
J
H
E
P
0
9
(
2
0
1
8
)
0
9
6

Published for SISSA by Springer

Received: July 13, 2018

Accepted: September 12, 2018

Published: September 17, 2018

Laplacian spectrum on a nilmanifold, truncations and

effective theories

David Andriota and Dimitrios Tsimpisb

aTheoretical Physics Department, CERN,

1211 Geneva 23, Switzerland
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1 Introduction

String compactifications is the main framework for string phenomenology, whereby one

considers a four-dimensional maximally-symmetric space-time together with six extra space

dimensions forming a compact manifold M. The four-dimensional theory obtained after

dimensional reduction is crucially dependent on the geometry of M and the background

fields living on it. While the main focus of string phenomenology involves Calabi-Yau

manifolds, i.e. the case where M admits a Ricci-flat metric, curved manifolds (which we

take to mean manifolds which are not Ricci-flat, e.g. most group manifolds or cosets)

present a number of phenomenologically appealing characteristics. String backgrounds with

curved M may widely populate the string landscape away from the lamppost, providing

new phenomenological effects worth being understood. For instance, the curvature of M
is known to generate a potential for specific four-dimensional scalar fields, thus providing

them with a mass, otherwise difficult to generate classically. Another example comes

from the fact that classical de Sitter solutions (at least with parallel orientifold planes)

require a negative Ricci scalar for M (see e.g. [1, 2]). Negatively-curved manifolds are in

a certain mathematical sense much more numerous than positively-curved ones [3]. They

are however less well-studied in the context of compactification than their positively-curved
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counterparts. Here we will focus on nilmanifolds, group manifolds based on nilpotent Lie

algebras, which are a special case of negatively-curved manifolds. They offer a non-trivial

yet tractable playground on which exact calculations can be performed.

Obtaining a four-dimensional low energy effective theory from a ten-dimensional one

requires knowledge of the spectrum and eigenmodes of the Laplacian operator on M.

Indeed, the eigenvalues correspond to masses of four-dimensional states for a free theory,

giving access to energy hierarchies, while the eigenmodes provide a basis to expand the

ten-dimensional field, prior to the dimensional reduction; this procedure is discussed in

more detail in section 5. Harmonic analysis on nilmanifolds, in particular on the three-

dimensional Heisenberg manifold M ,1 has been considered before in the mathematical

literature [4–8], however the results are usually not presented in a way familiar to most

physicists. Moreover the analyses available typically do not consider the dependence of the

spectrum on the metric moduli — a rather useful piece of information from the physics

point of view as it directly affects the masses of the physical fields.

In [9] we determined the scalar spectrum of the Laplacian on M , and its dependence

on the metric moduli. The study revealed some potentially promising phenomenological

applications and allowed us to test the accuracy of available codes for the numerical deter-

mination of the spectrum. Ultimately, a complete analysis of the mass spectrum and its

implications for four-dimensional physics requires the knowledge of the Laplacian spectrum

for all differential forms on the manifold.2 This is the main subject of the present paper.

Phenomenological implications of our results are beyond the scope of this work, and will

be examined elsewhere [11], nevertheless the knowledge of the Laplacian spectrum already

allows us to make interesting observations concerning effective actions and reductions on

manifolds with SU(3) structure, as considered in the literature [12–18].3 The strategy

adopted in those references is to postulate the existence of a finite set of forms on M
satisfying a list of constraints. A truncation ansatz is then defined whereby the ten-

dimensional fields are expanded on this set of forms. Plugging the truncation ansatz in

the ten-dimensional action can then be seen to give rise to a four-dimensional theory, more

precisely an N = 2 gauged supergravity. This non-trivial result suggests that these effective

actions may be CT of ten-dimensional supergravity, although this has not be proven to

date. It is also unclear whether these effective actions can be thought of as LEEA.

Thanks to our basis of Laplacian eigenforms, we will be able to construct an explicit

example of the finite set of forms considered in these reductions on manifolds with SU(3)

structure. We will do so for two cases: M = M ×M , or M = M × T 3. The finite set

1We use M for the six-dimensional internal manifold and M for the three-dimensional Heisenberg

manifold.
2The spectrum of the Laplacian on a different nilmanifold has been worked-out in [10]. Some similarities

can be found in the eigenvalues of the spectrum, although they do not match the ones found here.
3Here by the term “effective action” or “reduction” we understand neither a low-energy effective action

(LEEA) nor a consistent truncation (CT). By a LEEA we mean a truncation of the ten-dimensional theory

to a finite subset of four-dimensional fields that correctly describes the four-dimensional physics below a

certain energy scale. A CT is a four-dimensional theory such that all its solutions lift to solutions of the

ten-dimensional theory. In general the notions of CT and LEEA are completely distinct in the sense that

a CT is not a LEEA and vice versa.
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of forms will satisfy all required constraints, giving rise to an N = 2 gauged supergravity.

We also discuss whether the reduction on our set of forms may be thought of as a LEEA,

although a definitive answer must in any case await a complete Kaluza-Klein analysis of

the mass spectrum around an appropriate ten-dimensional (flux) solution.

Finally we show that, in a certain geometrical limit, the Laplacian spectrum admits an

interesting low energy truncation to massless and massive light modes, which turn out to be

Maurer-Cartan (left-invariant) forms. We also analyse the behavior of the towers of modes

in different regimes, to make contact with the recent discussion on the so-called “refined

swampland distance conjecture” [19, 20]. This conjecture states that for effective theories

of quantum gravity, a tower of states becomes light when moving sufficiently far in field

space, thus spoiling an initial effective description; a more detailed presentation is given in

section 4.2. Interestingly, this behavior is not necessarily what we find for the towers of the

eigenmodes of the Laplacian, although we are missing a piece of information that would

allow us to conclusively decide whether or not there is a tension with the conjecture.

The outline of the paper is as follows. In section 2 we determine the spectrum and

eigenforms of the Laplacian operator on the three-dimensional Heisenberg nilmanifold. In

light of these results we examine in section 3 the truncation to the constrained finite set

of forms considered in reductions on manifolds with SU(3) structure. In section 4 we

define a certain geometrical limit in which the truncation to the light (not necessarily

massless) eigenmodes of the Laplacian coincides with Maurer-Cartan forms. Further limits

are studied in connection with the swampland discussion. We conclude with a discussion

of our results in section 5.

2 Laplacian spectrum

2.1 Nilmanifold geometry and scalar spectrum

We consider the three-dimensional nilmanifold M built from the nilpotent Heisenberg

algebra

[V1, V2] = −fV3 , [V1, V3] = [V2, V3] = 0 , (2.1)

with structure constant f = −f312. The Maurer-Cartan one-forms ea=1,2,3, dual to the

vectors Va, satisfy

de3 = f e1 ∧ e2 ; de1 = 0 ; de2 = 0 . (2.2)

These vectors and one-forms provide a basis of the (co)-tangent space of the group manifold

M . We choose angular coordinates xm=1,2,3 ∈ [0, 1], constant (positive) radii rm=1,2,3, and

the following parametrisation

e1 = r1dx1 ; e2 = r2dx2 ; e3 = r3
(
dx3 +Nx1dx2

)
; N =

r1r2

r3
f ∈ Z∗ . (2.3)

One defines equivalently the vielbein eam and its inverse as ea = eamdxm, Va = ema∂m. In

terms of physical dimension, the coordinates xm are dimensionless while rm and ea have

the dimension of a length, and f that of the inverse of a length. The manifold M is compact

thanks to the following discrete identifications

x1 ∼ x1 + n1 ; x2 ∼ x2 + n2 ; x3 ∼ x3 + n3 − n1Nx2 ; n1, n2, n3 ∈ {0, 1} . (2.4)
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They correspond to the lattice action, making M the quotient of a nilpotent group by

a discrete subgroup, i.e. a nilmanifold. The one-forms ea are invariant under (2.4), thus

globally defined. Geometrically, the discrete identifications (2.4) indicate that M is a

twisted S1 fibration over T 2, i.e. a twisted torus, with fiber coordinate x3 and a base

parameterised by x1, x2. As we showed in [9] the most general metric on this manifold is

parameterised as

ds2 =
(
e1 + ae3

)2
+
(
e2 + be3

)2
+
(
e3
)2
, a, b ∈ R , (2.5)

where the parameter c of [9] can be set to 1 without loss of generality. One deduces
√
g = r1r2r3, and the volume is given by

V =

∫
d3x
√
g = r1r2r3 . (2.6)

In this paper, we restrict ourselves to the case where a = b = 0 and use the metric

ds2 = δabe
aeb.

We found in [9] the eigenmodes and eigenvalues of the Laplacian operator ∆ acting on

a scalar field ϕ

∆ϕ = ∇2ϕ =
1
√
g
∂m (
√
ggmn∂nϕ) . (2.7)

In the case of the nilmanifold M , one also has ∆ϕ = δabVaVb ϕ [9]. The spectrum was

obtained for the metric (2.5); including parameters a, b complicates the expressions and

does not add physical states nor leads to major qualitative changes, so we restrict here to

a = b = 0. Two sets of orthonormal eigenfunctions were found: vp,q, independent of x3,

and uk,l,n, dependent on x3, verifying(
∆ + µ2p,q

)
vp,q = 0 ,

(
∆ +M2

k,l,n

)
uk,l,n = 0 . (2.8)

The spectrum is given by

µ2p,q = p2
(

2π

r1

)2

+ q2
(

2π

r2

)2

,

M2
k,l,n = k2

(
2π

r3

)2

+ (2n+ 1)|k| 2π|f|
r3

,

(2.9)

while the orthonormal modes are

vp,q(x
1, x2) =

1√
V
e2πipx

1
e2πiqx

2
,

uk,l,n(x1, x2, x3) =

√
r2

|N |V
1√

2nn!
√
π
e2πik(x

3+N x1x2)e2πilx
1
∑
m∈Z

e2πikmx
1
Φλ
n(wm) ,

(2.10)

with λ = k 2πf
r3 and wm = r2

(
x2 + m

N + l
kN

)
. The integers have the following ranges

p, q ∈ Z and k ∈ Z∗ , n ∈ N , l = 0, . . . , |k| − 1 . (2.11)

The function Φλ
n is defined for λ ∈ R∗ in terms of the normalised Hermite functions

Φλ
n(z) = |λ|

1
4 Φn(|λ|

1
2 z) , Φn(z) = e−

1
2
z2
Hn(z) , n ∈ N , (2.12)

where Hn are the Hermite polynomials defined as Hn(y) = (−1)ney
2
∂ny e

−y2
.
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2.2 One-form spectrum

2.2.1 Hodge decomposition and exact one-forms

We are interested in the one-forms B on M satisfying the eigenvalue equation

∆B = ΥB , (2.13)

for a constant Υ. The Laplacian operator is given by ∆B = (∗ d ∗ d + d ∗ d ∗)B where d is

the exterior derivative on M with the Hodge star ∗. The latter is defined on a p-form in

D dimensions as

∗(dxm1 ∧ . . . ∧ dxmp) =

√
|g|

(D − p)!
εm1...mp

np+1...nD dxnp+1 ∧ . . . ∧ dxnD

⇔ ∗(ea1 ∧ . . . ∧ eap) =
1

(D − p)!
εa1...ap

ap+1...aD eap+1 ∧ . . . ∧ eaD ,
(2.14)

with ε1...d = 1 and curved or flat indices raised by gmn or δab respectively. We also recall

for a p-form Ap that ∗2Ap = s(−1)p(D−p)Ap = s(−1)p(D+1)Ap where s is the signature of

the D-dimensional space, i.e. ∗2 = 1 for our M .

The Hodge decomposition of B gives

B = dϕ+ d†b2 + h , (2.15)

where ϕ is a globally-defined scalar, b2 a globally-defined two-form and h a globally-defined

harmonic one-form on the nilmanifold. The three terms on the right-hand side above are

orthogonal to each other with respect to the canonical pairing of one-forms on M . Let us

examine the first one and look for exact one-forms solving the eigenvalue equation. The

function ϕ can be expanded on the basis of eigenfunctions already found. In addition, one

verifies that

∆dvp,q = −µ2p,q dvp,q , ∆duk,l,n = −M2
k,l,n duk,l,n , (2.16)

from which we deduce a basis of exact one-eigenforms. These do not admit a zero-mode,

since one should exclude dv0,0 = 0. Using the orthonormality of the eigenfunctions and

proceeding as in (B.5) of [9], one verifies that these exact one-forms are orthonormal, up

to a rescaling by µp,q or Mk,l,n.

We now study the other two pieces of (2.15), which are co-closed: this amounts to

imposing the condition

d†B = 0 ⇔ d ∗B = 0 . (2.17)

If one considers a theory with a gauge symmetry, (2.17) can also be viewed as a gauge-fixing

condition. Indeed, for such a theory, the exact piece of B could be removed by a gauge

transformation, without loss of generality.

2.2.2 Co-closed one-forms

We expand B as

B = ϕa(x)ea , (2.18)
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with some scalars ϕa(x), a = 1, 2, 3. The exterior differential is also expressed on this

basis as

d = eaVa , (2.19)

where the vectors Va, introduced in section 2.1, are given by

V1 =
∂1
r1
, V2 =

∂2
r2
− fx1r1

∂3
r3
, V3 =

∂3
r3

. (2.20)

Using (2.14), the co-closed condition (2.17) takes the form

δabVaϕb = 0 . (2.21)

Moreover using (2.17), and the fact that ∆ϕ = δabVaVb ϕ [9], we compute

∆B = (fV2ϕ3 + fV3ϕ2 −∆ϕ1) e
1 + (−fV1ϕ3 − fV3ϕ1 −∆ϕ2) e

2

+
(
fV1ϕ2 − fV2ϕ1 −∆ϕ3 + f2ϕ3

)
e3 ,

(2.22)

where we have used (2.21) and the commutations (2.1) of the Va. The eigenvalue equa-

tion (2.13) then gets decomposed on its various components as

fV2ϕ3 + fV3ϕ2 −∆ϕ1 = Υϕ1 (2.23)

−fV1ϕ3 − fV3ϕ1 −∆ϕ2 = Υϕ2 (2.24)

fV1ϕ2 − fV2ϕ1 −∆ϕ3 + f2ϕ3 = Υϕ3 . (2.25)

We now expand our functions ϕa on the basis of Laplacian eigenfunctions previously de-

termined,

ϕa = δab
∑
k,l,n

Cbk,l,n uk,l,n + δab
∑
p,q

Db
p,q vp,q , (2.26)

with C and D constant coefficients. The equations to be solved are linear, and the depen-

dence on x3 in uk,l,n is exponential, so this dependence will not get mixed between the two

sums above; this is related to the orthogonality of the eigenfunctions. We then treat these

two sums independently.

Forms independent of x3. We start with the expansion of the ϕa (2.26) on the vp,q.

The fact that they are x3-independent simplifies the action of the Va. The condition (2.21)

and the three equations (2.23), (2.24), (2.25), become

PD1
p,q +QD2

p,q = 0 (2.27)

ifQD3
p,q + (P 2 +Q2)D1

p,q = ΥD1
p,q (2.28)

−ifPD3
p,q + (P 2 +Q2)D2

p,q = ΥD2
p,q (2.29)

ifPD2
p,q − ifQD1

p,q + (P 2 +Q2)D3
p,q + f2D3

p,q = ΥD3
p,q , (2.30)

where we introduce

P = 2π
p

r1
, Q = 2π

q

r2
, P 2 +Q2 = µ2p,q . (2.31)
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All solutions (except the trivial D1,2,3
p,q = 0) lead to the following eigenvalues Υ = Y p,q

±

Y p,q
± = P 2 +Q2 +

f2

2
±

√(
P 2 +Q2 +

f2

2

)2

− (P 2 +Q2)2 ≥ 0 , (2.32)

which solve the equation

(P 2 +Q2)f2 = (Υ− (P 2 +Q2)− f2)(Υ− (P 2 +Q2)) . (2.33)

The coefficients Da
p,q are fixed by the previous equations, giving the following eigenforms

For p2 + q2 6= 0 : Bp,q
± = Dp,q vp,q

(
Qe1 − Pe2 +

Υp,q
± − (P 2 +Q2)

if
e3
)

For p = q = 0 : Y 0,0
− = 0 : B0,0

1 = D0,0 v0,0 e
1 , B0,0

2 = D0,0 v0,0 e
2

Y 0,0
+ = f2 : B0,0

3 = D0,0 v0,0 e
3 .

(2.34)

Using the orthonormality of the vp,q, one verifies non-trivially that the above forms are

orthonormal ∫
Bp,q
ε ∧ ∗B

p′,q′

ε′ = δp,p′δq,q′δε,ε′ , (2.35)

upon fixing the normalisation constant Dp,q, using (2.33), to the value

Dp,q =
1√

Υp,q
ε + P 2 +Q2

for p or q 6= 0 , D0,0 = 1 . (2.36)

Forms dependent on x3. We turn to the expansion of the ϕa (2.26) on the uk,l,n,

which depend on x3. We first compute from (2.10), with y = |λ|
1
2wm, λ = k 2πf

r3 , and the

normalisation factor normn ∝ (2nn!)−
1
2 ,

V1uk,l,n = normn|λ|
1
2 e2πki(x

3+Nx1x2)e2πlix
1
∑
m∈Z

e2πkmix1 |λ|
1
4 e−

y2

2 i sgn(λ)yHn(y) , (2.37)

V2uk,l,n = normn|λ|
1
2 e2πki(x

3+Nx1x2)e2πlix
1
∑
m∈Z

e2πkmix1 |λ|
1
4 e−

y2

2
(
−yHn(y) +H ′n(y)

)
.

(2.38)

We use the following properties of the Hermite polynomials ∀n ∈ N, with H−1 = 0,

H ′n(w) = 2nHn−1(w)

2wHn(w) = Hn+1(w) + 2nHn−1(w) ,
(2.39)

to reconstruct the various uk,l,n. We get ∀n ∈ N

V1uk,l,n = |λ|
1
2

1

2
i sgn(λ)

(√
2(n+ 1)uk,l,n+1 +

√
2nuk,l,n−1

)
, (2.40)

V2uk,l,n = |λ|
1
2

1

2

(
−
√

2(n+ 1)uk,l,n+1 +
√

2nuk,l,n−1

)
, (2.41)

V3uk,l,n =
|λ|
f

i sgn(λ)uk,l,n , (2.42)
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with uk,l,−1 = 0. For convenience, we now change notations with respect to the constant

C of (2.26), after which we have

ϕ1 =
∑
n∈N

c1nuk,l,n
√

2nn! , ϕ2 =
∑
n∈N

c2n
i sgn(λ)

uk,l,n
√

2nn! , ϕ3 =
∑
n∈N

c3n
2
uk,l,n

√
2nn! ,

(2.43)

where in the new constants can we drop for simplicity the indices k, l although they should

be understood as present.

This material allows us to reformulate the various constraints. We start with the

condition (2.21) that becomes∑
n∈N
|λ|

1
2

1

2
i sgn(λ)

(
c1n−1 + c2n−1 + 2(n+ 1)(c1n+1 − c2n+1) + c3n

|λ|
1
2

f

)
uk,l,n

√
2nn! = 0 ,

(2.44)

where we introduced c1,2−1 = 0. Each term of the sum should vanish, leading to, ∀n ∈ N,

c3n
|λ|

1
2

f
= −(c1n−1 + c2n−1) + 2(n+ 1)(−c1n+1 + c2n+1) . (2.45)

We introduce for future convenience c1,2−2 = 0, giving with (2.45) c3−1 = 0. We turn to the

Laplacian equations: (2.23) and (2.24) lead respectively to, ∀n ∈ N

c1n(M2
k,l,n −Υ) + c2n|λ|+

|λ|
1
2f

4
(2(n+ 1)c3n+1 − c3n−1) = 0

c2n(M2
k,l,n −Υ) + c1n|λ|+

|λ|
1
2f

4
(2(n+ 1)c3n+1 + c3n−1) = 0 ,

(2.46)

where we used (2.8) for the mass. We add and subtract the above two equations, use (2.45),

and obtain ∀n ∈ N

(M2
k,l,n −Υ + |λ| − (n+ 1)f2)(c1n + c2n)− 2(n+ 1)(n+ 2)f2(c1n+2 − c2n+2) = 0 (2.47)

(M2
k,l,n −Υ− |λ|+ nf2)(−c1n + c2n)− f2

2
(c1n−2 + c2n−2) = 0 . (2.48)

Finally, using again (2.45), (2.25) becomes ∀n ∈ N

(M2
k,l,n−Υ−|λ|+f2)(c1n−1+c2n−1)+2(n+1)(M2

k,l,n−Υ+|λ|+f2)(c1n+1−c2n+1) = 0 . (2.49)

Introducing

∀n ≥ −2, c±n = c1n ± c2n , (2.50)

and c1,2−2 = 0, c1,2,3−1 = 0, we summarize the conditions to be solved, (2.45), (2.47), (2.48)

and (2.49), as follows ∀n ∈ N

c3n
|λ|

1
2

f
= −c+n−1 − 2(n+ 1)c−n+1 (2.51)

c+n (M2
k,l,n −Υ + |λ| − (n+ 1)f2)− 2(n+ 1)(n+ 2)f2c−n+2 = 0 (2.52)

c−n (M2
k,l,n −Υ− |λ|+ nf2) +

f2

2
c+n−2 = 0 (2.53)

c+n−1(M
2
k,l,n −Υ− |λ|+ f2) + 2(n+ 1)c−n+1(M

2
k,l,n −Υ + |λ|+ f2) = 0 . (2.54)
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Equation (2.51) determines the coefficients c3n in terms of c1,2n . In their turn the c1,2n
are determined by the system of equations (2.52)–(2.54), which is overdetermined. To see

this more clearly it is convenient to perform a shift in the index n, to bring the system to

the following form,4 ∀n ∈ N,

c+n (αn − (n+ 1)f2)− 2(n+ 1)(n+ 2)f2c−n+2 = 0 (2.55)

c+n f
2 + 2c−n+2(αn + 2|λ|+ (n+ 2)f2) = 0 (2.56)

c+n (αn + f2) + 2(n+ 2)c−n+2(αn + 2|λ|+ f2) = 0 , (2.57)

where we have introduced αn = M2
k,l,n − Υ + |λ|, and we have taken into account that

M2
k,l,n+p = M2

k,l,n + 2p|λ|.
Equations (2.55)–(2.57) constitute a homogeneous system of three equations for two

unknowns. Generically this system can only admit the trivial solution where both c+n
and c−n+2 vanish identically. The necessary and sufficient condition for the existence of a

non-trivial solution is the vanishing of all 2 × 2 sub-determinants of the 3 × 2 matrix of

coefficients. Remarkably, the three conditions thus obtained turn out to be identical: the

system admits non-trivial solutions for c+n , c−n+2, provided αn obeys the following condition

α2
n + αn(f2 + 2|λ|)− 2(n+ 1)|λ|f2 = 0 , (2.58)

which ensures that all three equations (2.55)–(2.57) become equivalent. c+n and c−n+2 can

then be non-zero, and one is given in terms of the other. From (2.58), αn and therefore Υ is

determined in terms of n; having other coefficients c±m, m ∈ N, would then lead to different

Υ and thus correspond to different eigenmodes. For a given n, the system is then solved

by setting c±m = 0 for all m, except for c+n and c−n+2. This implies that the non-vanishing

coefficients of the eigenmode are c1,2n , c1,2n+2 and c3n+1. Moreover, those are determined up

to an overall constant, corresponding to the normalization of the one-form.

Explicitly, the eigenforms Bk,l,n
± and their eigenvalues Υ = Y k,l,n

± (we recall k ∈ Z∗,
n ∈ N, l = 0, . . . , |k| − 1) are given by

Bk,l,n
± =

3∑
a=1

ϕk,l,na ea

where ϕk,l,n1 =
1

2
c
√

2nn!

(
uk,l,n −

√
(n+ 1)(n+ 2)f2

αn + 2|λ|+ (n+ 2)f2
uk,l,n+2

)

ϕk,l,n2 = − i

2
sgn(λ)c

√
2nn!

(
uk,l,n +

√
(n+ 1)(n+ 2)f2

αn + 2|λ|+ (n+ 2)f2
uk,l,n+2

)

ϕk,l,n3 = − 1

2|λ|
1
2

c
√

2nn!
f
√

2(n+ 1)(αn + 2|λ|)
αn + 2|λ|+ (n+ 2)f2

uk,l,n+1 ,

(2.59)

4We are looking for a solution to the eigenvalue problem (2.13) with a given Υ, and the latter should

therefore be considered as fixed. The solution is given by a set of coefficients c1,2,3n . Equations (2.52)–(2.54)

involving these coefficients have been obtained by projecting a sum over n on each uk,l,n, but the projection

could have been done equivalently on each uk,l,n±1, leading to shifted equations. Doing so would have given

equations describing the same solution with eigenvalue Υ. So when shifting equations (2.52)–(2.54) as done

to reach (2.55)–(2.57), Υ is considered as fixed.
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with c a constant to be determined by the overall normalization, and

Y k,l,n
± = M2

k,l,n + 2|λ|+ 1

2
f2 ±

√(
|λ|+ 1

2
f2
)2

+ 2(n+ 1)|λ|f2 > 0 , (2.60)

with M2
k,l,n = λ2

f2 + (2n+ 1)|λ|, or more explicitly

Y k,l,n
± = k2

(
2π

r3

)2

+ (2n+ 3)
2π

r3
|kf|+ 1

2
f2 ±

√(
2π

r3
|kf|+ 1

2
f2
)2

+ 2(n+ 1)
2π

r3
|kf|f2 .

(2.61)

As the coefficients ϕk,l,na depend on αn = M2
k,l,n−Y

k,l,n
± + |λ|, each of Y± leads to a different

eigenmode B±. The orthonormality of the eigenforms is expressed as∫
Bk,l,n
ε ∧ ∗Bk′,l′,n′

ε′ =

∫
d3x
√
g δabϕk,l,n,εa ϕk

′,l′,n′,ε′

b = δk,k′δl,l′δn,n′δε,ε′ , (2.62)

for ε = ±, by appropriately choosing the constant c. The orthogonality can be verified

using the orthonormality of the uk,l,n.5

2.3 Higher forms and summary

In a three-dimensional space, the spectrum of the two- and three-forms can be deduced

respectively from that of the one-forms and the scalars. Indeed, one can always rewrite a

p-form Ap in terms of its Hodge dual as Ap = ∗B3−p, and one verifies that

∆A2 = ΥA2 ⇔ ∆B1 = ΥB1 , ∆A3 = ΥA3 ⇔ ∆B0 = ΥB0 . (2.64)

The complete spectrum of scalars and one-forms, as well as the basis of eigenmodes, thus

provides those of the two- and three-forms by a simple application of the Hodge star. We

summarize the former in table 1.6

Finally, note we can introduce the following real eigenforms

Bk,l,n
r ε =

1√
2

(Bk,l,n
ε +Bk,l,n

ε ) , Bp,q
r ε =

1√
2

(Bp,q
ε +Bp,q

ε ) . (2.65)

One has∫
3

d3x
√
g uk,l,nuk′,l′,n′ = δk,−k′ × . . . ,

∫
3

d3x
√
g vp,qvp′,q′ = δp,−p′δq,−q′ . (2.66)

This implies that {Bk,l,n
r ε } or {Bp,q

r ε } form an orthonormal set if one restricts e.g. to kk′ > 0

or pp′ > 0, qq′ > 0.

5More generally, consider two co-closed one-eigenforms B1, B2 of eigenvalues Y1, Y2 in three dimensions.

Using that A ∧ ∗B = B ∧ ∗A for forms of same degree, and integration by parts, one can show

Y2

∫
3

B1 ∧ ∗B2 =

∫
3

∗B1 ∧∆B2 = Y1

∫
3

B1 ∧ ∗B2 . (2.63)

This implies that B1 is orthogonal to B2 if Y1 6= Y2.
6Our convention for the Laplacian operator is such that ∆ = ∗ d ∗ d + d ∗ d ∗ on any p-form, p ≥ 0. This

is the reason for the different signs of the eigenvalues summarized in table 1, where we recall that Y p,q± ≥ 0

and Y k,l,n± > 0. The more conventional definition, ∆ = d†d + dd†, would provide a positive sign to all

eigenvalues.
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Eigenmodes Eigenvalues

Scalars vp,q in (2.10) −µ2
p,q in (2.9)

uk,l,n in (2.10) −M2
k,l,n in (2.9)

Exact one-forms dvp,q with pq 6= 0 −µ2
p,q

duk,l,n −M2
k,l,n

Co-closed one-forms Bp,qε in (2.34) Y p,q± in (2.32)

Bk,l,nε in (2.59) Y k,l,n± in (2.60)

Table 1. Scalar and one-form eigenmodes with respective eigenvalues for the Laplacian on the

three-dimensional Heisenberg nilmanifold.

3 Truncation and dimensional reduction on manifolds with SU(3) struc-

ture

We focus here on reductions of ten-dimensional type II supergravities on manifolds with

an SU(3) structure, following [12–17]. As will be discussed in more detail in section 5, the

starting point is to select a finite set of modes, e.g. forms on the internal six-dimensional

manifold M, on which the fields are expanded. One would ideally like to justify this

truncation of the ten-dimensional degrees of freedom to a finite set of modes as leading

to an effective action describing the low energy physics of the theory. We do not expect

this be to the case here. Rather, we select a finite set of internal forms following a list

of conditions that have been identified, especially in [15, 17], so that one ends up after

dimensional reduction with a four-dimensional N = 2 gauged supergravity. Having an

explicit realisation of this program is still interesting and non-trivial, because it is done

on manifolds with an SU(3) structure, appearing in type II supergravity backgrounds that

are more general than those where M is a Calabi-Yau. The only explicit example where

all conditions of [17] have been satisfied is [21]; here, we can make use of our explicit basis

of eigenforms on a non-trivial manifold to provide a new concrete example. The reduction

made in [15] mimics to some extent the reduction on Calabi-Yau manifolds, the main

difference being that some forms of the finite set are not closed, resulting in non-vanishing

SU(3) torsion classes. However, the finite set is closed under the action of the exterior

derivative, making the reduction proposed on manifolds with SU(3) structure likely to be

a CT, even though there is no general proof of this point.

We follow here the list of conditions of [17] that completes earlier works, and would

like to build a finite set of forms satisfying them. We make use of the Laplacian eigenforms

on the three-dimensional nilmanifold, summarized in section 2.3. We consider the six-

dimensionalM to be the direct product of two three-dimensional compact manifolds,M =

M ×M ′, each of them being either the three-dimensional nilmanifold studied previously

or a three-torus.

3.1 Warm-up: co-closed two-forms

As part of the requirements on the finite set of internal forms, we need to identify co-closed

two-forms ω on M. We start with the case where ω has two legs on say M . It can then
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be decomposed on the basis of two-eigenforms of the Laplacian on M . As discussed in

section 2.3, those are the Hodge duals of one-eigenforms. Using the Hodge decomposition,

these one-forms are either exact dfI or co-closed BI one-forms, with a general index I.

Decomposing the two-form on that basis ∗3dfI , ∗3BI , the coefficients ceI , c
c
I are a priori

functions on M ′. Imposing ω to be co-closed is then equivalent to having BI harmonic; we

rewrite it as Bh
I with coefficient chI . The second possibility is that ω has one leg on each

three-dimensional manifold. We then write it as a sum with constant coefficients on wedge

products of one-forms, the latter being expanded on the basis of exact dfI and co-closed

BI . Having ω co-closed amounts to keeping only the BI ∧B′J .

To summarize, the most general co-closed two-form ω on M is

ω =
∑
I

ceI ∗3 dfI + chI ∗3 Bh
I + ce

′
I ∗3′ dfI

′ + ch
′
I ∗3′ Bh′

I + ccc
′

IJBI ∧BJ ′ , (3.1)

where ceI , c
h
I are functions on M ′, ce

′
I , c

h′
I are functions on M and ccc

′
IJ are constants. We are

now interested in its exterior derivative. We first compute

dω =
∑
I

−m2
fI
ceIfIvol3 −m2

fI
′ce
′
I fI

′vol3′ + ccc
′

IJ (dBI ∧BJ ′ −BI ∧ dBJ
′) , (3.2)

with ∆fI = −m2
fI
fI , ∗31 = vol3 = d3x

√
g = e1 ∧ e2 ∧ e3, where we set for simplicity

all coefficients to be constant. We now turn to the exterior derivative of the co-closed

one-forms.

We consider the co-closed one-eigenforms on the nilmanifold, described in section 2.2.2.

We first focus on the Bk,l,n
± (2.59), and obtain using (2.25)

dBk,l,n
± =

Y k,l,n
± −M2

k,l,n+1

f
ϕk,l,n3 e1 ∧ e2 + (−V3ϕk,l,n1 + V1ϕ

k,l,n
3 ) e1 ∧ e3

+(−V3ϕk,l,n2 + V2ϕ
k,l,n
3 ) e2 ∧ e3 .

Properties (2.40)–(2.42) are used to compute the remaining terms. In addition, we verify

using (2.58) the identity
f(αn + 2|λ|)(n+ 1)

αn + 2|λ|+ (n+ 2)f2
=
αn
f
. (3.3)

This allows to show that

dBk,l,n
± =

Y k,l,n
± −M2

k,l,n − 2|λ|
f

∗3 Bk,l,n
± . (3.4)

The coefficient is equal −(αn + |λ|)/f. Another identity verified by virtue of (2.58) is

(αn + |λ|)2

f2
= Y k,l,n

± . (3.5)

The above is then rewritten as

dBk,l,n
± = −

√
Y k,l,n
± ∗3 Bk,l,n

± . (3.6)
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This is clearly compatible with the following identity, valid for any co-closed one-form in

three dimensions with ∆BI = ΥBI ,∫
3

dBI ∧ ∗3dBI = Υ

∫
3
BI ∧ ∗3BI , (3.7)

shown with an integration by parts. This identity also shows that the Laplacian eigenvalue

of a real co-closed one-form in three dimensions has to be positive. Another consistency

check is the following result for a constant a

dBI = a ∗BI , d ∗BI = 0 , ∆BI = ΥBI ⇒ Υ = a2 , (3.8)

shown by applying ∗d∗ on both sides of the first equality.

We turn to the other co-closed one-eigenforms on the nilmanifold Bp,q
ε (2.34).

From (2.33), one deduces the following identity

(Y p,q
± − (P 2 +Q2))2 = f2Y p,q

± . (3.9)

Using this, one shows

dBp,q
± = ±sgn(f)

√
Y p,q
± ∗3 Bp,q

± . (3.10)

One verifies that this formula holds as well for p = q = 0. This result is again compatible

with (3.7) and (3.8). The properties (3.6) and (3.10) combined with the exterior derivative

of the co-closed two-form (3.2) will be useful in the following.

3.2 A first set of forms

Inspired by the results of the previous section, we now build a set of forms verifying some

of the conditions listed in [17]. We consider co-closed one-eigenforms {BI} on M and {BI ′}
on M ′. We restrict to orthonormal and real one-forms, which in addition verify

dBI = sI
√
YI ∗3 BI , (3.11)

and similarly for BI
′, where sI = ±1 is a sign and YI is the real, positive, Laplacian

eigenvalue, as in (3.6) and (3.10). Such one-forms can be built from the previous examples:

see (2.65) and below. We now introduce the following set of forms

ωIJ =
1

NIJ
BI ∧BJ ′ , ω̃KL = (NIJ)2δKIδLJ ∗6 ωIJ = NIJδKIδLJ ∗3 BI ∧ ∗3′BJ ′ ,

αIJ =
1

AIJ
BJ
′ ∧ ∗3BI , βKL = −AIJ δKIδLJBI ∧ ∗3′BJ ′ ,

(3.12)

where NIJ and AIJ are real normalization constants, whose indices should not be summed

over. The orientation convention, necessary when splitting the ∗6 on each three-dimensional

space, goes as follows: the six indices are ordered as the three of M first, followed by the
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three of M ′. This set of forms verifies the following properties∫
6
ωIJ ∧ ∗6 ωKL =

1

(NIJ)2
δIKδJL (3.13)∫

6
αIJ ∧ βKL = δKI δ

L
J ,

∫
6
αIJ ∧ αKL =

∫
6
βIJ ∧ βKL = 0 (3.14)

∗6 αIJ = BIJ,KLβ
KL , ∗6βKL = CKL,MNαMN (3.15)

where BIJ,KL = (AKL)−2δIKδJL , CKL,MN = −(AMN )2δKMδLN (3.16)

∗6 d ∗6 ωIJ = 0 , dω̃KL = 0 (3.17)

dωIJ = mIJ
KLαKL + eIJ,KLβ

KL , dαIJ = eKL,IJ ω̃
KL ,

dβKL = −mIJ
KLω̃IJ (3.18)

where mIJ
KL =

sI
√
YIAIJ
NIJ

δKI δ
L
J , eIJ,KL =

sJ
′
√
YJ
′

NIJAIJ
δIKδJL (3.19)

mIJ
KLeMN,KL − eIJ,KLmMN

KL = 0 . (3.20)

In addition, the entries of m and e can be made integer, by choosing for instance

For YIYJ
′ 6= 0 : AIJ =

(
YJ
′

YI

) 1
4

, NIJ =
(YIYJ

′)
1
4

NIJ
, NIJ ∈ Z∗ , (3.21)

For YI = Y 6= 0 , YJ
′ = 0 or vice-versa : AIJ = 1 , NIJ =

√
Y

NIJ
, NIJ ∈ Z∗ . (3.22)

This way, conditions 1,2,3,5 of [17] are satisfied.

Only conditions related to the SU(3) structure remain. One has to build the SU(3)

structure forms J and Ω in terms of a finite set of forms among the previous ones: J in

terms of the ω and Ω in terms of the α and β. The forms J and Ω have to satisfy certain

constraints, among which the compatibility condition J ∧ Ω = 0. A way to ensure this is

to impose, as in [15],

ω ∧ α = ω ∧ β = 0 , (3.23)

for all ω, α, β entering J and Ω, while a refined constraint is considered in condition 6

of [17]. For illustration, we consider our forms ωII , αII , β
II : applying the constraint (3.23)

then amounts to finding BI , BJ , I 6= J such that BI ∧ ∗3BJ = 0. Except in the case to be

treated in section 3.3, this is difficult to achieve with our co-closed one-forms, due to their

various components, but also because of the functions appearing and the absence of an

integral in that constraint. We still find one solution by taking B0,0
1 , Bp,0

r ε , p 6= 0 (the latter

is defined in (2.65)) because Bp,0
r ε ∧ ∗3B0,0

1 = 0; one can equivalently take B0,0
2 , B0,q

r ε , but

not all four forms together. From those, one can build two different forms ωII . Another

condition of the SU(3) structure is however∫
6
J ∧ J ∧ J 6= 0 . (3.24)
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The two ωII built from B0,0
1 , Bp,0

r ε are then not enough. We now turn to a simpler option

to build the SU(3) structure forms.

3.3 Finite set of forms and SU(3) structure

We consider the following co-closed, real, orthonormal one-eigenforms on M

B1 = v0,0 e
1 , B2 = v0,0 e

2 , B3 = v0,0 e
3 , (3.25)

and similarly for M ′ forms. One has

Y1 = Y2 = Y1
′ = Y2

′ = 0 , Y3 = f2 , Y3
′ = f′

2
, s3 = sgn(f) , s3

′ = sgn(f′) . (3.26)

In that case, one treats at the same time the three-torus and the three-dimensional nil-

manifold by setting or not the structure constant(s) to zero. Of the forms of (3.12), we

only need those with twice the same index, i.e. ωII , αII , etc. We then replace the doubled

index by only one, for I = 1, 2, 3, as follows

ωI =
1

NI
BI ∧BI ′ , ω̃I = NI ∗3 BI ∧ ∗3′BI ′ ,

αI =
1

AI
BI
′ ∧ ∗3BI , βI = −AI BI ∧ ∗3′BI ′ ,

(3.27)

where the expressions are understood without sum over indices. We introduce in addition

the following forms to complete our finite set, with some real constant A0

α0 = −v0,0
′

v0,0

1

A0
B1
′ ∧ ∗3B1

′ = − 1

v0,0A0
B1
′ ∧B2

′ ∧B3
′ ,

β0 =
v0,0
v0,0′
A0B1 ∧ ∗3B1 =

A0

v0,0′
B1 ∧B2 ∧B3 .

(3.28)

These new forms verify all previous requirements extended to a new index 0, namely for

I = 1, 2, 3, ∫
6
α0 ∧ β0 = 1 ,

∫
6
α0 ∧ α0 =

∫
6
β0 ∧ β0 = 0 (3.29)∫

6
α0 ∧ βKL =

∫
6
αIJ ∧ β0 = 0 ,

∫
6
α0 ∧ αKL =

∫
6
β0 ∧ βKL = 0

∗6 α0 = B0,0β
0 , ∗6β0 = C0,0α0

where B0,0 =

(
v0,0
′

v0,0

)4

(A0)
−2 , C0,0 = −

(
v0,0
v0,0′

)4

(A0)
2

BIJ,0 = B0,KL = 0 , C0,MN = CKL,0 = 0

mIJ
0 = eIJ,0 = 0 , dα0 = dβ0 = 0 ,

where we have introduced new coefficients for B,C,m, e. A generalization of these new

forms, BI
′ ∧ ∗3BI ′ and BI ∧ ∗3BI , could have been introduced previously with the more

general set (3.12).
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We now define the SU(3) structure forms

ZI = BI + iBI
′ , J =

i

2

3∑
I=1

ZI ∧ ZI , Ω = Z1 ∧ Z2 ∧ Z3 . (3.30)

Using the above, one shows

J =
3∑
I=1

V IωI , Ω =
3∑
I=0

XIαI −GIβI ,

where V I = NI , XI = iv0,0AI , GI = −v0,0
′

AI
.

(3.31)

With our forms, one verifies (3.23), i.e.

∀I = 1, 2, 3, J = 0, 1, 2, 3 , ωI ∧ αJ = ωI ∧ βJ = 0 . (3.32)

Condition 6 of [17] is then trivially satisfied, and all conditions of [15] are verified. We

are left with additional requirements found in [17], namely conditions 4,7,8,9, that will be

verified by our finite set of forms and the above SU(3) structure.

The remaining conditions have to do with moduli dependence. Satisfying them requires

to fix the normalization constants. We choose

N1 =

√
r1r1′

r2r2′r3r3′
1

N1
, N2 =

√
r2r2′

r1r1′r3r3′
1

N2
, N3 =

√
r3r3′

r1r1′r2r2′
1

N3
, NI ∈ Z∗ ,

A1 =

√
r2r3r1′

r2′r3′r1
, A2 =

√
r1r3r2′

r1′r3′r2
, A3 =

√
r1r2r3′

r1′r2′r3
,

A0 =

√
r1r2r3

r1′r2′r3′
=
v0,0
′

v0,0
,

(3.33)

where we recall that

v0,0 =
1√
V

=
1√

r1r2r3
, v0,0

′ =
1√
V ′

=
1√

r1′r2′r3′
. (3.34)

This is motivated by the requirement of having integer m and e coefficients,7 given here as

follows for K = 0, 1, 2, 3

m1
K = m2

K = e1K = e2K = 0 , m3
K = δK3 N N3 , e3K = δ3K N

′N3 . (3.35)

A further motivation comes from condition 8 of [17], stating that the following integral

should not depend on moduli, e.g. here the radii∫
6
ωI ∧ ωJ ∧ ωK = −6 δ1(Iδ

2
Jδ

3
K)N1N2N3 , (3.36)

7The choice made corresponds to the suggestion (3.21), except for the integers N and N ′ of the structure

constants that are not included in the normalization constants.
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the condition 8 being therefore satisfied here. In addition, these normalization constants

make our set of forms, ωI=1,2,3, ω̃
I=1,2,3 and αK=0,1,2,3, β

K=0,1,2,3, completely independent

of any radii, when expressed in terms of the dxm. Conditions 7 and 9 of [17] are then

also satisfied.

We are left with condition 4 of [17]: it requires, in our framework, the forms

φI = αI − ∂IGJβJ , I = 0, 1, 2, 3 (3.37)

to be (3,0) and (2,1) only, where we interpret this in terms of the almost complex structure

defined by the {ZI , ZI}. The coefficients ∂IGJ are defined thanks to ∂I = ∂
∂XI , a derivative

we elaborate on below. To determine the type of forms we have, we rewrite the BI and

BI
′ in terms of the ZI and ZI . For instance, one gets

α1 =
1

A18iv0,0

(
Z123 − Z123 + Z12 ∧ Z3 − Z13 ∧ Z2 − Z23 ∧ Z1

+ Z1 ∧ Z23 + Z2 ∧ Z13 − Z3 ∧ Z12

)
,

(3.38)

where we denote Z123 = Z1 ∧ Z2 ∧ Z3, etc. There is a unique combination of α1 and βI

that contains no (0,3) and (1,2) terms: it is given by

α1 −
i

2

v0,0
′

v0,0A1

(
β0

A0
− β1

A1
+
β2

A2
+
β3

A3

)
=

1

4iA1v0,0

(
Z123 + Z12 ∧ Z3 − Z13 ∧ Z2 − Z23 ∧ Z1

)
.

(3.39)

The question is now whether the coefficients appearing in the above correspond to −∂1GJ .

Using the relation

X0X1X2X3 = (v0,0v0,0
′)2 , (3.40)

one shows that

GI = −
√
−X

JXKXL

XI
, for εIJKL 6= 0 . (3.41)

We deduce the following results

∂JGI =
i

2

v0,0
′

v0,0

1

AIAJ
for J 6= I , ∂IGI = − i

2

v0,0
′

v0,0

1

A2
I

. (3.42)

This matches precisely the coefficients in the combination (3.39). One verifies explicitly

that the same holds for the other forms, i.e. φI=0,1,2,3 are only (3,0) and (2,1) forms.

Condition 4 of [17] is then satisfied.

To conclude, our finite set of forms ωI=1,2,3, ω̃
I=1,2,3, αJ=0,1,2,3, β

J=0,1,2,3, together with

the above SU(3) structure, verify all conditions of [12–17], so that one eventually obtains

from this truncation a four-dimensional N = 2 gauged supergravity. It provides a new

explicit example satisfying all conditions of [17], the only other known example being

that of [21] (the work [18] presents interesting examples satisfying conditions 1-6 of [17]).

Note that our forms are built from Maurer-Cartan forms with constant coefficients: this

truncation is then expected to be consistent and give a gauged supergravity, see section 5.
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Furthermore, our set of forms (together with the constant function and the six-dimensional

volume form) turn out to correspond to the set of even forms under a certain projection,

namely that of three space-filling orientifold O5-planes, wrapping respectively the internal

directions eI ∧ eI′ given by ωI=1,2,3. Indeed our forms can be written in terms of parallel

or transverse directions as e|| ∧ e||, e⊥ ∧ e⊥, e|| ∧ e⊥ ∧ e⊥. We do not know of a reference

where this precise reduction has been performed towards a gauged supergravity, so our set

of forms provides a new result on such a reduction. This remark on the projection may

also indicate a way to go from the finite set of forms obtained by a low energy truncation

in section 4.1, which gives a trivial structure group (the manifold is parallelizable), to the

present, more restricted finite set (in particular having no one- or five-forms) from which

one builds the SU(3) structure. Such a relation would be interesting: it would provide a

justification of the present truncation and finite set, as capturing the low energy physics.

4 Low energy approximation, and the swampland

4.1 The light spectrum

The purpose of having fluxes in compactifications from ten to four dimensions is often

to stabilize moduli, i.e. providing them with a mass. One usually needs to truncate the

infinite towers of Kaluza-Klein modes, so keeping the flux energy scale requires that it

should be below the first Kaluza-Klein mass, if one wants the truncation to make sense

as a low energy approximation. Therefore, having a few light massive modes in addition

to the massless ones, with a mass scale given by the fluxes, requires a hierarchy between

fluxes and Kaluza-Klein masses. In the case of a torus, the hierarchy is given by the large

volume limit, which is also the supergravity or classical limit. Indeed, a flux like the H-flux

is quantized as follows

1

4π2α′

∫
3
H =

1

4π2l2s

∫
3
H123 e

1 ∧ e2 ∧ e3 = N ∈ Z∗ (4.1)

which gives, for a constant flux on a three-torus (with radii Rm=1,2,3)

H123 = N
l2s

2πR1R2R3
. (4.2)

The energy scale of the flux H123 can then be made much smaller than the Kaluza-Klein

mass 1/Rm=1,2,3 if Rm=1,2,3 � ls (×
√
|N |), i.e. if there is a large volume. This hierarchy

may provide a justification for the usual truncation made on Calabi-Yau manifolds, even

though knowing the precise low energy theory still requires to study fluctuations around

an explicit background, as discussed in section 5.

Here we present a different limit or approximation, that generates analogously a hier-

archy between the “geometric flux” f and the Kaluza-Klein scales 1/rm, therefore allowing

to keep the former while truncating the latter. We recall that

f =
Nr3

r1r2
, N ∈ Z∗ , rm > 0 . (4.3)
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We propose to consider the following approximation

|N |r3 � r1 , |N |r3 � r2 , (4.4)

which can be understood (it implies r3 � r1,2) as having a small fiber (along e3) compared

to the base (along e1,2); one may refer to this as a small fiber, or large base, limit, in

analogy to the large volume limit. This regime can be motivated from the T-dual setup of

an H-flux on a torus with large volume. Indeed, the T-duality rules give

H123 = −f312 = f , r1 = 2πR1 , r2 = 2πR2 , r3 = 2π
l2s
R3

, (4.5)

where we rescale the new radii by 2π to fit our conventions; the condition R1,2,3 � ls
√
|N |

then becomes |N |r3 � 2πls
√
|N | � r1,2, from which one recovers (4.4). The T-dual

picture is however only a motivation, as we rather require here 2πls|N | � |N |r3 � r1,2, to

remain in the supergravity (and large volume) regime. It is physically plausible to have a

small fiber, for instance in the class of solutions of [22] where branes and orientifolds wrap

the fiber.

We deduce from (4.4) the following hierarchies

|f| � 1

r1
,

1

r2
� 1

r3
. (4.6)

As anticipated, the geometric flux generates a light energy scale compared to the base

Kaluza-Klein scale, itself light compared to the fiber Kaluza-Klein scale. We thus introduce

the following low energy approximation or truncation

Low energy approximation: truncate modes of mass ≥ 1
r1 ,

1
r2 ,

1√
r1r2

, given (4.4). (4.7)

We now determine the resulting spectrum of light modes, using the summary of section 2.3.

Light scalars and three-forms. With the previous notation

P = 2π
p

r1
, Q = 2π

q

r2
, λ = k

2πf

r3
, (4.8)

we rewrite the squared masses of the scalar spectrum (2.9)

µ2p,q = P 2 +Q2 , M2
k,l,n =

λ2

f2
+ (2n+ 1)|λ| . (4.9)

We recall that p, q, n ∈ N, k ∈ Z∗. Therefore, the condition (4.6) implies

f2 � |λ| � λ2

f2
. (4.10)

Given that |λ| = |kN |2π 1
r1r2 , we deduce that the low energy approximation (4.7) only

leaves the scalar mode v0,0 of mass µ0,0 = 0, all others are truncated. Correspondingly, the

only light three-form is v0,0 e
1 ∧ e2 ∧ e3.
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Light one- and two-forms. We start with the exact one-forms. Their spectrum is that

of the scalar eigenmodes, without the zero-mode: there is therefore no light mode among

those forms. We turn to the co-closed one-forms, and first consider Bp,q
ε , whose spectrum

is given in (2.32). For P 2 +Q2 6= 0, one can develop its expression into

Y p,q
± = (P 2 +Q2)

(
1± |f|√

P 2 +Q2
+

1

2

f2

P 2 +Q2
+ o

(
f2

P 2 +Q2

))
. (4.11)

Therefore, for P 2 + Q2 6= 0, the low energy approximation (4.7) truncates this whole

spectrum. We are left with the following light modes

B0,0
1 = v0,0 e

1, B0,0
2 = v0,0 e

2, Y 0,0
− = 0 ,

B0,0
3 = v0,0 e

3, Y 0,0
+ = f2 .

(4.12)

Correspondingly, the light two-forms are v0,0 e
2 ∧ e3, v0,0 e3 ∧ e1, v0,0 e1 ∧ e2.

We turn to the one-forms Bk,l,n
ε , whose spectrum is given in (2.60). We introduce the

dimensionless parameter

ε =
f2

|λ|
(4.13)

which is small compared to 1 given (4.10). We first rewrite the eigenvalue as

Y k,l,n
± = |λ|

(
ε−1 + 2n+ 3 +

1

2
ε±

√
1 + ε(2n+ 3) +

1

4
ε2

)
. (4.14)

Even though ε� 1, one should pay attention to quantities like ε n, as n can be arbitrarily

big. However, one has

ε−2 � 1 , (2n+ 3)2 � ε(2n+ 3) , (4.15)

so the square root can be neglected, and one eventually gets

Y k,l,n
± = |λ|

(
ε−1 + 2n+ 3 + o(ε−1 + 2n+ 3)

)
. (4.16)

Since |λ|ε−1 = k2
(
2π
r3

)2
, we conclude that this whole spectrum is truncated by the low

energy approximation (4.7), and no light state remains.

Summary: the light modes. To summarize, the low energy approximation (4.7) trun-

cates the spectrum to the following light modes on the nilmanifold, given as set of forms

with their eigenvalue in brackets

v0,0 (0), v0,0 e
1 (0), v0,0 e

2 (0), v0,0 e
3 (f2),

v0,0 e
2 ∧ e3 (0), v0,0 e

3 ∧ e1 (0), v0,0 e
1 ∧ e2 (f2), v0,0 e

1 ∧ e2 ∧ e3 (0) .
(4.17)

Up to the normalisation constant v0,0 = 1√
V

, this turns-out to be the complete set of forms

built from the Maurer-Cartan one-forms, with constant coefficients.
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4.2 Different regimes: entering the swampland

Before discussing in section 5 the effective theory associated to the previous low energy

truncation, let us explore what happens when going away from this regime (4.4), that

allowed the hierarchy (4.6) and truncation (4.7). The three radii rm play here the role of

“moduli”, and we now move away, in the corresponding moduli space or field space, from

this point where we found a controlled truncation to a finite set of light modes. This is

motivated by the recent discussion on the validity of effective theories, when one moves at

large distances (Planck scale) in field space. For effective theories of a quantum gravity, the

following behavior has been conjectured [19, 20]: if one moves from a point φ0 by a field

space distance ∆φ, there will be an (infinite) tower of states of mass m(φ) that become

exponentially light as follows

m(φ0 + ∆φ) = m(φ0) f(φ0,∆φ) e
−α∆φ

Mp , (4.18)

where Mp is the Planck mass, f is a subdominant function with respect to the exponential,

and α should be of order 1. If this “refined swampland distance conjecture” holds, it

implies that the quantum gravity effective theory at φ0, where the tower of states has been

truncated, would not be a valid description anymore after ∆φ ∼ Mp. This would have

consequences for e.g. large field inflation models that allow such displacements; we refer

to [23] for a recent review, while various checks and discussions on this conjecture can be

found in [24–32]. Testing the proposal (4.18) presents two independent difficulties: first,

one needs to know the dependence of the spectrum on the fields or moduli, m(φ), and

second, one needs to know the proper field space distance ∆φ. The latter requires the

field space metric, which can be read off of the kinetic terms. Here, we make use of our

knowledge of the Laplacian spectrum to discuss the first point: even though it does not

necessarily coincide with the mass spectrum of the theory (see section 5), it still provides

a first intuition on the various towers of modes.

Our starting φ0 is the regime (4.4) where none of rm=1,2,3 is large, so that the Kaluza-

Klein towers are truncated as in (4.7). If r1 or r2 becomes large, many modes will become

light, starting with the scalars vp,q which admit the standard Kaluza-Klein spectrum. Let

us rather maintain r1, r2 fixed. To reach a different regime, we then send r3 to be (very)

large. This amounts to

r3 � r1, r2 ⇒ |f| � 1

r1
,

1

r2
� 1

r3
. (4.19)

Interestingly, |f|
r3 = |N |

r1r2 remains finite with r1, r2 fixed (but not light), while |f|
r3 � 1

(r3)2
.

This implies that the scalar masses Mk,l,n and µp,q (and exact one-form spectrum) remain

finite, not light, even if r3 is large. Let us check the other modes: the rest of the spectrum

is given by the eigenvalues Y k,l,n
± and Y p,q

± . For large enough |f|, given |k| and n, Y k,l,n
ε are

given by

Y k,l,n
ε = (1 + ε)

1

2
f2 +M2

k,l,n + 2|λ|+ ε(2n+ 3)|λ|+O

(
1

f2

)
. (4.20)

We deduce that Y k,l,n
+ are becoming very large with r3, while Y k,l,n

− are staying finite and

not light. Similarly, Y p,q
+ ∼ f2 become very large. So far, this means there is no mode
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becoming light in this limit, which is rather unusual. This however happens with Y p,q
− in

a non-trivial way: one obtains

Y p,q
− =

1

4

(P 2 +Q2)2

f2
+O

(
1

f4

)
. (4.21)

This whole tower of modes becomes light in that limit. With the initial point φ0 being

the one of (4.4), the mass of these modes was there m0 =
√
Y p,q
− ∼

√
P 2 +Q2. The mass

is now

m ∼
r3→∞

m0 ×
1

2

√
P 2 +Q2

|f|
= m0 ×

π

|N |
√

(pr2)2 + (qr1)2
1

r3
. (4.22)

Whether this matches the conjectured behavior (4.18) now depends on the field space

distance in r3: it would work for a distance of the form Mp ln
(
r3

r3
0

)
. Determining this

distance however requires to determine the kinetic term for the r3 modulus, which is part

of the effective theory. This goes beyond the scope of this work, as discussed in section 5.

Last but not least, there could be an interesting regime, different from the initial

one (4.4), where no mode becomes light: the regime where we change r3 towards r3 ∼ r1 ∼
r2 (one could allow a factor |N |, it does not change the discussion). Indeed, none of the

Laplacian eigenvalues vanishes by setting r3 to a finite value, they are then all of order

1/(rm)2 times a combination of integers, 2π and square roots. For instance, considering

again the tower m =
√
Y p,q
− with r1 = r2, (2π)2(p2 + q2) = X2, one obtains

m ∼
r3∼r1

m0 ×

1 +
1

2

(
N

X

)2(r3
r1

)2

−
(
r3

r1

)2

√√√√(1 +
1

2

(
N

X

)2
)2

− 1


1
2

, (4.23)

which is of the order of m0. It is also the case of f2 which is not light anymore as in (4.6),

compared to the Kaluza-Klein scale. The effective theory may then be changed, not by the

addition of (infinitely many) light states, but rather by the loss of some of them. However,

the conjectured behavior (4.18) is not verified. This is interesting if going from (4.4),

namely r3 ≤ |N |r3 � r1,2, to r3 ∼ r1 ∼ r2 is at least a Planckian distance in field space:

this would be in tension with the refined swampland distance conjecture.

We summarize our findings schematically as follows:

points in field space:
r3� r1,2

• oo distance ? // r
3∼ r1,2

• oo distance ? // r
3� r1,2

•
number of light modes: finite finite infinite

masses of light modes: 0, |f| 0 0,
√
Y p,q
−

(4.24)

Even though this discussion provides an interesting intuition, we recall that one limitation

is to have considered the Laplacian spectrum, instead of the effective theory mass spectrum;

the two may differ, as we now explain in section 5. Determining the latter will amount

to find masses of fluctuations around a solution. Testing the above conjecture will then

require in practice to have φ0 as being the solution point. In such a framework, it would

be interesting to verify whether the above behaviour still holds.
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5 Discussion: the effective theory on the nilmanifold

In this paper we have determined the complete form spectrum of the Laplacian on the

three-dimensional Heisenberg nilmanifold: the eigenforms and eigenvalues are summarized

in section 2.3. Having this spectrum is a first useful step towards obtaining an effective four-

dimensional theory out of a ten-dimensional one. Indeed, it provides a natural expansion

basis for the ten-dimensional fields. Obtaining a four-dimensional theory then amounts to

truncating the ten-dimensional degrees of freedom to a finite set, potentially corresponding

to a subset of the Laplacian eigenmodes. In section 4.1 we obtained such a finite set, built

out of the Maurer-Cartan forms, by truncating to the light Laplacian eigenspectrum in the

limit of small fiber or large base. Let us first comment on such a truncation.

Truncating to the set of Maurer-Cartan forms on a group manifold (or more generally

to left-invariant forms on a coset), i.e. expanding all ten-dimensional fields on this finite

set of forms with constant coefficients, is a well-known reduction ansatz: it goes back to

the work by Scherk and Schwarz [33] (see [34] for cosets). This type of reduction has been

identified as giving a (four-dimensional) gauged supergravity,8 the gaugings or embedding

tensor components corresponding here to the group manifold structure constants fabc.

Reviews of gauged supergravities can be found in [41, 42]. Such a reduction is in addition

expected to be a CT, i.e. all solutions of the reduced theory lift to solutions of the ten-

dimensional one. One reason is that the exterior derivative only maps the finite set of

forms to itself, giving therefore a closed set of modes. A related reason is that the internal

coordinate dependence effectively disappears, as both the form coefficients and the fabc
are constant.

In section 3, we reached a similar result, taking however a different path. Making use of

the explicit Laplacian eigenforms, we have built a finite set of forms that would satisfy a list

of constraints, summarized in [17], meant for reductions on manifolds with SU(3) structure.

These constraints are required so that the expansion of ten-dimensional fields on the finite

set of modes leads to a four-dimensional N = 2 gauged supergravity: see e.g. [15]. As

it turns out, the set we have built is again made of certain Maurer-Cartan forms, even

though a much bigger set of eigenmodes was shown to verify a subset of the constraints.

Our result provides an explicit example where all constraints of [17] are satisfied, the only

other example being that of [21].

Coming back to the truncation of section 4.1, the result there is that, for the first time

to our knowledge, the Scherk-Schwarz reduction ansatz or truncation is derived as a low

energy approximation of the spectrum of the Laplacian: indeed, while one could in full

generality develop all ten-dimensional fields on the basis of eigenforms of the Laplacian, we

have shown that a low energy approximation would restrict this expansion to a finite set

of modes (4.17), corresponding precisely to the Scherk-Schwarz reduction ansatz, i.e. left-

invariant forms with constant coefficients.9

8A Scherk-Schwarz reduction and matching to a four-dimensional gauged supergravity has been per-

formed explicitly in the case of ten-dimensional heterotic string in [35], and for ten-dimensional type IIA

supergravity with D6/O6 in [36–38]; see also [39] on the relation between the two, and [40] for an example

in eleven dimensions.
9In [37] it was argued that a similar result holds forM being the Iwasawa manifold, however the complete

spectrum of the Laplacian on M was not computed therein.
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One may then wonder whether the resulting four-dimensional gauged supergravity is

a LEEA. In general, this point has not been settled beyond the case of a Calabi-Yau mani-

fold without flux: see e.g. related discussions in [15, 43]. However, it is often (implicitly or

explicitly) assumed to hold, and various four-dimensional gauged supergravities are then

used for string phenomenology. Unfortunately the answer cannot be settled here: even

though one develops the fields on a basis of light modes, two further phenomena could

prevent one from getting a low energy effective theory. First, additional ten-dimensional

fluxes could bring about different energy scales that could complicate or violate the ap-

proximations. Second, a conspiracy in the mass matrix of the theory could make certain

linear combinations of heavy modes, i.e. truncated ones, become accidentally light. Such

modes are sometimes called “space invaders” [44]; see [45] for a more recent example. This

shows that the usual requirement of having flux scales (or “moduli masses”) much smaller

than the Kaluza-Klein scales, as here in (4.6), is strictly-speaking not sufficient.

The way to determine a low energy effective theory is to consider (linear) fluctuations

around a given (ten-dimensional) solution, and study the resulting mass matrix thus identi-

fying all potentially light modes [44]. This procedure is the one that takes “space invaders”

into account. It is the same procedure that identifies harmonic forms as the correct finite

set of light (massless) modes on a Calabi-Yau manifold without flux. We expect the spec-

trum of Laplacian eigenforms determined here to be very useful in this task, providing a

natural expansion basis for all fluctuations around a solution containing the Heisenberg

nilmanifold. The low-energy approximation and truncation proposed in section 4.1 could

serve as a guide for a low-energy approximation of the complete theory. Obtaining such a

LEEA would be useful in view of our discussion on the refined swampland distance con-

jecture in section 4.2. Thanks to the kinetic terms, one could calculate distances in field

space. This would allow to determine whether there is a tension with the conjecture, as

we pointed out. We hope to return to this program in future work.
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