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Abstract 

At the new ete storage ring (LEP) at CERN, reactions with complex decays of 

heavy particles will be of particular interest. The more stable ones (like B and D. 
mesons, t lepton) have lifetimes greater than 10-13 sec; evaluation of their decay 
vertices thus requires a spatial resolution of ca. 10 um. 

For this aim, the DELPHI spectrometer contains a vertex detector (silicon micro- 

strips). Also needed is optimal utilization of all measurement information and 

correct treatment of multiple scattering for the geometrical reconstruction of tracks 

and vertices. Since the straightforward method of least-squares fitting leads to 

prohibitive computing times, more sophisticated algorithms (which are equivalent 

to the Kalman filter) must be used. _ 

First results from Monte-Carlo studies on the precision of track and vertex fitting 

confirm the usefulness of these methods. 

‘Presented at the XVIt" Int. Meeting on Fundamental Physics, Pefiiscola (Spain), 
25-29 April 1988.
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Introduction 

Heavy flavour physics will play an important role in the research program at 
CERN's e*e~ storage ring LEP ['J. The DELPHI experiment will be outstanding 

for its capability of hadron identification by means of RICH detectors covering the 

full solid angle [2]. This advantage needs to be complemented by peing able to 
reconstruct in space the decay vertices of charm and bottom mesons. 

The decay properties of some particles of interest are summarized below [SI: 

  

Particle t/sec C+T decay topology comments 

Ko, 5.2+10°8 1554 cm V2 excluded 

K+ 1.2+10°8 371 com C1,3 global PR 

AO 2.6+10-10 7.9cem V2 important 

K9g 0.9+10-10 2.7com V2 --"-- 

Bo, Bt 1.4#10°12, = 420 um V4, 6; C3, 5, 7 desirable 

D+ 9.2#10-13 280 um C(1,)3 --"-- 

Do 4.3410-18 130 um V2, 4 --"-- 

D+, (F#) = 2.8*10-19 = 80 um C3, 5 -- "= 

A0e = 2.3+#10-18 =70um C3, 5 --"-- 

tH 3.34#10-18 100 um C(1,)3 -- " -- 

T0,T = =610°14..10°75 = 0.3..3 um ? excluded [4] 

(decay length L = n+c+t with n= By = P/m) 

In conclusion, it will be desirable to gain a spatial resolution of a few 10 um in the 

projection (x,y) normal to the magnetic field in order to identify decay vertices 

inside the beam tube. A still better spatial resolution (also in z) will be necessary 

for studies on lifetimes, angular distributions etc. 

For charged one-prong decays ("kinks" C1), a geometrical vertex fit can only-be 

performed if the vertex is well outside the beam tube; otherwise, the outgoing 

track will be flagged as “not associated". Decay topologies to be identified are 

V2...V6 for neutral and C3...C7 for charged decays. : 

Critical points are the following requirements 

— from track search: reliable track element association, e.g. correct "hit merging" 

in the vertex detector [5]:



= from global pattern recognition: reliable identification of decay vertices inside 
the tracking detectors. | 

— from single-track fitting: optimal precision of track parameters and their co- 
variances at the reference cylinder (inner surface of the beam tube): 

Aiter a geometrical vertex fit, it is possible to re-adjust the fitted parameters using 
‘kinematic constraints in order to improve precision [6]. But beware of mistakes 

- caused by wrong mass assignments or unmeasured (neutral) tracks. — 

The rest of this paper will present in more detail the algorithms for geometrical 

vertex fitting with emphasis on the Kalman filter method (chapter 1), strategies 

chosen for vertex evaluation in the DELPHI data analysis (chapter 2), and first 

results from a MC study on the precision of vertex fitting (chapter 3). 

A convention generally used throughout this paper is to denote vectors by bold 

(p), matrices by outlined (C) symbols, and fitted estimates with a tilde (p). Trans- 

_ position of a matrix is denoted by superscript (C'), inversion by exponent (C-1). A 

distinction between column vectors (p) and row vectors (p') is made only when 

used in matrix operations. 

This work was performed within the DELPHI Working Group on Data Analysis 

(chairman: Prof. J. Wickens, Brussels) and in contact with the DELPHI Vertex 

Detetector and Physics Analysis Groups. Special thanks are due to R. Friihwirth 

and Prof. M. Regler (Vienna) for their development of the basic algorithms and 

helpful collaboration.



1. Vertex Fitting and the Kalman Filter Method 

The task of a geometrical single-vertex fit (for a given "bundle" of tracks) is to find 
an estimate for the vertex position X and for the track parameters qj at the 
common vertex. This chapter will, after presenting the needed prerequisites, 

- survey the algorithms for vertex fitting by different methods /71. 

1.1 Prerequisites for Vertex Fitting [8.9] 

The trajectory of a particle in space can be described by a set p of 5 parameters 
at some arbitrarily chosen reference surface (see below), e.g. 

p =(R+®d, z, 8, 0, e/P) at R = const (cylinder), or 
p=( x, y, 0, 9, e/P) at z=const (plane) 

with (R, ®, z) denoting a space point in cylindrical, P = (P, 8,0) a momentum 
vector in spherical coordinates; e is the charge. The first two parameters define a 
point, the next two a direction at the reference surface. The 5th parameter is 
undefined in case of zero magnetic field B; otherwise, it is proportional to siné’/r, 
with 6' being the angle (P,B), and r the radius of curvature. 

A track model is derived from the equations of motion of the particle and depends 
upon the characteristics of the magnetic field B(x). In case of a homogeneous 
field B = (0, 0, Bz), a helix track model will be appropriate. 

In the absence of multiple scattering, the particle's trajectory is a deterministic 
' result of "starting parameters" (x, q) at an arbitrary point. Therefore, making use 

of the track model, the track parameters p at a given reference surface can be 

expressed as a set of functions 

P = p (Xx, q) 

with x = (x, y, Z) being a point in space, and q = (9, , e/P) the direction and (if 

defined) the inverse momentum at this point (fig. 1a). In the latter case, it may be 

useful to represent the momentum vector as q = (Px,Py,Pz) in cartesian co- 

ordinates (see section 1.5).



an single-track fitting yields, for each of n reconstructed tracks, a 5-vector of track 

parameters pj and an associated 5x5 covariance matrix Gj-1, defined at some 

reference surface. For the single-vertex fit, these are now regarded as virtual 

measurements pj with 

rw 

pi= pi, cov(pi,pi) = Gr (j=1...n) 

Note the assumption cov(pj,pj) = 0 fori #j (this may be a subtle problem in 

detectors with bad multi-hit resolution, but affects pattern recognition rather than 

single-track fitting). The covariance (or error) matrix G;1 is symmetric, positive- 

definite with (in general) off-diagonal elements. Its inverse is the weight matrix Gj. 

A-priori knowledge of the position (with its errors) of the vertex, e.g. by measuring 

the beam spot, may be utilized in the vertex fit as another virtual measurement v 

and an associated (in most cases diagonal) 3x3 error matrix cov(v,v) = Gg"1. 

-- The pj are assumed to be defined at a reference surface which.has been chosen . 

such that all errors coming from multiple scattering are included in Gj-1; this is the 

case if there is no significant matter between the vertex and the reference 

surface. E.g., when being interested in vertices inside the beam tube cylinder, its 

inner surface is a good choice. 

lf this condition is not fulfilled, pj and Gj"! must be propagated to a more inner 

reference surface while taking into account multiple scattering in the matter 

traversed, yielding pj* and Gj*-1. In case of the matter being concentrated in thin 

layers, these may easily be used step-by-step as new reference surfaces; for one 

such step (see fig. 1b), 

Pi* = pi* (pi) defined by the track model 

D = dpi" / op; 5x5 matrix of derivatives (Jacobian) 

Then one gets for the new covariance matrix 

        

0 0 oO oO 9 
0 0 oO oO OO 

@*1=DG1DT + 0 0 o%A0) 0 O 
0 0 O oA) 0 
0 0 oO oO 9



with the first term being the error propagation to the new reference surface, and 

the second term adding the errors from multiple scattering in that surface (using 
spherical coordinates @ and 9). The latter, originating from a quasi-stochastic 

process, can be derived from Moliére's formula, with logarithmic correction [3] 

— 02(AX) = As + (240.0141 GeV / BsP)2 « (1 + 0.111#logioAs)2 

where Ad is the projection of the scattering angle into a plane containing the 

track direction, and As is the track length in matter (in units of radiation length). 

Transformation to global spherical coordinates yields 

02(A@) = 02(AA) 
62(Ao) = 62(AX) / sin26 

Noting that cov(A@,Ao)=0 gives the matrix elements shown above. 

1.2 Vertex Fitting by the Least-Squares Method 

_. The identity v(x) = x anda linear (18t order. Taylor) ansatz for the n track model 

equations pj(X,qj) around an arbitrarily chosen "expansion point" (x°,q7°,...,qn°) 

yield 

                                

V 1 © ..... 0 x - x0 x9 

P1 A, Bi..... 0 qi-q1° p1(x°,q1°) 
= * -}- 

Dn An 0 was oe Bn - Gn - dn? Pn(x°,qn°) 

with 

A= [op; / Ax] (x0,q,0) Bj = [op; / Agi] (x0,q,0) 

being 5x3 matrices composing the (5n+3)x(3n+3) matrix M of derivatives 

(Jacobian) at the expansion point. 

It should be clear that it is not the track model equations pj(x,qj) themselves 

which are linearized, but only the deviations pj - pj(x°,qj°) as functions of the 

deviations (x-x°, qj-qj°) from the expansion point.



Note that the choice of an expansion point (x°,q,°,...,qn°) is in principle arbitrary, 
nevertheless it should be chosen as close as "guessable" to the true values. E.g. 
for a primary vertex fit, the centre of the beam spot and the track parameters 

_ obtained by backward tracing are.a good choice. If an expansion point is chosen 
too far away, i.e. the linear ansatz is no longer correct, several iterations. will. be 
needed for the fit, using the resulting estimates of.one iteration as the expansion 
point for the next one. . 

The linear ansatz can be made homogeneous by re-defining the virtual measure- 

ments 

Pi > pi' = pj + Ajx® + Biqi® - pi(x°,qn°) 

to become "centred" around their expansion point values: 

                        

Vv 1 @0 ..... 0 X 
p1' Ay By..... 0 q1 

Pn’ 7 An 0 ee ees Bn , dn 

This system of linear equations has 2n numbers of degrees of freedom (2n-3 if 

Go = 0, i.e. there is no a-priori vertex measurement v). Solutions for (X,01,-.-,dn) 

can be obtained by the least-squares method in a straightforward way: 

X V 

q1 pi’ 
. = (MTGM)-1 MIG «|] . 

                dn Pn’ 

with the Jacobian matrix M defined above, and the (5n+3)x(5n+3) weight matrix 

given by 

Go 

G1 
G = . with zeros off the block diagonal. 

       



The (3n+3)x(3n+3) matrix M'™GM is the weight matrix of the vertex fit. The 

computing requirements are dominated by its inversion, with the number of 
arithmetic operations being proportional to n°. If the vertex fit should also be used 

~ as a test criterium for the correct association of tracks, it must be repeated many 

times with different track combinations. 

In conclusion, if the track multiplicity is high, or if there are ambiguities in track 
association, the straightforward method is prohibitive in practice. 

A way out of this dilemma is to take advantage of the block structures of the 
_ matrices Mi and G, which are a direct result of cov(pj,pj) = 0 for i#j. This has first 

been suggested in ref. [10]. Further analysis of this problem has shown that its 
solution is equivalent to the linear filter method of Kalman [11.12], 

1.3 Vertex Fitting by the Kalman Filter Method 

_ The Kalman filter is an iterative algorithm for the addition (resp. removal) of a. 
subset of (virtual) measurements to (resp. from) a linear least-squares fit. This is 

possible provided that all sub-sets are uncorrelated with each other. 

For the application of this method to our vertex fit problem, we continue to follow 
the terminology and notation used so far. A mathematically more rigorous treat- 
ment is given in ref. [11]. We start with defining (2n+1) 3x3 matrices (note that D, 

are unsymmetric): 

Do = @o+ 2X ATG A, (summation forj = 1... n) 

Di = AT GB, \o foried..cn 

W; = (8 GB)" 

then we get for the covariances of the vertex position X, the (3n+3)-vector of fitted 

parameters (x, qj, ..., G,) and the x2 of the fit (summations for j= 1... n)_ 

cov (%,%) = Cog = (Dp - LD, W,0,7)- 

X = Coo [Gov+ L ATG, (1 - BWjBTG) pj] 

qi = W,B,'G (- AX + p;) fori=1...n 

x? = (v - X)T Go (v - X) +L (p; - B;)T G; (p; - B;)



with 

pj’ = p; (X,q)) = Ax + BG; (linear expansion of fitted values) 

It should be noted that these formulae contain an iterative algorithm by virtue of 
~. the summations; this will become manifest in the. next section. The number of 

. _- arithmetic operations required is. only proportional to n, thus providing: a fast 
algorithm. If the full covariance matrix of the vertex ft is also wanted (e.g. for-a 
subsequent kinematics fit), we get 

cov (Gj,X) = Cio = Cot 

cov (Gi, Gi) = Cy = 5) Wj- WiDiT Co, 

The number of arithmetic operations required is still proportional to n, except for 

cov(qj,qj;) with i # j: in that case it is proportional to n2. Comparing this with the 
Straightforward method of the previous section (increase «<n3), a break-even is to 

be expected for vertices with ca. 4 tracks. 

1.4M for Testing Track Association: 

This is another benefit of the Kalman filter method, which follows from the 

iterative character of its algorithms. The problem to be solved is: 

How do the results (X, qj, ..., G, and x) of a vertex fit with n tracks change, when 
either adding another track (n+1) to the fit, or removing one track (kK < n) from the 

fit ? For track addition, we get 

X* = Coo" [Coot K+ Anas? Gras (1 - Bast Waar Boat? Gaat) Prat’l 
qG* =G-W,D! (x* - x) fori=1...n 

i = Wr+t Bat! Gat (- Any1X* + Past’) 

X28 =P + (K- K)T Cog (K - &*) + (Prat - Brat)” Gay (Pnat’- Brot”) 
with 

Coo* = [Coot + Anat’ Goat (4 - Bast Wet Brat! Gast) Anal 

Brat” = Prot (X*,Qna1*) = Angi X* + Baa 14na1* (linear expansion) 

For track removal, the same formulae can be used, with index (n+1) replaced by 

k, and changing sign of the matrices G, and W,. 

10



Defining the change in x? caused by the addition (resp. removal) of one track to 

(resp. from) the vertex fit as 

y2, = ye* —y2 >0 (for addition of one track) 

X27_=y2*-y2 <0 —_._ (for removal of one track) 

we can use x2, or x¥2_ as a powerful test criterium for the correct association of a 

track to a vertex. In other words, wrongly associated tracks can be regarded as 

"outliers" with respect to the vertex fit [12]. 

Since 2, incorporates all the information available (errors and covariances) of a 

fitted track to be tested, it is a more selective criterium than the usual method of 

testing impact parameters; this will be confirmed in chapter 3. Because the test 

can be performed one-by-one, there is no combinatorial overhead even in case 
of many ambiguous tracks. Therefore, x2, is also a fast test criterium. 

' It should be noted, however, that the 7, test is not absolutely selective either. It 

may fail to do a correct decision between competing vertices. These limits will be 

_. further investigated in chapter 3. 

1.5 Inclusion of 3-momentum Conservation 

The use of all 4 energy-momentum constraints at some vertex requires correct 

mass identification for the incoming and all outgoing particles. This is not always 

possible. For events with one or more secondary vertices, the kinematic 

constraints require a true multi-vertex fit to be performed. 

Using only 3-momenta avoids the problem of unknown masses. The kinematic 

constraints are applied to only one secondary vertex; let's assume it is the decay 

of a particle coming from. the primary vertex. Then following the Kalman filter 

method, the primary vertex position can be used as an additional virtual measur- 

ment v for the secondary vertex fit (fig. 1c). This requires only the inversion of a 

7x7 matrix, and gives an update of the secondary vertex position X and the para- 

meters for the connecting track Q, together with a 2, of the fit. 

The x2, can be used as a test criterium for the validity of the assumption above, 

~ i.e. to identify cascade decays. This is important for B meson physics. 

11



2. Strategies for Vertex Evaluation in DELPHI 

When speaking of "vertex evaluation", we have in mind a complex task which 
aims. at achieving the following results: | 

__ = Identification of secondary vertices ("vertex separation"); 

— Association of reconstructed tracks to the identified vertices ("track bundling"): 

~— Geometrical single-vertex fits, i.e. reconstruction of the position of all vertices 
and the parameters of all tracks at their vertex ("vertex fit"); 

lf needed, update of the vertex fits by the inclusion of kinematic constraints. 

In this study, we are interested in vertex separation and track bundling only 
inside the beam tube. Outside, i.e. in regions covered by tracking detectors, these 
tasks will already have been done by global pattern recognition (PR), which 

should also be able to identify kinks. 

In the framework of the DELPHI data analysis chain (DELANA), vertex evaluation 

will logically be performed after all charged tracks have been unambiguously re- 

» .constructed by single-track fitting. ‘Since the reference surface is defined to be the 

inside of the beam tube cylinder, all multiple scattering is included in the error 

matrices (See section 1.1). 

Our strategy adopted at present for vertex evaluation assumes event topologies 

with at least two primary vertex tracks which can be recognized a-priori (e.g. by 

their high momentum). These are used for a first approximate primary vertex fit. 

Then, all tracks are tested for their association to this vertex by the |y2,| criterium 

.. (algorithms of section 1.4). This fast method should be able to associate a large 

fraction of all the primary vertex tracks. 

Tracks which fail in the |v2,| tests are subject to combinatorial bundling. It is this 

stage where secondary vertices (inside the beam tube) will be identified and the 

remaining tracks associated to a vertex. Developement of this part is also rather 

advanced [13] and it will soon be included in DELANA. 

Finally, the primary vertex and all secondary vertices are fitted, using the algo- 

rithms of section 1.3. The same will be done for secondary vertices outside the 

beam tube which have been identified by global PR. 

12



Later versions will allow to update the secondary vertex fits by the inclusion of 

3-momentum conservation, either to improve the precision, or to identify 

cascade decays (see section 1.5). A simplified flow chart of our strategy being 
_ implemented in DELANA is given on the next page. _ 

-. The assumption.made. above (existence of recognizable primary vertex tracks) is 
characteristic for the majority of e+e- events at LEP energies, like the one shown 
in fig. 2 [4]. However, this is not the case for some event topologies which are of 

particular interest (e.g. BB production). For these, our strategy must be modified 
to allow for skipping the first approximate primary vertex fit and the fast track 

association tests. But, when relying only on combinatorial bundling without 
knowledge of a |x2,|, more sophisticated algorithms will be required. 

Since the task of vertex identification and track bundling can be regarded as a 
problem of pattern recognition, it may be appropriate to solve it by using the 
principal components analysis (PCA) method [8]. The basic idea is to represent 
each pair of fitted tracks as one point in a 10-dimensional parameter space, with 

the similarity relation being that tracks originating from a.common vertex must 

cross each other "very closely”. 

It should be sufficent to regard only the (x,y) projection normal to a (quasi)- 

homogeneous magnetic field B. Then, the feature pattern can be linearized by 
polar inversion, transforming circles of radius ry through the origin into straight 

_ lines with a distance of 1/r, from the origin. Therefore, the sensitivity is fully kept 

for vertices near the origin, i.e. inside the beam tube. The 10-dimensional PCA 

transformation can be constructed from a carefully chosen training sample. The 

‘constraint hypersurface has in general 9 dimensions, but in our case effectively 
only 8 dimensions due to translation invariance in z. 

The PCA method may also be used in place of combinatorial bundling after a first 
approximate vertex fit, as described above. The efficiency of its application will be 

investigated in another study to come. 

The vertex evaluation package makes use of a utility library for helix tracking and 

error propagation (UHLIB) [5]. This library is field-proven and has become stan- 

dard in the DELPHI data analysis. 

13



Simplified Flow Chart for Vertex Evaluation 14 
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_. 3. Precision of the Vertex Fit (Monte-Carlo Study) — 

A warning from the very beginning: since the Monte-Carlo study is still going on, 

all results presented here are only preliminary (as of April 1988). Nevertheless, 
they elucidate some of the problems arising from our ambitious goals for vertex 
evaluation. This chapter will first describe a mini-simulation of and single-track 

fitting in the DELPHI spectrometer, and then discuss some aspects. of primary 

vertex fitting and track association. 

3.1 Mini-Simulation and Single-Track Fitting 

The motivations for this work were twofold: first, to generate realistic virtual 

measurements (i.e. fitted tracks) to serve as input to the vertex fit procedures; 

second, to evaluate the effect of different detector set-ups on the precision of the 

track fit (Monte-Carlo study). These results have been published in more detail 

elsewhere [16], | 

The DELPHI spectrometer [2:5] is a complex set of individual detector modules 

(fig. 3a). Regarding the "barrel region" (fig. 3b), the following central tracking 

parts are considered for the mini-simulation: Beam Tube, 2 layers of Vertex 

Detector (VD), Inner Detector (ID) and Time Projection Chamber (TPC). All these 

parts are described by cylindrical surfaces around the z axis. A homogeneous 

magnetic field (1.2 T in the z direction) allows to use a helix track model. Multiple 

scattering is simulated using Moliére's formula with logarithmic correction, and all 

matter assumed to be concentrated in thin layers. 

Special care is taken to simulate fitted track segments with random errors as 

expected from measurements in the ID or TPC (error matrix with realistic off- 

diagonal elements). The VD returns only Re®@ measurements (oro = 5 um, two- 

track resolution effects are not simulated). Constants used in the simulation for 

geometry, matter and measurement errors are quoted in ref. [16]. 

Using these simulated track segments as virtual measurements, a single-track fit 

is done by applying the Kalman filter method to track fitting: starting with the TPC 

and progressively moving inwards to the ID, layer 2 and layer 1 of the VD, up to 

the beam tube. This involves propagation of the (updated) parameter vector and 

error matrix to a new intermediate reference surface; inclusion of multiple 

15



16 

--+ §cattering effects to the error matrix, as described in section 1.1 ; and updating the 

fit (parameter vector p and error matrix G-1) by adding a new virtual measure- 
ment (fig. 3c). The final reference surface for the single-track fit is the inside of the 
beam tube cylinder (Rr = 8cm). 

_ Fig. 4 shows some results of relevance for vertex fitting: the. mean value of the 
impact parameters (obtained from the fitted 6) with respect to the known vertex, 
either in space or in the (x,y) projection, is plotted as a function of momentum and 
for different detector set-ups. It becomes clear that the VD adds accuracy only in 

the projection; this will help for the identification of short-lived decays, but not for 

determining lifetimes or angular distributions. 

Knowing pte at Rref, the "normalized deviations" (p - ptrue) / ‘\/ var(p) (with 

var(p) being the diagonal of G-1) can be plotted for each of the 5 components of 

the parameter vector. They must be normally distributed with a mean = 0 and an 
r.m.s. = 1, thus constituting a very sensitive check for correctness. 

3.2 Event Data Generated for the MC Study 

At this early stage of the study, only "unphysical" data samples are used, which 
are sufficient for testing the most basic properties of the algorithms. The following 

discussions in this chapter are based upon 4 data samples: 

Sample A of 200 events: primary vertex with 30 tracks, charge = +1 (equally) 

P =2...22GeV/c (flat distribution) 

cot@ =-—1... +1 -- ".- 

=0...27 -- "-- 

Sample B of 100 events: primary vertex with 20 tracks, kinematics as above; 

4 secondary vertices: Pdecay = 10 GeV/c 

Mdecay = 1.86 GeV (& D® mass) 

isotropic decays into K-xtn-, Ktn-nt, K-xt, Kta7 

decay lengths = 800 um (in the laboratory system) 

sample C of 100 events: as sample B, but decay lengths = 2400 um 

Sample D of 100 events: as sample B, but Puecay = 5... 10 GeV/c (flat distr.) 

Mdecay = 5.275 GeV (4 B® mass)



Sample A is supposed to test the quality of a "clean" primary vertex fit with high 
track multiplicity. Samples B ... D are supposed to test, after an approximate 
primary vertex fit, the association of "right" and "wrong" tracks for different kinds of 

_ the latter. It may be expected that samples C (longer decay lengths) and. D (lower 
_- momenta and higher masses) will enable better selection than sample B.. a - 

These data samples are passed through the mini-simulation and single-track 
fitting program described in section 3.1, considering only tracks with |cote| < 1 
(i.e. those passing through the VD). The impact parameters in space resp. in (x,y) 
projection, w.r. to the vertex, are shown in figs. 9 ... 12 forsamples A... D. 

3.3 Primary Vertex Fit and Track Association 

The processing follows the procedures described in chapter 2, making use of the 
algorithms given in sections 1.3 and 1.4. Tracks of the "starting sample" for a first 
approximate primary vertex fit are selected by P = Poy, = 10 GeV/c. 

The x2, (addition) test is performed for all tracks of the "test sample" (P < Pout), 

and the x?_ (removal) test.for all tracks of the "starting sample" (P > Pout). These 

x7, tests are performed without updating the results of the first approximate 

primary vertex fit. 

Selection of tracks for the final primary vertex fit: For data sample A, the y2, are 

ignored, i.e. all tracks are selected. For data samples B ... D, tracks are selected 
by the x*, test with [7241 < ly2sleu: = 3, corresponding to a loss of ca. 22% of 

"good" tracks. It should be clear that such a tight cut is chosen here for test 
purposes only. | | 

As with the single-track fit, a very sensitive check for correctness can be per- 

formed for simulated data because of knowing (xtrue, q,true, ..., q,true) at the 

vertex. Plotting the "normalized deviations" for each component of 

- xtrue) / V var(x) with var(X) = diag(Coo) = and PK
? 

( 

(Gi - qitt¥e) / V var(q) with var(q;) = diag(C;)) fori=1...n 

must result in normal distributions with a mean = O and an r.m.s. = 1. Correct 

input from the single-track fit is, of course, obligatory. .. 
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Further checks for correctness involve the 2 of a vertex fit resp. the |x2,| of track 
association tests. Both must be x2-distributed, i.e. have a mean = NDF and an 
r.m.s. = ¥2«NDF, with NDF being the number of degrees of freedom. 

_- Incase of a vertex fit with n tracks, NDF = 2n (or 2n-3 if not using the beam spot); 
therefore, plotting y2/NDF gives a mean = 1. In case of track association tests, 
NDF = 2, so plots of |y2,| are x*-distributed with a mean = 2 and anr.mss. = 2: 

this can be seen in figs. 5 and 6,7,8:a,c. 

It should be noted, however, that these checks are only fulfilled if the tracks are 
fitted to their correct vertex. E.g., when testing association of "wrong" tracks to the 
primary vertex, the |y?,| of the test are no y2-distribution anymore (figs. 6,7,8:b). 
Similarly, when losing too many "good" tracks after a tight lx2,| cut, the y2/NDF 

distribution of the final vertex fit will also be distorted (mean < 1). 

3.4 Preliminary Results of the Primary Vertex Fit 

The precision of a primary vertex fit may be defined by the deviations of the fitted 

parameters (X, G,, ... , q,) with respect to the true ones (xtrue, qytrue, .., q,true), 

Ax = (Ax, Ay, Az) — = (XK - xtfue) 

Aqi= (A8j, Adi, AS) = (@i- qe) = withi=1...n 

Plotting these for each component results in distributions with a mean = 0 and an 
r.m.s. to be determined, as shown in the following table: 

  

Data sample A B C D 
no. of events 200 100 100 99 

no. oftracks forpr.vx. fit 5997 1817 1631 1573 

mean (tracks / ev.) -- " -- 30.0 18.2 16.3 15.9 
r.m.s. (Ax) /um 5.90 8.04 7.54 7.99 

r.m.s. (Ay) /um 6.12 8.21 8.24 7.99 

rm.s. (Az) /um 37.8 50.3 93.0 54.8 

r.m.s. (A8;) / mrad 0.325 0.340 0.328 0.336 

r.m.s. (Agj) / mrad 0.091 0.134 — 0.117 0.113 

r.m.s. (A(S)i) / GeV"! 0.0015 0.0015 0.0014 0.0014



Regarding Ax, Ay and Az, the higher precision of sample A is mainly due to the 
higher number of tracks entering the vertex fit. 

Comparing, for sample A, the mean values of the impact parameter, either in 
space (fig. 9a) or in (x,y) projection (fig. 9b), with the quadratically added r.m.s. of 

_ +» the vertex position (see table above) shows clearly the gain in precision resulting 
from fitting many tracks to a common vertex: 

  

mean (impact parameter in space) 153.7 um 

rm.s. ( Ax2+Ay2+Az?) 38.7 um 

mean (impact parameter proj. to (x,y)) 23.5 um 

rm.s, (J Ax2+Ay2) 8.5 um 

It should not be forgotten, however, that these values represent the "ideal case": 

high track multiplicity, no ambiguities from pattern recognition, no ambiguities 

from track association. Therefore, they give an indication for the optimal precision 

achievable rather than for a realistic one to be expected. 

3.5 Preliminary Results of Track Association 

In order to evaluate the selection power of the 72, test described in section 1.4, 

we plot for data samples B (fig. 6), C (fig. 7) and D (fig. 8) the 2, (addition test) for 
primary vertex tracks (figs. *:a), the 7°, (addition test) for secondary vertex tracks 

(figs. *:b), and the |x?_| (removal test) for primary vertex tracks (figs. *:c). The |y2_| 

(removal test) for secondary vertex tracks is not shown because almost none of 

these have momenta P = Pey: = 10 GeV/c. 

_ Whereas the |x2,| are "correctly" distributed (mean = r.m.s. = 2) for primary vertex 

tracks (figs. *:a,c), this is not the case for the x2, of "wrong" (secondary vertex) 

tracks, which have mean and r.m.s. = 5 for data sample B (fig. 6b), and even 

much bigger for data samples C (fig. 7b) and D (fig. 8b). 

A comparison of the x2, distributions for "right" tracks (figs. *:a) with the 

corresponding ones for "wrong" tracks (figs. *:b) shows that also the latter do not 

decrease at lowest values. As a consequence, any selection criterium based 

exclusively upon x2, cuts has to find a compromise between too much losses 

~and too much contamination. 
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Choosing a rather tight cut at |y2,| < Ix7+leut = 3 gives, for the particular cases of 
our data samples, the following percentages for losses of "right" resp. contami- 
nation with "wrong" tracks: 

  

Datasample _ | __ B C _D- 
losses by x2, and y?_ tests [%] 22 22 23 
contamination by x2, tests [%] 13 3.5 2 

It is clear that, for a fixed |y2,|.4, = 3, the losses are constantly = 22 %. The conta- 
mination from "wrong" tracks is smaller; it decreases as the %2, distributions get 

more and more distorted towards high values for data samples B - C - D. 

3.6 Comparison with Impact Parameter Tests 

Given the same conditions, which is the selection power of the usually performed 
impact parameter tests? For this aim, we plot for our data samples B (fig. 10), C 
(fig. 11) and D (fig. 12) the impact parameters in space (figs. *:a,b) resp. in (x,y) 
projection (figs. *:c,d), with respect to the true primary vertex, for "right" (primary 
vertex) tracks (figs. *:a,c) and "wrong" (secondary vertex) tracks (figs. *:b,d). 

Comparing the corresponding distributions for "right" and "wrong" tracks show 

that for the impact parameters in space there is a bigger overlap (worse selec- 
tivity) than for the projected impact parameters. In both cases, a high percentage 

of contamination is to be expected. 

Performing cuts on the impact parameters at such values that the percentage of 
_ losses of "right" tracks is the same as with the y2, cuts applied above, the 

resulting contamination with "wrong" tracks will be 

  

Data sample | B C D 

losses (see above) [Yo] 22 22 23 

contamination by I.P. i. space cuts [%] 32 23 16 

contamination by I.P. project. cuts [%] 22 9 5 

which is no surprise. But it is clear that y2, tests constitute a more powerful 

selection criterium than any of the impact parameter tests. Thus, our expectations 

of section 1.4 are confirmed. 
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3./ Preliminary Conclusions and Outlook 

The Kalman filter method (in its general and rigorous form) is used for the first 
time in a real computer program for fitting vertices and testing track association in 

-.-.a storage ring experiment. It has been shown to work fast and reliably. The part of 
the program doing a geometrical primary vertex fit (with all tracks) is already 
included in the DELPHI data analysis chain. 

How powerful is the y2, as a test criterium for track association to the primary 

vertex? The method has been shown to be superior to the usual impact para- 
meter tests. But for short-lived decays (like B and D mesons), it is still not as 
selective as wanted. 

Therefore, the method needs still a lot of study in order to develop more sophisti- 
cated test criteria. Suggested are tests combining the 7°, with other relevant 

criteria, like the momentum P of the track, or the 2 of a fitted "candidate" secon- 

dary vertex. It may turn out necessary to have different test criteria for different 
physics channels of interest, each being highly selective for the own channel, but 
possibly bad for the others. 

In any case, there will remain a region of ambiguity, which can only be treated by 

combinatorial bundling. After the association of all primary vertex tracks, combi- 
natorial bundling will also be necessary for distributing the remaining tracks 
among the secondary vertices, which thus become identified. (Application of the 
PCA method for this task will be investigated in another study to come.) After the 
correct bundling of all tracks, the geometrical secondary vertex fit uses the same 

algorithms as the primary vertex fit. 

Due to the vertex detector, the precision of the fitted vertex position is rather bad 
in the z coordinate (see table in section 3.4). A way to correct this ‘drawback © 
would be to re-adjust the fitted vertex parameters using kinematics information, 
with the danger of possible distortions caused by wrong mass assignements. 

This may be avoided by using only 3-momentum constraints. Application of the 

method outlined in section 1.5 for the identification of cascade decays of B 

mesons will be part of another study to come. 
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