Lai (x) =
1

2
"̂ijk

fabcEbj(x)Eck(x)

(det')1=4
: (4.2)

We have divided by (det')1=4 in order to make Lai (x) a covariant vector rather than a density, and we see from the last
equality in Eq. (4.1) that 
[E] is the integral of a 3-form, and therefore GL(3) invariant, if Ra

i (x) is also a covariant
vector. Note that it was not necessary to insert the determinantal factor for SU (2) because Ra

i (x) in that case is
the matrix inverse of Eai(x), and this was su�cient for GL(3) invariance. Ra

i (x) is now �xed as a function of Eai(x)
by our �rst requirement on 
[E], namely, that it satisfy Eq. (2.14). We now examine that requirement. The gauge
variation of 
[E] in Eq. (4.1) is easily computed if we assume that Ra

i (x) transforms in the adjoint representation:

�
[E] = �1
2

Z
d3x "ijk fabc Lai (x)R

b
j(x)@k�

c(x) : (4.3)

The requirement that this is of the form of Eq. (2.14) gives the following condition on Ra
i (x):

1

2
"ijk fabc Lai (x)R

b
j(x) � M ck;bj(x)Rb

j(x) = Eck(x) : (4.4)

This is a linear system and there is a unique solution for Ra
i (x) provided that the determinant of the 3 dimG�3 dimG

direct product matrix M is non-vanishing. It is also easy to show from the structure R = M�1E that Ra
i (x) has the

required gauge and GL(3) properties assumed above. An analytic calculation of M�1 would be necessary to have a
truly explicit construction of the phase 
[E]. This is a di�cult task, and we shall be content here with the fact that
we have reduced the problem to this point.
We end this section with a possible alternative procedure to determine the phase 
[E]. Again, faced with the same

initial problem of not having an \inverse" electric �eld Ea
i , we try another generalization of the SU (2) phase, by

writing an ansatz identical in form to Eq. (3.6):


[E] =
1

2

Z
d3x "ijk eai (x)@je

a
k(x) ; (4.5)
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with the di�erence that now the variables eai (x) form a 3 � dimG matrix, as yet unde�ned. The requirement that
this phase has the correct gauge transformation Eq. (2.14), then determines eai implicitly in a similar way as for Ra

i

above. This requirement reads:

Eai =
1

2
"ijkfabcebje

c
k : (4.6)

One must then solve this set of 3 dimG quadratic equations to obtain e[E]. We have not been able to do this (despite
considerable e�ort for the group SU (3)), but we �nd that it is an intriguing algebra problem with a group-theoretic

avor. It is formally identical to the problem of �nding, for a general group G, the gauge potential Aa

i (e
a
i here) given

a constant magnetic �eld Bai (here Eai). The solution to this would yield a phase 
[E] which would automatically
have the proper gauge and GL(3) transformation properties, and could possibly lead to a simpler formulation of the
theory than the one based on Eq. (4.1).

V. SU(3) GAUGE THEORY

We now explore the SU (3) theory in order to ascertain the spatial geometry associated with a larger gauge group.
The �rst step is to use the group theory and the physics to de�ne a basis of eight vectors for the adjoint representation
of the group. The basis is then used to de�ne the connection, torsion, and curvature of the geometry. Then we identify
the class of gauge invariant states analogous to F ['ij] of Sec. 3, and show that the Hamiltonian acting on these states
can be expressed in terms of gauge invariant and geometric quantities. The attitude we shall take is that all geometric
information is contained in the SU (3) gauge connection !ai calculated from 
[E] in Eq. (4.1). The basis of eight
vectors is a generalized frame used to transfer this information to geometric variables with spatial indices only. This
attitude is consistent with the situation for SU (2), but little thought was required there because the geometry was
completely standard.
The �rst three 8-vectors of the basis are simply the three spatial components Eai of the electric �eld. These are

linearly independent for generic �eld con�gurations in which the rectangular matrix has rank 3. Using the d-symbols
of SU (3) we construct six additional 8-vectors

Eajk � dabcEbjEck : (5.1)

First, we orthogonalize these with respect to the �rst three by de�ning

Êajk � Eajk �Eam'mn'
njk ; (5.2)

where 'mn is the matrix inverse of 'ij and

'ijk � dabcEaiEbjEck : (5.3)

The six Êajk span an orthogonal subspace to that of Eai. Within that subspace, the trace Êa = Êamn'mn is
generically linearly related to the 5 traceless combinations

Êafijg � Êaij � 1

3
'ijÊa ; (5.4)

and these are generically linearly independent. So as a basis of 8 vectors we take the set

f Eai; Êafjkg g : (5.5)

when the mutual orthogonality is useful, and otherwise the set

fEai ; Eafijg = Eaij � 1

3
'ij'mnE

amn g: (5.6)

We shall not characterize precisely the non-generic con�gurations in which the �ve Eafjkg fail to be linearly indepen-
dent. Presumably this occurs when the span of any two of the three vectors Eai determines an SU (2) subalgebra of
SU (3).
Connections for the SU (3) geometry are de�ned by the pair of equations

10



D̂iE
ak � ��̂0kijEaj � T ak

i (5.7)

EajT ak
i � 0 ; (5.8)

which is equivalent to the fact that D̂iE
ak can be expanded uniquely in the basis of Eq. (5.5). Note that Eqs. (5.7-5.8)

comprise 72+ 27 equations for 27+ 72 components of �̂0 and T . One can see that �̂0kij transforms as a connection (for

densities of weight one), while T ak
i is a gauge adjoint GL(3) tensor density.

We now contract Eq. (5.7) with Ea` and symmetrize in k`, which leads to

@i'
k` + �̂0kij'

j` + �̂0`ij'
kj = 0 : (5.9)

This is simply the metric compatible relation between �̂0 and the \densitized metric" 'ij. It then follows from simple

algebra that �̂0 takes the form of a (densitized) connection with torsion, namely

�̂0kij = �0kij �Kk
ij ; (5.10)

where �0kij is just the Riemannian �0 of Eq. (3.11) and K is the contortion tensor, which satis�es the antisymmetry
property

Kijk = �Kikj (5.11)

Kijk � K `
ij G`k : (5.12)

Because of orthogonality to Eai, T ak
i is determined entirely by the spatial tensor density

K
fmngk
i � EafmngT ak

i = �EafmngD̂iE
ak : (5.13)

Using the components Ea
i ; E

a
fmng of the 8� 8 matrix inverse of the basis Eq. (5.5) we see that

T ak
i = Ea

fmngK
fmngk
i : (5.14)

We regard T ak
i or K

fmngk
i as a new type of torsion. The Bianchi identity Eq. (2.19) implies that all torsions are

traceless:

K i
ij = T ai

i = K
fmngi
i = 0 : (5.15)

The torsions are local functions of E and @E which can be found from the de�nition Eq. (5.7-5.8), once we have
the explicit form of !ai . In turn this requires the construction of the matrix Ra

i [E] which enters the phase 
[E] of
Eq. (4.1). Note that Eq. (5.7) can be expressed in terms of the total covariant derivative ri of Eq. (3.10), but now
we have

riE
ak = �T ak

i ; (5.16)

so the frame is no longer covariantly constant, but 'ij and also Gij are, since Eq. (5.9) is equivalent to

ri'
jk = 0 : (5.17)

The next step is to study the curvature by taking a further gauge derivative of Eq. (5.7) and antisymmetrizing to
obtain

[D̂i; D̂j ]E
ak = �

n
Rk

`ijE
a` + D̂[iT

ak
j] + �0k[i`T

a`
j]

o

= fabc"̂ijmB̂
bmEck : (5.18)

The sum of the last two terms in the �rst line is GL(3) covariant, and we have used the gauge Ricci identity to obtain
the last line.
We now wish to obtain the SU (3) generalization of Eq. (3.13) and express the composite magnetic �eld B̂ in terms

of the curvature and torsion. This is awkward because Eck itself does not have an inverse, but the full frame Eq. (5.5)
can be brought to use as follows. The gauge covariant derivative of Eq. (5.1) can be evaluated as

11



D̂jE
ak` = ��0kjmEam` � �0`jmE

akm + 2dabcEbkT c`
j (5.19)

and one also �nds

[D̂i; D̂j]E
ak` = �

n
Rk

mijE
am` +R`

mijE
akm + 2dabcEbk

�
D̂[iT

c`
j] + �0`[imT

cm
j]

�o

= fabc"̂ijmB̂
bmEck` : (5.20)

With f:::g denoting symmetrization and removal of the trace, we obtain

fabc "̂ijmB̂
bmEcfk`g = �

n
R
fk
mijE

a`gm + dabcEbfk
�
D̂[iT

c`g

j]
+ �

0`g

[im
T cm
j]

�o
: (5.21)

Using now the components of the inverse matrix Ea
k ; E

a
fk`g it is now simple to obtain B̂ from Eqs. (5.18, 5.20):

B̂ai = �1
6
fabc"ijk

n
Eb
m

h
Rm

njkE
cn + D̂[jT

cm
k] + �0m[jnT

cn
k]

i

+Eb
fmng

h
Rm

`ijE
cn` + dcdeEbm

�
D̂[jT

cn
k] + �0n[j`T

c`
k]

�io
: (5.22)

This is the desired expression for the composite magnetic �eld. One can go further and substitute the representation
of Eq. (3.14) for Rm

njk, which holds with torsion [5], and one can use Eq. (5.14) to express DT +�0T in terms of the

total spatial covariant derivative of K
fmngk

i and rEa
fmng. We shall not write the �nal resulting formula. Note that

the matrix M of Eq. (4.4) is singular for electric �elds which vanish except in an SU (2) subalgebra of SU (3), and
Eq. (5.22) is also singular in this case.
The next stage of the discussion concerns gauge invariant states and local variables [13] for SU (3). We start with the

observation that the gauge invariant content of an SU (3) electric �eld con�guration can be described by 24� 8 = 16
variables. The symmetric tensor densities 'ij and 'ijk contain precisely 6+10 = 16 independent components. There
are other local invariants, such as the \efterminant" and \extended metric"

eft E � 1

6
fabc"̂ijkE

aiEbjEck

'jk;`m � EajkEa`m : (5.23)

We assume that the set 'ij ; 'ijk is an \essentially complete set" of local invariants. This means that (eftE)2 and
presumably 'jk;`m can be expressed as functions of 'ij and 'ijk. It also means that a representation analogous
to Eq. (3.15) should hold with detE replaced by eftE. We have not proven these things, and we will discuss the
situation further below after we examine the Hamiltonian to see what quantities need to be expressed in terms of 'ij

and 'ijk.
It is clear that state functionals of the form F ['ij; 'ijk] are the SU (3) generalizations of the states F ['ij] considered

for SU (2) and we now study the form of the Hamiltonian on such states. We need the chain rule

�

�Eak
F =

�'pq

�Eak

�F

�'pq
+
�'pqr

�Eak

�F

�'pqr

= 2Eap �F

�'pq
+ 3 dabcEbpEcq �F

�'pqk
: (5.24)

After some algebra one �nds that the second term in �BaiF of Eq. (2.22) can be expressed in terms of SU (3) connections
and torsions as

i"ijkD̂j

�F

�Eak
= i"ijk

�
2Eaprj

�F

�'pk
� T

ap
j

�F

�'pq

+3Eapqrj

�F

�'pqk
� 6 dabcEbpEc

mnK
fmngq
j

�F

�'pqk

�
; (5.25)

where rj
�F
�'pk

has been de�ned in Eq. (3.24), and
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"ijkrj

�F

�'pqk
= "ijk

�
@j

�F

�'pqk
� �0rjp

�F

�'rqk
� �0rjq

�F

�'prk

�
: (5.26)

Similarly, the third term in Eq. (2.22) can be written as

� g

2
"ijkfabc

�2F

�Ebj�Eck
= �g

2
"ijkfabc

�
4EbpEcq �2F

�'pj�'qk

+12EbpEcrs �2F

�'pj�'rsk
+ 9EbpqEcrs �2F

�'pqj�'rsk

�
: (5.27)

No �(0) ordering terms arise in Eq. (5.27), and we assume that the fourth term in Eq. (2.22) vanishes after regular-
ization as discussed in the Appendix for SU (2).
Consider now the magnetic energy density Eq. (3.25) with each factor �Bai expressed as the sum of Eqs. (5.22-5.25-

5.27). It is clear that all gauge indices are contracted out in local invariant variables such as 'pq;rs, fabcEapqEbrEcs

and several others. If the hypothesis that the tensors 'ij ; 'ijk are an essentially complete set is correct, then all
invariants which occur in Eq. (3.25) can be expressed in terms of 'ij and 'ijk. Similarly we expect that the torsions

K k
ij and K

fjkg`
i can be expressed in terms of the basic variables and their �rst spatial derivatives (in torsion-free

covariant combinations). Symbolic manipulation programs can be useful to help �nd the required expressions which
are necessary to express the SU (3) gauge theory in complete geometric form.
This discussion has shown that our geometric ideas can be extended to the gauge group SU (3), and that there is an

interesting spatial geometry associated with this realistic color group. The theory is not yet in entirely explicit form.
For this one must obtain the matrix Ra

j and the inverse frame components Ea
i and Ea

fjkg as functions of E
ai, and one

must solve the problem of independent SU (3) invariants discussed in the previous paragraph. These \mechanical"
problems are not necessarily easy, and we believe that the e�ort to solve them is justi�ed only if the spatial geometry
is shown to be useful for the dynamics in the SU (2) theory of Sec. 3, which is far simpler.

VI. DISCUSSION

We have shown that it is possible to reexpress the geometry of non-abelian gauge theories in terms of a 3-dimensional
spatial geometry. The �rst and most important step was the unitary transformation 	[E] = exp(i
[E]=g)F [E] which
allowed us to impose the Gauss law constraint on F [E] and to exploit the fact that !ai = ��
=�Eai transforms as a
composite gauge connection.
For gauge group SU (2), !ai is just the standard spin connection of a Riemannian 3-manifold. We were naturally led

to de�ne metric- and connection-like variables 'ij and �0ijk which are equivalent to the ordinary Riemannian metric

and Christo�el connection. The SU (2) theory essentially geometrizes itself, and a conventional Riemannian geometry
underlies the theory.
For larger gauge groups, and for SU (3) in particular, the same approach leads to a metric-preserving geometry with

torsion of both standard and novel type. The construction of Secs. 4 and 5 was not quite explicit because certain
\mechanical problems" of analytic matrix inversion and relations among group invariants remain to be solved. Apart
from these problems, it is also possible that another choice of phase 
[E] or basis Eai; Eafijg could lead to a simpler
formulation.
Our initial motivation, beginning in [5], was to express the Hamiltonian in gauge invariant variables in order to

develop a new approach to the non-perturbative dynamics of gauge theories. What has been achieved so far is just
a formal structure, of some elegance we believe, but there are many di�culties to be overcome before it can be
applied to real physics. The non-linear transformation to variables 'ij = EaiEaj may exacerbate the problem of
Lorentz covariance in the Hamiltonian formalism. A suitable cuto� procedure must be found and one must cope
with a Hamiltonian which is up to fourth order in functional derivatives. The fundamental unitary transformation is
non-perturbative, so the composite magnetic �eld B̂ai appears in (2.22) with coe�cient 1=g, and there are singular
terms up to order 1=g2 in the Hamiltonian, as in [1,2]. These terms make it problematic to perform short distance
calculations to test whether the transformed theory has the expected short distance behavior. But since these singular
terms are the result of the exact treatment of the non-abelian gauge invariance, they may represent a signi�cant non-
perturbative aspect of the theory. Finally, the notion [1] that the behavior of physical wave functions at the singular
points of the unitary transformation used is controlled by the energy barrier terms in H requires exploration. All of
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these problems appear to be substantial but we hope that the geometric structure of the formal theory provides the
impetus to solve them.
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APPENDIX A

In this appendix we show explicitly for gauge group SU (2) that the singular term in �Bai, when properly regularized,
vanishes. The singular term comes from the ill-de�ned quantity

"ijk"abc
�!ck(x)

�Ebj(x)
(A1)

It is easy to see that the rest of �Bai has the gauge and tensorial properties of a magnetic �eld. Formally the singular
term also does. So we have to look for a regularization that preserves these properties. The most obvious candidate
would be to point-split, i.e., work with

"ijk"abc
�!ck(y)

�Ebj(x)
(A2)

and take the limit x = y. However the quantity

�!ck(y)

�Ebj(x)
= � �2


�Ebj(x)�Eck(y)
(A3)

does not transform as a geometric object at point x but as a \bi-geometric" object at points x and y (a gauge and
contravariant spatial vector at x and y). This is clear from its de�nition but can also be checked on the explicit form
of the second variation of 
 involving �(x� y) and its �rst derivative. So the contraction of (A3) with "ijk"abc, which
is covariant with respect to gauge and GL(3) transformations at a single point, is not geometric. This is signi�cant
because (A3) is singular as y  x.

A remedy for this is to introduce a linear operator Mk0cc0

k (x; y) such that if T c0

k0 is a gauge and contravariant spatial

vector at y then Mk0cc0

k (x; y)T c0

k0 = ~T c
k has the same geometric properties at x. Then

Mk0cc0

k (x; y)
�2


�Ebj(x)�Ec0k0

(y)
�
�

�2


�Ebj(x)�Eck(y)

�(cov)
(A4)

will be a geometric object at x.
In general a smooth choice of M is possible only locally. One must choose gauge and a�ne connections, and use

these to parallel-transport T c0

k0 along a path from y to x. So there are many ambiguities in the de�nition of M . But
as stressed above,

�2


�Ebj(x)�Eck(y)
(A5)

is a local distribution of order 1, so that all what is needed is Mk0cc0

k (x; x) and
�
@(y)Mk0cc0

k

�
(x; x), and this only

involves the gauge and a�ne connections at point x.
To compute the second variation of 
, the simplest way is to Taylor expand 
[E + E0 + E00] to �rst order in E0

and E00. The result is

14



Z Z
d3x d3y

�2


�Ebj(x)�Eck(y)
E0bj(x)E00ck(y) =

�1
2

Z
d3z "def

�
E0d`(@`E

00em)Ef
m �Ed`(@`E

00em)Eg
mE

0gnEf
n �E0d`(@`E

em)Eg
mE

00gnEf
n

+Ed`(@`E
em)Eh

mE
0hnEg

nE
00gpEf

p + 4 terms with E0 $ E00
�
:

(A6)

Now, because the left-hand side is a geometric object, the right-hand side does not change if one replaces everywhere
ordinary partial derivatives by total (gauge and a�ne) covariant derivatives acting on densities, making every term
geometric.
As we have seen in Sec. 3, the electric formulation of the SU (2) theory has brought natural (gauge and a�ne)

connections to the fore, and it is more than natural to use these to de�ne M and to rewrite (A6). In the covariant
form

Z Z
d3x d3y

�2


�Ebj(x)�Eck(y)
E0bj(x)E00ck(y) =

�1
2

Z
d3z "def

h
E0d`(@`E

00em + �0m`p E
00ep + "eha!a`E

00hm)Ef
m

�Ed`(@`E
00em + �0m`p E

00ep + "eha!a`E
00hm)Eg

mE
0gnEf

n + 2 terms with E0 $ E00
i
:

(A7)

The second derivative of 
 is obtained by substituting �ab�ij�(x� z) for E0ai(z) (resp. �ac�ik�(y� z) for E00ai(z)) in
the right-hand side (A6). Note that these objects have the right geometric properties. We �nd

�2


�Ebj(x)�Ec0k0

(y)
=

�1
2
"bef

n
(@

(x)

j �ec
0

�mk0 + �0mjk0(x)�ec
0

+ "ec
0a!aj (x)�

m
k0 )�(x� y)

o
Ef
m(x)

+
1

2
"def

n
(@

(x)

` �ec
0

�mk0 + �0m`k0(x)�ec
0

+ "ec
0a!a` (x)�

m
k0 )�(x� y)

o
Ed`(x)Eb

m(x)E
f
j (x)

+ 2 terms with (b$ c0)(j $ k0)(x$ y) (A8)

The result is a distribution of order 1, and when we parallel-transport it, we can expand

Mk0cc0

k (x; y) = Mk0cc0

k (x; x) + (y` � x`)
�
@
(y)

` Mk0cc0

k

�
(x; x) + � � �

= �k
0

k �
cc0 � (y` � x`)(�k

0

`k(x)�
cc0 + !cc

0

` (x)�k
0

k ) + � � � (A9)

where the missing terms annihilate �(x� y) and its �rst derivative, and consequently do not contribute. One should
also expand the electric �eld in (A8) as

Eai(y) = Eai(x) + (y` � x`)(@`E
ai)(x) + � � �

= Eai(x) + (y` � x`)(��0i`mEam + !ad` Edi) + � � � (A10)

(and the corresponding equation for Ea
i ), so that the evaluation point is always x. Then all that remains is a lengthy

but straightforward computation. All the terms involving ! cancel either because of the antisymmetry of the structure
constants of SU (2) or because of the Jacobi identity. The terms involving � correspond to those involving �0 with
opposite signs, so that the �nal result is

�
�2


�Ebj(x)�Eck(y)

�(cov)
=

�1
2
"def efm(x)

�
�bd�ce�`j�

m
k � �cd�be�`k�

m
j + (�bd�mk e

c
j(x)� �cd�mj e

b
k(x))e

e`(x)
	
@
(x)

`

�(x� y)p
G

(A11)
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This is manifestly a tensorial object, and it is antisymmetric under the simultaneous exchange (b $ c)(j $ k).
Hence the contraction with "ijk"abc vanishes identically, and the regulated version of

"ijk"abc
�!ck(x)

�Ebj(x)
(A12)

vanishes as announced above.
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