
..

The next generation PanDA Pilot for and beyond the 
ATLAS experiment

Paul Nilsson1, Alexey Anisenkov2, Doug Benjamin3, Daniel Drizhuk4, Wen Guan5, Mario Lassnig6, Danila Oleynik7,8, Pavlo Svirin1 and Tobias 
Wegner6, on behalf of the ATLAS Collaboration

1Brookhaven National Laboratory (US), 2Budker Institute of Nuclear Physics (RU), 3Argonne National Laboratory (US), 4National Research 
Centre Kurchatov Institute (RU), 5University of Wisconsin-Madison (US), 6CERN - European Laboratory for Particle Physics, 7University of Texas 

at Arlington (US), 8Joint Institute for Nuclear Research (RU) 

Abstract
The Production and Distributed Analysis system (PanDA) is a pilot-based workload management system that was originally designed for the ATLAS Experiment at the LHC
to operate on grid sites. Since the coming LHC data taking runs will require more resources than grid computing alone can provide, the various LHC experiments are
engaged in an ambitious program to extend the computing model to include opportunistically used resources such as High Performance Computers (HPCs), clouds and
volunteer computers. To this end, PanDA is being extended beyond grids and ATLAS to be used on the new types of resources as well as by other experiments. A new key
component is being developed, the next generation PanDA Pilot (Pilot 2). Pilot 2 is a complete rewrite of the original PanDA Pilot which has been used in the ATLAS
Experiment for over a decade. The new Pilot architecture follows a component-based approach which improves system flexibility, enables a clear workflow control, evolves
the system according to modern functional use-cases to facilitate coming feature requests from new and old PanDA users.
The paper describes Pilot 2, its architecture and place in the PanDA hierarchy. Furthermore, its ability to be used either as a command tool or through APIs is explained, as
well as how its workflows and components are being streamlined for usage on both grids and opportunistically used resources for and beyond the ATLAS experiment.

Introduction
The PanDA Pilot has been used by ATLAS and other experiments for well
over a decade. To meet the demands of extending PanDA beyond grids and
ATLAS, the original Pilot is being rewritten. After a two-year effort, the Pilot 2
project is now in its final stages of development and has entered testing in the
production system.

What does the PanDA Pilot do?
The task of the PanDA Pilot is to monitor and execute work units on a worker
node, either on the job or event level. On the job level, the work unit is a
payload that a user or production system wants to execute. The payload has
certain requirements, e.g. input and output files, that are staged by the Pilot,
and needs a working environment (incl. containers) that is setup by the Pilot.
On the event level, the Pilot launches and feeds a payload with event ranges
(a set of events to be processed) downloaded from a server.

How does the Pilot fit into the PanDA hierarchy?
The PanDA Pilot is executed on the worker nodes on local resources, on
grids and clouds, on HPCs and on volunteer computers. It is downloaded and
run by wrapper scripts that are sent by Pilot factories to the worker nodes via
batch systems. A Pilot interacts with the PanDA server either directly, via a
local instance of the ARC Control Tower (a job management framework used
on Nordugrid) or with the resource-facing Harvester service (which provides
resource provisioning and workload shaping).

Pilot components
The Pilot is component based, with each component being responsible
for different tasks. The main tasks are sorted into controller components,
such as Job Control, Payload Control and Data Control. There is also a
set of components with auxiliary functionalities, e.g. Pilot Monitor and
Job Monitor - one for internal use which monitors threads and one that is
tied to the job and checks parameters that are relevant for the payload
(e.g. size checks). The Information System component presents an
interface to a database containing knowledge about the resource where
the Pilot is running (e.g. which copy tool to use and where to read and
write data).

Pilot workflows
A Pilot workflow determines how a job will be processed. A workflow can
consist of multiple steps executed in parallel using threads. Each thread polls
a queue until it gets a job object to process; after processing, the result is
put in another queue for further processing and the thread starts polling its
input queue again.

* Standard workflow 

* HPC Pilot workflow

A job object is an entity that contains all necessary information about
running the payload (e.g. software release version, parameters for
payload setup, transfer type of input files, etc).

In the standard workflow, the Pilot performs payload
download; setup; stage-in; execution; stage-out, along
with various verifications, monitoring and server job
updates.
The figure below shows the internal generic flow of job
objects and how they move through the queues in the
Pilot components. Each box represents a queue.

The HPC Pilot refers to a dedicated workflow used on HPCs. When this
is selected (via a Pilot option), the normal workflow of the Pilot is
skipped in favour of a streamlined workflow that is relevant for HPCs.
Resource specific code, such as environmental setup, is kept in plugins.

Generalized workflow on a typical HPC
• Collecting the job definition from a pre-placed JSON file
• Preparing for execution: pre-placement of input data in high

speed transient storage associated with the computing node;
RAM-disk, Burst Buffer, SSD

• Environment setup; incl. platform specific preparations
• Payload execution
• Publishing of job report in a JSON file, which includes state of

payload and other metrics
• Processing of job report
• Transfer of output data to shared file system
• Archiving and storing payload logs to shared file system
• Declaring files for later stage-out

Pilot APIs
Normally, the PanDA Pilot is used as a command-line tool. In case this is not
wanted but some Pilot functionality is still needed, an external user may use
relevant functions via Pilot APIs that provide convenient access to internal
Pilot modules. E.g. Harvester is using the Data API in production for data
transfers on HPCs. Other APIs include the Communicator API (server
interactions) and Services API (benchmarking and memory monitoring).

Beyond ATLAS
The PanDA system is currently used by several experiments including
ATLAS, Compass, LSST, LQCD, Molecular Dynamics, IceCube. One of the
design goals of the Pilot 2 project is to facilitate Pilot development and usage
by new users (experiments).
Since the Pilot keeps user specific code in plugins, as well as being a
component based system, it is easy to support new workflows. In case the
standard workflow (see above) is not relevant for the new user, an entirely
new workflow may be implemented that will only use other relevant Pilot
modules and functions via the APIs.


