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1 Introduction

There is recently a renewed interest in higher curvature theories. These are theories of the

general form R +Rn, where R is the standard Einstein term and Rn denotes collectively

nth power of the Riemann, Ricci, Weyl tensors or the curvature scalar [1–10]. A recent

discussion on this class of models can be found in [11]. In particular, the R+R2 supergravity

has been studied [12, 13], especially in connection to the inflationary dynamics [14–27]. In

fact, the R+R2 theory, known as the Starobinsky model [28, 29] for inflation, propagates

besides the usual massless graviton, an additional massive spin-0 state, known as the

“scalaron field” or the so called “no-scale field”. It is this mode that can be identified

with the inflaton field and makes the theory so appealing as inflation is driven entirely by

gravity itself and not by some external scalar field. Furthermore, the R + R2 theory can

also be embedded consistently in supergravity, whereas the linearized N = 1 theory has

been analysed in [30] and the N = 2 in [31].
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On the other hand the R+R2 theory does not include all possible quadratic curvature

theories. Indeed, a second independent quadratic curvature invariant is the square of the

Weyl tensor, whereas terms quadratic in the Riemann (or Ricci) tensor can be traded

for a Weyl square term and the 4D Gauss-Bonnet topological term. However, when the

Weyl square term is included in the low-energy gravitational effective action, the spectrum

changes and includes an additional massive spin-2 ghost [1, 2].1

In the present paper we first discuss the massive Weyl2 theory and its supersymmetric

extensions, namely N -extended Weyl2 supergravities, which contain not only the Weyl2

term but also the Einstein term m2R.2 The latter can therefore be seen as a mass deforma-

tion of the massless theory. In addition, due to the relation between massive and massless

Weyl supergravity, the bound N = 8 of Poincare supergravity tranfers to N = 4 in the

case of Weyl supergravity [32].

Second, we are particularly interested in the massless limit m → 0 of the m2R+Weyl2

theory in conformal supergravity [33–36]. Although these theories contain propagating

ghosts, they are nevertheless very interesting, since in the massless limits, i.e. in the ab-

sence of the Einstein term, they provide unique examples of (super)conformal gravitational

theories with up to four derivative terms. Namely in the limit m → 0 the spectrum gets

re-organized and the symmetry gets enhanced, namely from (super) Poincare is enhanced

to (super) conformal. In additional also the R-symmetries become local gauge symmetries.

Furthermore in this limit, there are various primary operators, like the Weyl tensor itself.

Another conformal tensor is the Bel-Robinson tensor, which is basically the square of the

Weyl tensor. They have a well-defined conformal weight, i.e. transform under conformal

transformations in a homogeneous way. This is true in the massive case and also in the limit

of zero mass, i.e. the limit is continuous with respect to the scaling weights. Furthermore

the Bel-Robinson tensor is conserved in the massive theory on Ricci-flat spaces.

The paper is organized as follows: in section 2 we describe the bosonic Weyl2 gravity,

its spectrum and its higher dimensional operators. In section 3 we discuss the spetcrum

of the super-Weyl theory. Here we again provide some details of the higher dimensional

operators using N = 1 superfield language. In sections 4, 5 and 6, the spectra of the

N = 2, N = 3 and N = 4 super-Weyl2 theories, respectively, are determined. We

close in section 7 with some discussions and expectations on the holographic duals of the

(super)conformal Weyl2 gravity.

2 Bosonic Weyl gravity

2.1 Massive theory

Let us first recall the bosonic Einstein plus (Weyl)2 gravity theory in four dimensions.

More details can be e.g. found in [11, 40]. The action up to four orders in derivatives has

1It should be noted that the problem with such ghosts states is that one cannot maintain at the same

time unitarity and forward propagation in time of positive energy states. Indeed with the opposite +iǫ

choice one propagates negative energies forward in time but unitarity and the optical theorem is preserved,

whereas with the usual −iǫ prescription, ghosts carry positive energy but negative norm [37].
2A very interesting double copy construction of Weyl2 (super) gravities was recently provided in [38, 39].
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the following form:

S =

∫
d4x

√−g
(a
2
WµνρσW

µνρσ + κ2R
)
. (2.1)

Here Wµνρσ = Rµνρσ − gµ[σRρ]ν − gµ[ρRσ]ν − R/3gµ[ρgσ]ν is the Weyl tensor. The Weyl2-

term in the action possesses conformal invariance as it is invariant under the conformal

transformation

gµν → ĝµν = Ω2gµν , (2.2)

which leaves the Weyl tensor inert

Ŵµ
νρσ = Wµ

νρσ. (2.3)

However the Einstein-term is not invariant under conformal transformations, since R trans-

forms under conformal trasformations as:

R̂ = Ω−2R− 6Ω−3gµν∇µ∇νΩ. (2.4)

Therefore the Einstein-term can be regarded as the mass term in this theory, i.e. a mass

deformation, which explicitly breaks conformal invariance.

The equations of motion which follow from (2.1) are written as

Bµν +
2κ2

a
Gµν = 0, (2.5)

where Bµν is the Bach tensor

Bµν = ∇ρ∇σW
σ
µρν +

1

2
RρσWρµσν , (2.6)

with

B̂µν = Ω−2Bµν . (2.7)

Note that the second term in Bµν is needed such that the Bach tensor transforms with a

uniform weight under conformal transformations. The Bach tensor is symmetric, traceless

due to conformal invariance and divergence-free (due to diff. invariance)

Bµ
µ = 0, ∇µBµν = 0, (2.8)

and Gµν is the Einstein tensor.

Now we can recall the propagating modes corresponding to this action. For this, one

analyzes the poles in the propagators generated by its quadratic part. Specifically, there

are two kinds of propagating modes [1, 2]:

(i) A massless helicity-±2 graviton gµν . This mode is independent of the couplings a

and κ2 and it is the standard massless spin-two graviton.

(ii) A massive spin-two particle wµν with mass κ2/a. It is related to the Weyl2 term in

the action. In fact, this massive spin two particle is a ghost for a > 0, destroying

unitarity, or a tachyon for a < 0, leading to an instability. We will call this part of

the spectrum the non-standard sector of the theory.

Hence in summary, the Einstein plus (Weyl)2 gravity theory contains seven propagating

degrees of freedom.
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2.2 Massless theory

In the following we consider the massless limit κ = 0, which is a pure Weyl2 theory with

action

SWeyl2 =
1

2g2

∫
d4x

√−gWµνρσW
µνρσ, (2.9)

where g2 = 1/a is a dimensionless coupling. Now the equations of motion are simply

Bµν = 0. (2.10)

At the linearized level of the theory, the conformally invariant Weyl equation of motion

simply looks like [41]

∂µ∂ρWµνρσ = 0 . (2.11)

The pure Weyl2 possesses conformal invariance and it propagates six degrees of free-

dom [42]:

(i) The standard massless spin-two graviton, corresponding to a planar wave in Einstein

gravity.

(ii) In the non-standard sector there is massless spin-two ghost particle, which corre-

sponds to a non-planar wave. In addition there is a massless vector, which originates

from the ±1 helicities of the massive wµν particle. However note that the helicity

zero component of wµν does not correspond to a physical, propagating mode in the

massless limit, since it can be gauged away by the conformal transformations (2.2).

2.3 Higher tensors

In this section we briefly discuss some higher tensors, which are also of interest in the

massless Weyl2 theory. In fact, the aim of this discussion is to construct conformal op-

erators, which can be coupled to spin-four fields (see also the concluding section of this

paper). It is known in the literature that there are no totally symmetric, quadratic in

the curvature and divergence-free four-index tensors of dimension four [43] in a generic

background. However, there are dimension four, divergence-free tensors which are totally

symmetric just in three-indices. It is also known that there exist a unique totally sym-

metric, traceless and divergence-free four-index tensor, on Ricci-flat spaces, which is the

Bel-Robinson tensor [44–47]

Tµνρσ =
1

4

(
W λ κ

νµ Wλσρκ +
1

2
ǫλντξǫ

χψ
λσ W τξ κ

µ Wχψρκ

)

=
1

4

(
W λ κ

νµ Wλσρκ +W λ κ
σµ Wλνρκ − 1

2
gνσW

λτ κ
µ Wλτσκ

)
. (2.12)

This tensor is traceless Tµ
µνρ = 0 and satisfies

∇µT
µ
νρσ =

1

2

(
R λ

νκ ρ∇[λR
κ
σ] +R λ

νκ σ∇[λR
κ
ρ]

)
. (2.13)
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Hence in Einstein gravity, for Ricci-flat spaces, the Bel-Robinson tensor is divergence-free,

∇µT
µ
νρσ = 0. Of course, Ricci-flat manifolds are also Bach-flat but the contary is not true.

For example, manifolds conformal to Einstein spaces have vanishing Bach tensor but non-

vanishing Ricci. In addition, the Bel-Robinson tensor transforms under Weyl rescalings as

Tµν
ρσ → T̂µν

ρσ = Ω−4Tµν
ρσ, (2.14)

and therefore it has conformal dimension ∆T = 4.3 Let us recall here that in general,

primary operators of spin s and dimension ∆ in d-dimensional unitary CFTd, satisfy the

unitarity bound [48, 49]

∆ ≥ d− 2 + s. (2.15)

In terms of the twist τ defined by

τ = ∆− s, (2.16)

the unitarity bound (2.15) is written as

τ ≥ d− 2. (2.17)

Primary operators that saturate the bound satisfy the equation ∂µ1
Jµ1

µ2···µs
= 0 and there-

fore correspond to conserved operators. In particular, for d = 4 we find that τ = 2 for a

conserved primary which is the case for the spin-two energy momentum tensor.4 However

in our case the Bel-Robsinon operator has dimension ∆T = 4 and spin s = 4, and therefore

it has twist τT = 0. It follows that the Bel-Robinson operator violates the unitarity bound,

which is expected, since we know that the Weyl2 contains ghosts and is therefore non-

unitary. Nevertheless as the ghost states can be projected out by appropriate boundary

conditions [9], we may still look for a tensor Jµνρσ like the Bel-Robinson tensor that has the

same symmetries with it, it is divergence-free for Bach-flat spaces and has twist τ = 2. If

such a tensor exist, it could couple to a spin-4 field. In addition, the conformal dimension

of Jµνρσ should be

∆J = 6, (2.18)

in order to describe a spin-4 conserved operator in the CFT. It is natural to expect that,

similarly to the energy momentum tenor, Jµνρσ is quadratic in a tensor build out of the

curvature and/or its derivatives of dimension ∆ = 3. Such a tensor with ∆ = 3 exists in

conformal gravity and it is the Cotton tensor defined as

Cµνρ = ∇µSνρ −∇νSµρ, (2.19)

3The conformal dimension of a field in CFT is the weight under the Weyl transformation of this field

with half its indices up and half down.
4In case the energy momentum tensor is non-conserved and has dimension ∆ > 2+ s, the corresponding

bulk spin-two field becomes massive [50].
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where

Sµν = Rµν −
1

6
gµνR, (2.20)

is the Schouten tensor. In particular, by using the second Bianchi identity, the Cotton

tensor can be written as the divergence of the Weyl tensor

Cµνρ = ∇κW
κ
ρµν , (2.21)

and therefore

C[µνρ] = 0. (2.22)

We can now define a conserved 4-tensor quadratic in the Cotton tensor as follows.

From eq. (2.19) we get the equation5

∇[λCρσ]κ = Bλρσκ (2.23)

with

Bλρσκ = Rν
κ[ρλSσ]ν = Rν

κ[ρλRσ]ν = W ν
κ[ρλRσ]ν , (2.24)

whereas, using eqs. (2.6), (2.21) we find

∇κCκµν = Aµν , (2.25)

with

Aµν = Bµν −
1

2
RκλWµκνλ. (2.26)

Multiplying eq. (2.23) by Cλρµ and after some algebra we arrive at

∇λJ
λ
αµν = Hαµν , (2.27)

where

Jλ
αµν =

1

4

(
Cλγ

νCαγµ + Cλγ
µCαγν −

1

2
δλαC

ρσ
νCρσµ

)
. (2.28)

and

Hαµν =
1

8

(
Cγλ

νBαλγµ + Cγλ
µBαλγν + 2Aγ

µCαγν + 2Aγ
νCαγµ

)
. (2.29)

Note that under a conformal transformation with δgµν = 2ωgµν , the Cotton tensor

Cµνρ and the tensor Jλαµν transform inhomogeneously under conformal transformations.

In particular the transformation of the Cotton tensor turns out to be

δCµνρ = 2∂σωW
σ
ρµν , (2.30)

5To obtain eq. (2.23), the relation ∇µ∇νV
ρ −∇ν∇µV

ρ = Rρ

κµνV
κ has been used.

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
7

whereas, Jλαµν transforms as

δJλαµν = −2ωJλαµν +
1

2
∂τω

(
W τγ

λν Cγαµ +W τ
γαν C

γ
λµ − 1

2
W τρσ

ν Cρσµ + µ ↔ ν

)
. (2.31)

This means that both Cµνρ and Jλαµν , although not Weyl invariant, are Weyl covariant [51]

as their transformation under Weyl rescalings does not involve higher than first derivatives

of the conformal factor. Therefore in order to obtain a conformal tensor one should use a

Weyl-covariant derivative for the construction of an “improved” Cotton tensor, along the

lines of [51].

It is easy to prove that in the linearized theory, the Jλµνρ is divergence-free and has

the correct conformal dimension ∆J = 6

∂µJ
µν

ρσ = 0,

Ĵµν
ρσ = Ω−6Jµν

ρσ . (2.32)

If (2.32) can be extended at the full non-linear level is not known to us.

3 N = 1 super-Weyl theory

3.1 Massive theory

Now we want to present the superfield versions of the bosonic Weyl2-action, first using

N = 1 supersymmetry language. In conformal supergravity, one first introduces the super-

Weyl tensor Wαβγ , which is a chiral superfield, where α, β, γ = 1, 2 are standard SL(2,C)

spinor indices. Wαβγ has spin (32 , 0), i.e. its highest component is a fermionic spin-3/2

field, but Wαβγ also contains the spin-two field gµν with five degrees of freedom. The Weyl

superfield Wαβγ satisfies

Wαβγ = W(αβγ) , (Wαβγ)
∗ = W α̇β̇γ̇ , Dδ̇Wαβγ = 0 , (3.1)

and it has the following pure bosonic contributions

DγWδǫα| =
1

6

(
i

4
ǫγδDǫǫ̇A

ǫ̇
α − 1

4
ǫβǫǫ

ρ
γWδβαρ

)
+ (δ ǫ α) , (3.2)

where Wδβαρ and Aǫ̇
α are the spinorial equivalent or the Weyl conformal tensor and the

vector auxiliary of the N = 1 supergravity, and (δ ǫ α) denotes five terms obtained by

symmetrization with respect to the fermionic indices δ, ǫ and α [52].

The supersymmetric action of massive Weyl gravity is then written as

LΦ,W =

∫
d2Θ2ER+ 4

∫
d2Θ2E τ W2 + c.c., (3.3)

where τ is the complex coupling

τ =
1

g2
+ iα. (3.4)

– 7 –
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We then find that the bosonic sector of the action is

e−1LW =
1

2
R+

1

3
AµA

µ − 1

3
uu+

α

2

(
1

2
R2

HP − 2

3
FµνFρσǫ

µνρσ

)

+
1

2g2

(
WµνρσWµνρσ − 4

3
FµνFµν

)
, (3.5)

where Fµν = ∂µAν − ∂νAµ is the field strength of the supergravity vector Aµ, u is the

auxiliary scalar and R2
HP = Wµνκλǫ

κλρσW µν
ρσ is the topological Hirzebruch-Pontryagin

term. Note that in Weyl supergravity, the vector Aµ is dynamical as it has a kinetic term

of the form FµνFµν .

Now we are ready to determine the spectrum of the massive N = 1 Super-Weyl theory.

It has the following form:

(i) A standard massless spin-two graviton multiplet with the following (h, qR) helicity h

components and U(1)R qR charges and with nB + nF = 4 degrees of freedom:

gN=1 : (+2, 0) +

(
+
3

2
,+

1

2

)
, (3.6)

and its CPT conjugate

(
−3

2
,−1

2

)
+ (−2, 0) . (3.7)

(ii) In the non-standard sector there is a massive spin-two supermultiplet,6 which is the

socalled massive N = 1 super-Weyl multiplet [54, 55] with nB + nF = 16 degrees of

freedom:

wN=1 : Spin(2) + 2× Spin(3/2) + Spin(1) . (3.8)

Note that the massive states in N = 1 supergravity built representations of the

group USp(2).

Hence in summary, the massive super-(Weyl)2 gravity theory contains nB+nF = 20 degrees

of freedom.

3.2 Massless theory

The Weyl equation of motion eq. (2.10) now reads at linearized level [41]:

Dα∂β

β̇
Wαβγ = 0 . (3.9)

This equation is equivalent to the linearized Weyl equation of motion of the bosonic Weyl

tensor, as given in eq. (2.11). Then the spectrum of the massless N = 1 Super-Weyl theory

has the following form:

6General massive multiplets in extended supersymmetry were discussed in [53].
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(i) A standard massless spin-two supergravity multiplet with nB + nF = 4 degrees of

freedom and the following (h, qR) helicity h components and U(1)R qR charges:

gN=1 : (+2, 0) +

(
+
3

2
,+

1

2

)
, (3.10)

together with its CPT conjugate multiplet
(
−3

2
,−1

2

)
+ (−2, 0). (3.11)

Note that the U(1)R charges and the helicities of the fermions are correlated, i.e. the

states with positive helicity have also positive U(1)R charge, and due to CPT the

opposite is true for the states with negative helicities.

(ii) In the non-standard sector, we decompose the massive states into their massless

helicity components.7 Furthermore we have to decompose the USp(2) representations

into the U(1)R charges of the massless states:

USp(2) → U(1)R : 2 =
1

2
⊕−1

2
, (3.12)

First, we get from the massive Weyl multiplet wN=1 a massless ghost-like spin-two

supermultiplet:

spin− two : (+2, 0) +

(
+
3

2
,+

1

2

)
, (3.13)

and its CPT conjugate as in (3.11). Second we get from wN=1 a massless, physical

spin-3/2 supermultiplet:

spin− 3/2 :

(
+
3

2
,−1

2

)
+ (+1, 0) , (3.14)

together with its CPT conjugate multiplet

(−1, 0) +

(
−3

2
,+

1

2

)
. (3.15)

The spin-3/2 fields together build a so-called tripole ghost, which effectively acts as

a physical spin-3/2 multiplet and a dipole ghost spin-2 multiplet [41].

And thirdly, wN=1 provides a physical, massless spin-one vector multiplet:

spin− one : (+1, 0) +

(
+
1

2
,+

1

2

)
, (3.16)

and its CPT conjugate
(
−1

2
,−1

2

)
+ (−1, 0) . (3.17)

7Note when decomposing massive into massless multiplets, the latter always come with their CPT

conjugate multiplet because the massive ones are CPT invariant.

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
7

Note that the massive Weyl multiplet wN=1 contains in addition a chiral spin-1/2

multiplet: (
+
1

2
,−1

2

)
+ (0, 0) , (3.18)

and its CPT conjugate

(0, 0) +

(
−1

2
,+

1

2

)
. (3.19)

However this multiplet is unphysical since it can be gauge away by the supercon-

formal transformations together with the local U(1)R transformations. Specifically,

one of the two scalars in this chiral multiplet is the Weyl mode, i.e. the helicity zero

component of the massive spin-two field wµν in wN=1 and the other scalar is the

helicity zero component of the massive vector inside wN=1, which is gauged away by

the U(1)R transformations.

Hence in summary, the massless super-(Weyl)2 gravity theory contains nB + nF = 16

physical, propagating degrees of freedom [56]. Regarding the pure super-Weyl lagrangian

in eq. (3.5), when the standard sugra term is omitted, the graviton ±1 states belong to the

N = 1 vector multiplet (eqs. (3.16) and (3.17)), while the Aµ field is the gauge field of the

U(1) R-symmetry and belongs to the spin-3/2 multiplet (eqs. (3.14) and (3.15)).

We note that, in accordance to [56], the gravitino action contains (N = 1) eight

helicity states, three (tripole ghost)
(
+3

2 ,+
1
2

)
,
(
+3

2 ,+
1
2

)
,
(
+3

2 ,−1
2

)
and a spin-1/2 state(

+1
2 ,+

1
2

)
(+ CPT conjugates). This phenomenon will be present for allN , so the spectrum

always contains the states
(
+3

2 ,N
) (

+3
2 ,N

)
,
(
+3

2 ,N
)
,
(
+1

2 ,N
)
+ CPT conjugates, (the

last comes from the gravitino multiplet for N = 4). For N = 4 there are additional

spin-1/2 states in the 4, 4 and 20 of SU(4). The three states
(
+1

2 , 4
)
,
(
+1

2 , 4
)
,
(
+1

2 , 4
)

(the first two from the spin-2 multiplets and the last from the spin-3/2 multiplet) and

their CPT conjugates, are described by a spin-1/2 cubic kinetic term, and finally the(
+1

2 , 20
)
(+CPT conjugate) is described by a standard (first derivative) kinetic term [58].

3.3 Higher tensors

Again, we like to consider some higher tensor in the massless N = 1 super-Weyl2 theory.

We will restrict ourselves to construct the relevant superfields in the linearized approxi-

mation of the super-Weyl2 theory. First, the linearized super-Bel Robinson tensor has the

following form:

Tαβγ,α̇β̇γ̇ = WαβγW α̇β̇γ̇ . (3.20)

It is a tensor of spin (32 ,
3
2) and contains a bosonic spin-four field. The bosonic part of the

super-Bel Robinson tensor is

Tαβγδ,α̇β̇γ̇δ̇ = DδDδ̇Tαβγ,α̇β̇γ̇ | = WαβγδW α̇β̇γ̇δ̇. (3.21)

Recalling that Wαβγδ and Wα̇β̇γ̇δ̇ correspond to the anti-self dual −W λ
νµκ and the self dual

+W λ
νµκ parts of the Weyl tensor, we find the components of the Bel-Robinson tensor with

Lorentz indices Tµνρσ to be

Tµνρσ = −W λ
νµκ

+W κ
λσρ , (3.22)
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where

±Wµνρσ =
1

2

(
Wµνρσ ∓ i ∗Wµνρσ

)
, (3.23)

with

∗Wµνρσ =
1

2
ǫ κλ
µν Wκλρσ. (3.24)

Therefore, we may express (3.22) as

Tµνρσ =
1

4

(
W λ κ

νµ Wλσρκ +
∗W λ κ

νµ
∗Wλσρκ

)
, (3.25)

which coincides with the definition (2.12). Notice that due to eq. (3.1) the super-Bel

Robinson superfield Tαβγ,α̇β̇γ̇ satisfies

DαTαβγ,α̇β̇γ̇ = D
α̇Tαβγ,α̇β̇γ̇ = 0, (3.26)

and therefore, it is conserved in Einstein supergravity.

∂αα̇Tαβγ,α̇β̇γ̇ = 0. (3.27)

However in Weyl supergravity, this is not the case (at least from Bach-flat but not Ricci-

flat backgrounds) and therefore Tαβγ,α̇β̇γ̇ is not the correct object we are looking for, as in

addition it has dimension four.

As in the bosonic case, we are considering the super-Cotton tensor, which is given as

Cα̇βγ = ∂α
α̇Wαβγ . (3.28)

Note that Cα̇βγ is symmetric in the last two indices β and γ and it has spin
(
1, 12

)
. Using

the super-Cotton tensor the linear super-Weyl equation of motion (3.9) can be rewritten as

DβCα̇βγ = 0 . (3.29)

Finally we construct the super-version of the bosonic tensor Jλ
αµν in eq. (2.28). It has

the following form

Jα̇βγ,αβ̇γ̇ = Cα̇βγCαβ̇γ̇ . (3.30)

The tensor Jα̇βγ,αβ̇γ̇ has spin
(
3
2 + 1

2 ,
3
2 + 1

2

)
. When writing this field in components, it

contains a spin-four field, namely precisely Jλµνρ, which was introduced before. Indeed,

we have that

Jα̇βγδ,αβ̇γ̇δ̇ = DδDδ̇Jα̇βγ,αβ̇γ̇ | = Cα̇βγδCαβ̇γ̇δ̇ = ∂α
α̇Wαβγδ∂

α̇
αWα̇β̇γ̇δ̇. (3.31)

Proceeding as above, we find that the corresponding Lorentz index tensor Jνσµρ is given by

Jνσµρ = ∂λ−W κ
νµλ ∂τ+Wκσρτ =

1

4

(
∂λW κ

νµλ ∂τWκσρτ + ∂λ∗W κ
νµλ ∂τ ∗W κσρτ

)
, (3.32)
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which can be written in terms of the Cotton tensor as

Jνσµρ =
1

4

(
Cκ

νµCκσρ +
1

4
ǫκ λξ

ν ǫ χψ
κσ CλξµCχψρ

)

=
1

4

(
Cκ

νµCκσρ + Cκ
νρCκσµ − 1

2
gνσ C

κλ
µCκλρ

)
, (3.33)

i.e., coincides with eq. (2.28)

However note that Jα̇βγ,αβ̇γ̇ is not irreducible in terms of Lorentz spins, but it also

contains fields of lower spins:

Jα̇βγ,αβ̇γ̇ : 3 + 3(2) + 4(1) + 2(0) . (3.34)

Using the super-Weyl equation of motion one can show that Jα̇βγ,αβ̇γ̇ is indeed covariantly

conserved:

DβJα̇βγ,αβ̇γ̇ = Dβ̇Jα̇βγ,αβ̇γ̇ = 0 . (3.35)

Equation (3.35) can be rewritten as

DβJα̇βγ,αβ̇γ̇ = Dα̇Sβ̇γ,αγ̇ = 0 . (3.36)

Sβ̇γ,αγ̇ is a superfield with highest spin-2 component (and containing a bosonic spin-3 field),

namely its spin content is as follows:

Sβ̇γ,αγ̇ :

(
1

2
,
1

2

)
⊗
(
1

2
,
1

2

)
= 2 + 3(1) + 2(0) . (3.37)

Therefore this conservation equation implies that these components in Jα̇βγ,αβ̇γ̇ get elimi-

nated and the physical spin-components of Jα̇βγ,αβ̇γ̇ are the following:

Jα̇βγ,αβ̇γ̇ : 3 + 2(2) + 1 . (3.38)

4 N = 2 super-Weyl theory

4.1 Massive theory

The spectrum of the massive N = 2 Super-Weyl theory has the following form:

(i) A standard massless spin-two super graviton multiplet with nB + nF = 8 degrees

of freedom. It contains states with the following helicities and their associated U(2)

quantum numbers:

(21, 10) +

(
3

2
, 21

)
+ (1, 12) . (4.1)

In addition there are the following CPT conjugate states

(−1, 1−2) +

(
−3

2
, 2−1

)
+ (−2, 10) . (4.2)
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(ii) In the non-standard sector we have a massive spin-two supermultiplet, which is the

N = 2 massive super-Weyl multiplet [31] with nB + nF = 48 degrees of freedom:

wN=2 : Spin(2) + 4× Spin(3/2) + (5 + 1)× Spin(1) + 4× Spin(1/2)+Spin(0). (4.3)

Note that the massive states in N = 2 supergravity built representations of the

group USp(4).

Hence in summary, the N = 2 massive super-(Weyl)2 gravity theory contains nB+nF = 56

degrees of freedom.

4.2 Massless theory

Specifically the spectrum of the massless N = 2 Super-Weyl theory has the following form:

(i) A standard massless spin-two super graviton multiplet with nB + nF = 8 degrees of

freedom. Its helicity and U(2) quantum numbers are as in eqs. (4.1) and (4.2).

(ii) In the non-standard sector, we get first from the massive Weyl multiplet wN=2 a

massless ghost-like spin-two supermultiplet with nB + nF = 8. It contains states

with helicity and U(2) quantum numbers, again as given in eqs. (4.1) and (4.2).

Second we get from wN=2 two massless spin-3/2 supermultiplets with in total nB +

nF = 16 degrees of freedom:

2−1 ×
[(

3

2
, 10

)
+ (1, 21) +

(
1

2
, 12

)]
. (4.4)

As before, there are the following additional CPT conjugate states

21 ×
[(

−1

2
, 1−2

)
+ (−1, 2−1) +

(
−3

2
, 10

)]
. (4.5)

Altogether they contain the four gauge bosons of the local U(2)R gauge symmetry in

the 10 + 30 representations.

The massive Weyl multiplet wN=2 contains in addition two N = 2 vector multiplets.

The first vector multiplet has the form:

(1, 10) +

(
1

2
, 21

)
+ (0, 12) . (4.6)

Its CPT conjugate multiplet is given as

(0, 1−2) +

(
−1

2
, 2−1

)
+ (−1, 10) . (4.7)

This vector multiplet is physical and contains propagating degrees of freedom. The

neutral massless vector in this equation is the original ±1 helicity partner of the

graviton.
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The second vector multiplet and its CPT conjugate possess different U(1) charges,

namely

(1, 1−2) +

(
1

2
, 2−1

)
+ (0, 10) , (4.8)

and

(0, 10) +

(
−1

2
, 21

)
+ (−1, 12) . (4.9)

It contains a neutral scalar, namely the Weyl mode, which is gauged away by the

conformal transformations. Hence this vector-multiplet gets removed, it is unphysical

and does not propagate.

Finally the non-standard sector also contains one CPT self-conjugate, masslessN = 2

hyper multiplet: (
1

2
, 2−1

)
+ (0, 2−1 ⊗ 21) +

(
−1

2
, 21

)
. (4.10)

This hyper multiplet is unphysical, namely the four scalars in the 10 + 30 represen-

tations are the helicity zero components of the massive vectors inside wN=2, which

are gauged away by the local U(2)R transformations.

Hence in summary, the massless N = 2 super-(Weyl)2 gravity theory contains nB+nF = 40

physical, propagating degrees of freedom.

5 N = 3 super-Weyl theory

5.1 Massive theory

The spectrum of the massive N = 3 Super-Weyl theory has the following form:

(i) A standard massless spin-two super graviton multiplet gN=3 with nB + nF = 16

degrees of freedom and the following helicity and U(3) quantum numbers:

(2, 10) +

(
3

2
, 31

)
+ (1, 3̄2) +

(
1

2
, 13

)
. (5.1)

In addition one obtains the CPT conjugate states:
(
−1

2
, 1−3

)
+ (−1, 3−2) +

(
−3

2
, 3̄−1

)
+ (−2, 10) . (5.2)

(ii) In the non-standard sector we have a massive spin-two supermultiplet, which is the

N = 3 massive super-Weyl multiplet with nB + nF = 128 degrees of freedom [57]:

wN=3 : Spin(2) + 6× Spin(3/2) + (14 + 1)× Spin(1) + (14′ + 6)× Spin(1/2)

+14× Spin(0) . (5.3)

Note that the massive states in N = 3 supergravity built representations of the

group USp(6).

Hence in summary, theN = 3 massive super-(Weyl)2 gravity theory contains nB+nF = 144

degrees of freedom.

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
7

5.2 Massless theory

The spectrum of the massless N = 3 Super-Weyl theory has the following form:

(i) A standard massless spin-two super graviton multiplet with nB +nF = 16 degrees of

freedom, as given in eqs. (5.1) and (5.2).

(ii) In the non-standard sector, in order to obtain the massless states, we have to decom-

pose the massive representations into massless representations. This is done via the

branching rules of the massive USp(6) R-symmetry group into the R-symmetry group

U(3) of the massless states. The specific decomposition of USp(6) → SU(3) × U(1)

for the relevant representations is as follows:

6 = 31 ⊕ 3̄−1 ,

14 = 3−2 ⊕ 3̄2 ⊕ 80 ,

14′ = 13 ⊕ 1−3 ⊕ 6−1 ⊕ 6̄1 . (5.4)

Then we get first from the massive Weyl multiplet wN=3 a spin-two supermultiplet,

again with the states as given eqs. (5.1) and (5.2). They constitute a massless ghost-

like spin-two supermultiplet with nB + nF = 16.

Second we get from wN=3 a helicity +3/2 supermultiplet with the U(3) charge as-

signements

3̄−1 ⊗
[(

3

2
, 10

)
+ (1, 31) +

(
1

2
, 32

)
+ (0, 13)

]
, (5.5)

plus the CPT conjugate multiplet of the form

31 ⊗
[
(0, 1−3) +

(
−1

2
, 3̄−2

)
+ (−1, 3̄−1) +

(
−3

2
, 10

)]
. (5.6)

These two multiplets together build three massless, physical spin-3/2 supermultiplets

with in total nB + nF = 48. They contain the nine gauge bosons, which transform

as 10 + 80, of the local U(3)R gauge symmetry.

Finally the massive Weyl multiplet wN=3 contains in addition the following helicity

states:

(10 + 3−2)⊗
[
(1, 10) +

(
1

2
, 31

)
+ (0, 3̄2) +

(
−1

2
, 13

)]
. (5.7)

There are also the CPT conjugate states of the form:

(10 + 3̄2)⊗
[(

1

2
, 1−3

)
+ (0, 3−2) +

(
−1

2
, 3̄−1

)
+ (−1, 10)

]
. (5.8)

Altogether the states in eqs. (5.7) and (5.8) built four full, massless N = 3 vector-

multiplets. The 24 scalars in these four vector multiplets transform under U(3) as

10 + 10 + 3−2 + 3̄2 + 80 + 80. One singlet scalar is gauged away by the conformal

transformations. Furthermore nine scalars in 10 + 80 representations are the helicity
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zero component of the massive vectors inside wN=3, which are gauged away by the

local U(3)R transformations. It follows that three of the four vector multiplets get

removed. They are unphysical and correspond to superconformal and U(3) gauge de-

grees of freedom. Therefore one gets just one physical, propagating, massless N = 3

vector multiplet with the following fields:

(1, 10) +

(
1

2
, 31

)
+ (0, 3̄2) +

(
−1

2
, 13

)
, (5.9)

together with its CPT conjugate state.

Hence in summary, the massless N = 3 super-(Weyl)2 gravity theory contains nB+nF = 96

physical, propagating degrees of freedom.

6 N = 4 super-Weyl theory

6.1 Massive theory

The spectrum of the massive N = 4 Super-Weyl theory has the following form:

(i) A standard massless spin-two super graviton multiplet gN=4 with nB + nF = 32

degrees of freedom and with the following helicities and SU(4) representations:

(+2, 1) +

(
+
3

2
, 4

)
+ (1, 6) +

(
+
1

2
, 4

)
+ (0, 1) , (6.1)

together with its CPT conjugate

(0, 1) +

(
−1

2
, 4

)
+ (−1, 6) +

(
−3

2
, 4

)
+ (−2, 1). (6.2)

(ii) In the non-standard sector we have the spin-two massive Weyl multiplet of N = 4,

which is irreducible with nB + nF = 28 = 256 with states in USp(8) representa-

tions [58]:

wN=4 : Spin(2)+8× Spin(3/2)+27× Spin(1)+48× Spin(1/2)+42× Spin(0) . (6.3)

Hence in summary, theN = 4 massive super-(Weyl)2 gravity theory contains nB+nF = 288

degrees of freedom.

6.2 Massless theory

Now we need the branching rules of the massive USp(8) R-symmetry group into the R-

symmetry group SU(4) of the massless states. The specific decomposition of USp(8) →
SU(4) for the relevant representations is as follows:

8 = 4⊕ 4 ,

27 = 6⊕ 6⊕ 15 ,

42 = 1⊕ 1⊕ 10 + 10⊕ 20′ ,

48 = 20⊕ 20⊕ 4⊕ 4 (6.4)

Then the spectrum of the massless N = 4 Super-Weyl theory has the following form:
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(i) A standard massless spin-two supergravity multiplet with nB + nF = 32 degrees of

freedom as given in eqs. (6.1) and (6.2).

(ii) In the non-standard sector, we get first from the massive Weyl multiplet wN=4 a

massless ghost-like spin-two supermultiplet with nB +nF = 32 and with the helicites

and SU(4) quantum numbers, again as given eqs. (6.1) and (6.2).

Second we get from wN=4 four massless spin-3/2 supermultiplets (in total nB+nF =

128) with the following helicities and SU(4) representations, namely8

4̄×
[(

3

2
, 1

)
+ (1, 4) +

(
1

2
, 6

)
+ (0, 4̄) +

(
−1

2
, 1

)]
, (6.5)

together with the CPT conjugate states

4×
[(

1

2
, 1

)
+ (0, 4) +

(
−1

2
, 6

)
+ (−1, 4̄) +

(
−3

2
, 1

)]
. (6.6)

They contain the 15 gauge bosons of the local SU(4)R gauge symmetry.

In addition, the massive Weyl multiplet wN=4 contains six N = 4 vector multiplets

of the form:

6 (spin− one) : 6×
[
(+1, 1) +

(
+
1

2
, 4

)
+ (0, 6) +

(
−1

2
, 4

)
+ (−1, 1).

]
(6.7)

However these multiplets are unphysical since they can be gauged away by the super-

conformal transformations together with the local SU(4)R transformations. Specif-

ically, one of the 36 scalars in these vector multiplets is a Weyl mode. Other 15

scalars are the helicity zero component of the massive vectors inside wN=4, which are

gauged away by the local SU(4)R transformations. Hence all six vector-multiplets

are unphysical, do not propagate and get removed from the spectrum.

We should note that the dipole ghost graviton and the tripole ghost spin-3/2 sector are

accompanied by a dipole ghost complex scalar since the action is a higher-derivative

action. Indeed, the equations of motion are fourth-order for the spin-2 and third

order for the spin-3/2 states. This fact is also discussed in [38, 39] at the Lagrangian

level. This is not the case for the SU(4) gauge bosons which have standard Yang

Mills action. The sugra higher derivative action also contains a singlet vector mode

which, together with the gauge bosons, is part of the higher derivative gravitino

action (which as pointed out above obeys third order equations of motion). In other

words, the cubic gravitino action simultaneously describes the gravitino, the partner

of the graviton, as well as the gravitini of the gravitino multiplet.

Hence in summary, the massless N = 4 super-(Weyl)2 gravity theory contains nB +

nF = 192 physical, propagating degrees of freedom. The same spectrum was also obtained

in [59] using the string twistor formalism for the construction of N = 4 super-(Weyl)2

gravity.

8The group theory of the massive AdS graviton Higgsing was discussed before in [60].
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7 Conclusions and outlook

In this paper we obtained the spectrum of all existing N -extended Weyl2 supergravities

(N = 1, 2, 3, 4) in four space-time dimensions. We are summarizing the physical spectrum,

ie. the number of super-multiplets of the massless theories after subtracting the gauge

multiplets, in the following table, where we indicate in the first column the top helicities

of each multiplet together with its CPT conjugate multiplet:

N = 4 N = 3 N = 2 N = 1

hmax = 2 2

hCPT
max = 0 2

hmax = 3/2 4

hCPT
max = 1/2 4

hmax = 2 2

hCPT
max = −1/2 2

hmax = 3/2 3

hCPT
max = 0 3

hmax = 1 1

hCPT
max = 1/2 1

hmax = 2 2

hCPT
max = −1 2

hmax = 3/2 2

hCPT
max = −1/2 2

hmax = 1 1

hCPT
max = 0 1

hmax = 2 2

hCPT
max = −3/2 2

hmax = 3/2 1

hCPT
max = −1 1

hmax = 1 1

hCPT
max = −1/2 1

(7.1)

Note that in the supersymmetric Weyl2 theories one can have bosonic terms with four

derivatives and also some with only two derivatives. This happens when the two-derivative

terms would be auxiliary fields in Einstein supergravity. In particular this is the case in

U(N ) Weyl2 supergravity, where the Langrangian for the U(N ) vector bosons is given

by the canonical FµνFµν term.9 In addition we also discussed some operators of higher

dimension, corresponding to the Bell-Robinson tensor, which is basically the square of the

Weyl tensor, or the square of the Cotton tensor.

9An analogous effect can be seen from the Wess-Zumino Langrangian

L = −
1

2
∂µz�∂µz̄ −

i

2
ψ̄ /∂

3
ψ +

1

2
F�F , (7.2)

which contains three Wess-Zumino multiplets: the first term is a dipole spin 0, the second is a tripole ghost

spin 1/2, whereas the last term describes two standard scalars.
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Another issue we would like to point out here is that the (super)-conformal symme-

try of the (super)-Weyl2 theory is a classical symmetry. It is true that these theories

are power-counting renormalizable but the one-loop beta-functions turns out to be non-

vanishing [61] and therefore they suffer from a conformal anomaly. The latter leads to

serious problems in Weyl gravity as the conformal symmetry is gauged and therefore leads

to inconsistencies [62–64]. Let us also note that one may arrive at the same conclusion by

the calculation of the chiral gauge anomalies of the SU(4) R-symmetry [65] and by recall-

ing that all anomalies are arranged in the same multiplet of the N = 4 superconformal

symmetry.

However, surprisingly, the N = 4 super-Weyl2 gravity can be made UV-finite [63, 66],

and thus anomaly-free [65] as well. ForN = 4 Poincaré supergravity it has been conjectured

in [67] a hidden superconformal symmetry. This can be achieved by appropriate coupling

the Weyl2 supergravity to four vector supermultiplets. Although this result has been shown

to hold at one-loop level, it is expected to hold to all loops since the contributions to the β-

function and the conformal anomaly of SYM is only an one-loop effect for N > 1 conformal

supergravities [66]. For the N = 4 case in particular, the above statement is strengthen by

the fact that the conformal anomaly is connected by supersymmetry to the SU(4) chiral

anomaly which arises at one-loop also.

Let us notice that super-Weyl2 gravity is not the only superconformal theory. As it

is very well known, the N = 4 SYM theory is also invariant under the rigid supercon-

formal supergroup SU(2, 2|4). Therefore, it can naturally source the N = 4 super-Weyl2

gravity. In addition, the latter may affect the standard AdS/CFT holography. Indeed,

allowing a boundary Weyl2 operator still preserves the superconformal symmetry and it

may correspond to a deformation of the holographic bulk theory.

Moreover, it could be, as pointed out in [68] that the pure N -extended (Weyl)2 su-

pergravity theory in four dimensions is the holographically dual boundary theory of an

AdS5 bulk theory, which is a higher spin theory with a spin-four multiplet of the 2N -

extended supersymmetry algebra in five dimensions. These kind of theories, denoted by

W-supergravities, were recently constructed [68] in flat four-dimensional space-time using

a double copy and S-fold construction. Within such a duality, one would expect that a

conformal operator respectively higher tensor Tµνρσ on the boundary, which is quadratic

in the curvature tensors and their derivatives, and which is also divergence-free on-shell,

is coupled to a spin-four field in the bulk. It would be interesting to find the exact 5D

holographic dual, if any, of the 4D Weyl supergravity.

Alternatively, one may consider super-Weyl2 gravity as a bulk theory. In that case,

AdS4 is still a vacuum solution of the theory and there should exists a holographic 3D

theory in the boundary, which it might not be unitary. Indeed, the massless graviton will

still be coupled to a conserved spin-2 operator (energy-momentum tensor) at the boundary,

the massless vector will be coupled to a conserved spin-1 operator, whereas it is expected

that the massive spin-2 ghost to couple to a non-unitary spin-2 operator. Furthermore,

it would be very interesting to see if there is a corresponding string construction of holo-

graphic duality, possibly using the twistor string approach of [59] for the construction of

the superconformal Weyl2 theory.

– 19 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
7

Acknowledgments

We gratefully acknowledge correspondence with N. Boulanger and F. Farakos. The work

of S.F. is supported in part by CERN TH Dept and INFN-CSN4-GSS. The work of D.L.

is supported by the ERC Advanced Grant “Strings and Gravity” (Grant No. 320045) and

the Excellence Cluster Universe. He also is grateful to the CERN theory department for

its hospitality, when part of this work was performed. A.K. is supported by the GSRT

under the EDEIL/67108600.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity,

Phys. Rev. D 16 (1977) 953 [INSPIRE].

[2] K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353

[INSPIRE].

[3] D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant

Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].

[4] F. David and A. Strominger, On the Calculability of Newton’s Constant and the

Renormalizability of Scale Invariant Quantum Gravity, Phys. Lett. 143B (1984) 125

[INSPIRE].

[5] G.T. Horowitz, Quantum Cosmology With a Positive Definite Action,

Phys. Rev. D 31 (1985) 1169 [INSPIRE].

[6] S. Deser and B. Tekin, Shortcuts to high symmetry solutions in gravitational theories,

Class. Quant. Grav. 20 (2003) 4877 [gr-qc/0306114] [INSPIRE].

[7] S. Deser and B. Tekin, New energy definition for higher curvature gravities,

Phys. Rev. D 75 (2007) 084032 [gr-qc/0701140] [INSPIRE].

[8] G. ’t Hooft, A class of elementary particle models without any adjustable real parameters,

Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].

[9] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
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