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We study the phenomenon of transverse momentum broadening for a high-pT parton propagating 
through a weakly-coupled quark–gluon plasma undergoing boost-invariant longitudinal expansion. We 
propose a boost-invariant description for this phenomenon, in which the broadening refers to the 
angular variables η (the pseudo-rapidity) and φ (the azimuthal angle). The jet quenching parameter q̂
which enters this description depends upon the proper time alone. We furthermore consider radiative 
corrections to q̂. As in the case of a static medium, we find potentially large corrections enhanced by a 
double logarithm. But unlike for the static medium, these corrections are now local in time: they depend 
upon the local (proper) time characterizing the expansion, and not upon the overall path length. We 
resum such corrections to all orders into a renormalized jet quenching parameter. The main effect of this 
resummation is to slow down the decrease of q̂ with increasing proper time.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The physics of “jet quenching”, which globally denotes the 
modifications of the properties of an energetic jet or a hadron 
due to its interactions with a dense QCD medium, represents a 
main source of information about the quark–gluon plasma (QGP) 
produced in the intermediate stages of ultrarelativistic heavy 
ion collisions at RHIC and the LHC. This physics encompasses a 
large variety of physical phenomena, including transverse momen-
tum broadening, energy loss via medium-induced radiation [1–5], 
democratic branchings at large angles [6], color decoherence of 
partonic radiators [7–9], or medium-induced constraints on the 
phase–space for vacuum-like emissions [10]. Remarkably though, 
the theoretical descriptions of all these phenomena depend upon 
the properties of the medium via a single parameter, a trans-
port coefficient known as the “jet quenching parameter” q̂, which 
physically represents the rate for transverse momentum (pT ) 
broadening [2]. By itself, this phenomenon of (medium-induced) 
pT -broadening seems difficult to study in the data (at least, for 
sufficiently high energies), since it is hidden by the broadening 
introduced by vacuum-like, soft gluon radiation [11,12]. (The situ-
ation might be more favorable in the lower-energy environment at 
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RHIC [11,13]; see e.g. a recent measurement by the STAR collabo-
ration [14].) However, the RHIC and LHC data for nuclear–nuclear 
collisions do show abundant evidence for the other medium ef-
fects alluded to above, notably for the radiative energy loss, via a 
multitude of observables like the nuclear modification factor for 
particle production [15,16,18,17], the di-jet asymmetry [19,20], or 
the nuclear modification of the jet fragmentation function [21,22]. 
Our physical understanding of these data depends in a crucial way 
upon our ability to provide reliable calculations for q̂.

For a weakly coupled plasma — the physical scenario that we 
shall assume in what follows (see also [23] for a review of calcu-
lations using the AdS/CFT correspondence at strong coupling and 
Refs. [24–26] for lattice approaches to q̂) —, the leading order 
contribution to the jet quenching parameter comes from elastic 
collisions with the plasma constituents [2,27]. The subleading ef-
fect of these collisions, which in a thermal plasma occurs at order 
g due to the Bose enhancement of the soft thermal gluons, has 
been computed in [28]. The O(αs) radiative corrections to q̂ have 
first been discussed in the exploratory studies [29,30], followed by 
a seminal paper [31] which pointed out the existence of double-
logarithmic corrections, of order αs ln2(L/λ), with L the distance 
travelled by the jet through the medium and λ = 1/T the wave-
length of the thermal particles. Such corrections occur to all orders 
and can be reabsorbed into a redefinition of q̂. These conclusions 
have been comforted by subsequent studies [32–35], which also 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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demonstrated the universality of the renormalization of q̂ — i.e. 
the fact that the same radiative corrections arise in the context 
of transverse momentum broadening [30–32] and in that of the 
medium-induced radiation [32–34]. Note however that this renor-
malization spoils the physical interpretation of q̂ as a local trans-
port coefficient: the renormalized q̂ depends upon the overall path 
length L, due to the finite formation times of the quantum fluctu-
ations, which can take any value between λ and L.

All these recent studies of the radiative corrections to q̂ have 
been performed for the case of a static medium. Clearly, this is not 
the actual physical situation in high-energy nucleus–nucleus colli-
sions, where the partons liberated by the collision rapidly separate 
from each other along the collision axis — the medium under-
goes longitudinal expansion [36]. Moreover, all previous studies 
of the (collisional) transverse momentum broadening in such a 
longitudinally-expanding environment [37–40] were restricted, for 
simplicity, to the case of hard probes (jets or partons) propagating 
at “central rapidity”, i.e. perpendicular on the collision axis. This 
situation is somewhat simpler in that the only effect of the expan-
sion is the time-dependence of q̂: with increasing time, the plasma 
becomes more and more dilute, due to its expansion.

In this Letter, we shall consider a longitudinally expanding 
plasma which is boost-invariant (a reasonably good approximation 
for the bulk matter created in heavy-ion collisions in the so-called 
“central plateau” region [36], i.e. not very close to the collision 
axis) and generalize the previous studies in two respects. First, 
we shall reexamine the definition of the transverse momentum 
broadening in an expanding medium and provide a boost-invariant 
description for this phenomenon, which applies to hard probes 
propagating along arbitrary directions. In this more general de-
scription, the broadening refers to the angular variables η (the 
pseudo-rapidity) and φ (the azimuthal angle), which are precisely 
the variables used to study the kinematics of the jets in prac-
tice. Furthermore, q̂ enters as a rate for momentum1 broadening 
per unit proper time τ ; it decreases with increasing τ , due to the 
medium expansion. Second, we compute the radiative corrections 
to q̂ in this particular set-up and to double logarithmic accuracy. 
Interestingly, we find that the non-locality of the quantum correc-
tions is considerably reduced by the expansion of the medium: the 
relevant quantum fluctuations are those whose formation time is 
at most of the order of the actual (proper) time τ of the collision. 
(Fluctuations with much larger formation times are unimportant 
due to the dilution of the medium.) Accordingly, the only effect 
of resumming these corrections is to modify the τ -dependence of 
the jet quenching parameter: the renormalized q̂(τ ) is still local in 
(proper) time.

2. The longitudinally expanding plasma

We chose the z-axis as the collision (or “longitudinal”) axis and 
use the notation xT = (x, y) for the coordinates of a point in the 
transverse plane. The collision starts at z = t = 0. We assume, as 
usual, that all the partons liberated by the collision are produced 
in a very short interval around t = z = 0 and that the hydrodynam-
ical expansion starts shortly after, at the “thermalization” time τ0. 
In a head-on collision of big nuclei, the transverse density of bulk 
matter does not variate significantly as long as it is not so far from 
the collision center (at a distance xT � R with R the size of the 
nuclei). Accordingly, the transverse density can be taken to be ho-
mogeneous and the transverse components vx and v y of the fluid 

1 The momentum scale is provided by pT — the component of the jet momentum 
which is transverse to the collision axis and which is not affected by the medium 
in the current approximations; see below for details.
velocity can be taken to be zero. But these particles have non-
trivial longitudinal momenta (or velocities), inherited from their 
parent nuclei, hence they will separate from each other along the z
axis and thus dilute the medium. We follow the standard assump-
tion that this longitudinal expansion is uniform, thus leading to a 
boost-invariant particle distribution [36] (see also [41] for a pedagog-
ical discussion): all the particles that are found at z at time t have 
the same longitudinal velocity vz = z/t , which is also the fluid ve-
locity. Equivalently, the momentum rapidity2 η and the space–time 
rapidity ηs of any of these particles, which in general are defined 
as

η ≡ 1

2
ln

(
E + pz

E − pz

)
, ηs ≡ 1

2
ln

(
t + z

t − z

)
, (1)

can be identified with each other, η = ηs , in the situation at hand. 
For such a longitudinally boost-invariant plasma, the parton den-
sity ρ depends only upon the proper time τ ≡ √

t2 − z2. As ex-
plained e.g. in Appendix A of Ref. [37], this τ -dependence can be 
easily deduced for the case of an isentropic flow; one finds(

T

T0

)3

=
(τ0

τ

)β

, with β ≡ 3v2
s = 1

1 + 	1/3
. (2)

Here vs denotes the velocity of sound, which would be equal to 
1/

√
3 (implying β = 1) for an ideal gas. The parameter 	1, which 

measures the deviation from the ideal gas limit, is positive in per-
turbation theory and of order α2

s . That is, the power β is close to, 
but strictly smaller than, one and the ideal gas limit β → 1 will be 
considered too, for illustration.

3. The hard probe

Our test particle is an energetic parton (more generally, a jet) 
which is produced very early, near t = z = 0, and also very cen-
trally, at x � y � 0. It will be convenient to describe the kinematics 
of an on-shell parton by using its (pseudo)rapidity η and its trans-
verse momentum with respect to the beam axis, pT = (px, p y) =
pT (cosφ, sinφ), with φ the azimuthal angle. From the definition 
(1) of η together with the mass-shell condition E =

√
p2

T + p2
z , one 

easily deduces E = pT coshη and pz = pT sinhη. Hence, we shall 
parametrize the initial 4-momentum of the test parton as t = 0 as

pμ
0 = p0T (coshη0, cosφ0, sin φ0, sinhη0) ≡ pT n̂μ . (3)

At later times τ � τ0, when bulk matter gets formed, this parton 
suffers collisions off the medium constituents, with several physi-
cal consequences: a broadening of its (transverse and longitudinal) 
momentum distribution, as well as (collisional and radiative) en-
ergy loss. Here we shall focus on the transverse momentum broad-
ening (TMB), which is also the mechanism controlling energy loss 
via medium-induced radiation [1,4,5]. Notice that in the context of 
momentum broadening, the “transverse plane” is defined w.r.t. to 
the parton direction of motion, and not to the collision axis. We 
focus on a high-pT parton, whose momentum broadening due to 
multiple scattering is much smaller than its original pT .

In the case of a static medium, this broadening is naturally 
described as a random addition to the 3-momentum of the par-
ton, which is orthogonal on its original direction of propagation in 
space (the same as its average direction in the presence of broad-
ening). But in a longitudinally expanding medium, this definition 

2 We treat all particles as massless, so their momentum rapidity is the same as 
their pseudo-rapidity: η = − ln tan(θ/2), with θ their polar angle: vz = cos θ .
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becomes more subtle, because of the bias introduced by the fluid 
collective motion. The fact that the surrounding medium is invari-
ant under a longitudinal boost makes it natural to use a boost-
invariant picture for the TMB as well, that is, a picture in which 
the relevant time variable is the proper time τ .

To construct such a picture, it is convenient to first consider 
a test particle which propagates at “central rapidity” (η � 0, or 
z � 0), i.e. in the plane transverse to the collision axis. In that 
case, τ = t , so one can use the standard definition for TMB: if 
the original 4-momentum reads pμ

0 = p0T (1, 1, 0, 0), then its in-
stantaneous version at some later time has additional, random, 
components in the (y, z) plane, acquired via collisions in the 
medium: pμ = (E, px, p y, pz), with px = p0T and |p y |, |pz| � p0T . 
In that case, the “transverse momentum broadening” refers to 
the distribution dN/d2 p⊥ of the test particle with respect to the 
2-dimensional vector p⊥ ≡ (p y, pz). Both the transverse momen-

tum pT =
√

p2
0T + p2

y and the energy E =
√

p2
0T + p2⊥ change only 

to second order, so one can identify E � pT � p0T to the accuracy 
of interest.

This discussion makes it natural to define the TMB for a par-
ton with an arbitrary initial direction motion, cf. Eq. (3), as its 
broadening in η and φ at (quasi)fixed pT . This definition is in-
deed boost-invariant, since both the transverse momentum pT
and the angular differences 	φ ≡ φ − φ0 and 	η ≡ η − η0 are 
invariant under a longitudinal boost. It is furthermore suitable 
for the phenomenology since in practice a jet is defined as a 
cluster of final-state particles with some distribution in the φ-η
space.

To summarize, the TMB to be considered in this paper is the dy-
namics which transforms the initial 4-momentum shown in Eq. (3)
into a 4-momentum with the following general form

pμ = pT
(
cosh(η0 + 	η), cos(φ0 + 	φ), sin(φ0 + 	φ),

sinh(η0 + 	η)
)

� pT n̂μ − pT 	η η̂μ − pT 	φ φ̂μ , (4)

where the expression in the second line holds to linear order 
in the small quantities 	η and 	φ (so, in particular, we have 
identified pT = p0T ). We have introduced here the two space-like 
4-vectors

η̂μ ≡ (− sinhη0,0,0,− coshη0),

φ̂μ ≡ (0, sin φ0,− cos φ0,0), (5)

which span the 2-dimensional vector space encoding the jet 
broadening in 	φ and 	η. These vectors are orthogonal in the 
4-dimensional sense to the initial jet direction: η̂ · n̂ = φ̂ · n̂ = 0. 
For that reason, the respective components pη ≡ η̂ · p = pT 	η
and pφ ≡ φ̂ · p = pT 	φ will be referred to as “transverse” and 
collectively denoted with the subscript ⊥: p⊥ ≡ (pφ, pη). This 
2-dimensional vector should not be confused with the other trans-
verse momentum in the problem, namely pT = (px, p y), which 
is orthogonal to the collision axis. The geometry of this boost-
invariant definition for TMB is pictorially illustrated in Fig. 1.

In the high-pT regime of interest, the multiple scattering re-
sponsible for TMB can be resummed to all orders within the 
eikonal approximation. To that aim, and in order to follow as closely 
as possible the respective calculations for the case of a static 
medium (see e.g. Sec. 4.1 in [32]), it is convenient to use light-
cone coordinates adapted to the (average) direction of motion of the 
test parton. Besides the light-like vector n̂μ and the two space-like 
4-vectors η̂μ and φ̂μ already introduced, we need another light-
like vector, conveniently chosen as
Fig. 1. A pictorial representation of the boost-invariant definition for transverse mo-
mentum broadening in a longitudinally expanding medium. An energetic parton is 
created at (proper) time τ = 0 with the 4-momentum pμ

0 shown in Eq. (3) and 
leaves the medium at τ = L, with the 4-momentum pμ shown in Eq. (4). The 
broadening refers to a change 	φ in the azimuthal angle and a change 	η in the 
pseudo-rapidity (corresponding to a change 	θ in the polar angle). These changes 
are summarized in a vector p⊥ in the 2-dimensional rapidity-azimuthal angle plane 
(η, φ), which is precisely the plane generally used to represent the kinematics of a 
high-energy collision.

τ̂ μ ≡ (coshη0,− cos φ0,− sin φ0, sinhη0) , (6)

and which obeys τ̂ · n̂ = 2 and τ̂ · η̂ = τ̂ · φ̂ = 0. For any 4-vector vμ , 
let us define its light-cone (LC) coordinates as vμ = (v+, v−, v⊥)

with v+ ≡ (τ̂ · v)/
√

2, v− ≡ (n̂ · v)/
√

2, and of course v⊥ =
(vφ, vη) with vφ ≡ φ̂ · v and vη ≡ η̂ · v . It is easy to check 
that, in these new coordinates, the scalar product takes the ex-
pected LC form, that is, v · w = v+w− + v−w+ − vφ wφ − vη wη . 
In particular, the LC form of the 4-momentum pμ , as inferred 
from the second line of Eq. (4), reads pμ = (

√
2pT , 0, p⊥), show-

ing that the modulus pT of the transverse momentum plays the 
role of the LC longitudinal momentum in the new coordinates. 
Remarkably, this differs from the respective form of the initial
4-momentum, namely pμ

0 = (
√

2pT , 0, 0⊥), only via the addi-
tion of the transverse component p⊥ — exactly as expected for 
TMB.

4. q̂ as jet broadening in �φ and �η

We are now in a position to present the calculation of the 
transverse momentum distribution dN/d2 p⊥ generated via soft 
multiple scattering for a test particle propagating along an ar-
bitrary direction in a longitudinally expanding medium which is 
boost-invariant. For definiteness, we choose the test parton to be 
a quark, but the subsequent results immediately extend to a gluon 
after replacing the color factor C F = (N2

c − 1)/2Nc by C A = Nc , 
with Nc the number of colors.

As already mentioned, we shall employ the eikonal approxima-
tion, most conveniently formulated in transverse coordinate space 
(here, “transverse” = ⊥), in which case the effect of multiple scat-
tering is simply a rotation of the color state of the quark, as repre-
sented by a Wilson line in the fundamental representation:
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V (x⊥) = exp

⎧⎨
⎩ig

L∫
0

dτ n̂ · Aa(τ n̂ + x⊥)ta

⎫⎬
⎭

= exp

⎧⎪⎨
⎪⎩ig

L+∫
0

dx+ A−
a (x+, x− = 0, x⊥)ta

⎫⎪⎬
⎪⎭ . (7)

We have written this Wilson line using both the original coordi-
nates and the new LC coordinates. A−

a = (n̂ · Aa)/
√

2 is the pro-
jection of the color field representing the gluons in the medium 
along the direction of propagation of the test quark. In the ab-
sence of collisions, the energetic quark would follow the classical 
trajectory xμ(τ ) = τ n̂μ , or x+ = √

2τ , x− = 0 and x⊥ = 0, with 
0 < τ < L and L+ = √

2L. (L denotes the total proper time trav-
elled by the quark through the medium.) The collisions lead to 
a broadening of the quark distribution in p⊥; the respective am-
plitude can be computed by displacing the quark trajectory by a 
fixed amount x⊥ , as shown in Eq. (7), and then taking a Fourier 
transform x⊥ → p⊥ . The respective cross-section is obtained by 
multiplying with a similar Wilson line in the complex conjugate 
amplitude, but at a different transverse coordinate y⊥ , then tracing 
(averaging) the product of Wilson lines over the final (initial) color 
states, and finally taking the Fourier transform from r⊥ ≡ x⊥ − y⊥
to p⊥ . One thus finds

dN

d2 p⊥
=

∫
d2r⊥
(2π)2

e−ip⊥·r⊥ S(r⊥) , with

S(r⊥) ≡ 1

Nc

〈
tr V (x⊥)V †(y⊥)

〉
, (8)

where the brackets in the definition of S denote the averaging 
over the color fields in the medium, thus producing the plasma 
gluon distribution and its correlations. The quantity S(r⊥) can be 
recognized as the S-matrix for the elastic scattering of a small 
quark–antiquark color dipole with transverse size r⊥ .

For a weakly-coupled quark–gluon plasma, one can assume a 
Gaussian distribution for A− , with long tails in x⊥ which are cut 
off by Debye screening. On the other hand, the distribution in x+
is quasi-local, due to Lorentz contraction (in the rest frame of the 
energetic probe). This is tantamount to saying that successive col-
lisions can be treated as quasi-local and hence independent from 
each other. Then a standard calculation yields (see e.g. [32])

S0(r⊥) � exp

⎧⎨
⎩−πα2

s C F r2⊥

L∫
τ0

dτ ρ(τ ) ln
1

r2⊥m2
D(τ )

⎫⎬
⎭ , (9)

where ρ(τ ) denotes the density of the medium constituents and 
mD(τ ) the Debye screening mass; for a longitudinally expand-
ing medium, both quantities depend upon the proper time alone. 
The logarithm ln(1/r2⊥m2

D) has been generated by the integration 
over the transverse momenta q2⊥ exchanged between the dipole 
and a medium constituent: this integral is logarithmic so long as 
m2

D � q2⊥ � 1/r2⊥ . We implicitly assume here that 1/r⊥ � mD , as 
is indeed the case for the relevant values of r⊥ (see below).

The Fourier transform of S0(r⊥) in Eq. (9) is a priori compli-
cated by the logarithmic dependence of the exponent upon r2⊥ . 
This dependence is important if one considers an unusually hard 
scattering, which transfers a large transverse momentum p⊥ �
Q0(L). Here, Q2

0(L) is the typical momentum squared acquired via 
multiple scattering, conveniently defined as the value of 1/r2⊥ for 
which the exponent in Eq. (9) becomes of order one; that is,
Q2
0(L) ≡ 4πα2

s C F

L∫
τ0

dτ ρ(τ ) ln
Q2

0(L)

m2
D(τ )

≡
L∫

τ0

dτ q̂0(τ ) . (10)

But such rare collisions, leading to a large deflection, are not those 
that we generally associate with “momentum broadening”. Rather, 
we are interested in the effect of many successive collisions, each 
of them transferring a relatively low momentum and collectively 
leading to a random walk in p⊥ . When p⊥ � Q0(L), the integral 
in Eq. (8) is dominated by dipole sizes r⊥ ∼ 1/Q0(L) and can be 
evaluated by replacing r⊥ → 1/Q0 within the slowly-varying loga-
rithm inside Eq. (9), which then becomes a Gaussian:

S0(r⊥) � exp

{
−1

4
Q2

0(L) r2⊥
}

. (11)

Its Fourier transform is trivial and yields a Gaussian distribution in 
the transverse momentum p⊥ , or, equivalently (after using p2⊥ =
p2

T (	φ2 + 	η2)) in the angular deviations 	φ and d	η:

dN

d2 p⊥
� 1

πQ2
0(L)

e
− p2⊥

Q2
0(L)

⇐⇒ dN

d	φ d	η
� p2

T

πQ2
0(L)

e
− p2

T (	φ2+	η2)

Q2
0(L) . (12)

As shown by the second equality in Eq. (10), it is natural to in-
terpret the integrand there as a (quasi) local transport coefficient, 
the jet quenching parameter q̂0, which represents the average trans-
verse momentum squared transferred per unit proper time. (We 
use a subscript 0 on q̂0 to remind that this quantity refers to the 
tree-level approximation, to be later amended by radiative correc-
tions.) In the semi-classical approximation at hand, this transport 
coefficient is proportional to the rate for large-angle scattering. As 
visible in Eq. (10), q̂0 is not fully local, but rather quasi-local: it has 
a weak, logarithmic, dependence upon the global distance L (that 
will be kept implicit in our notations), due to the non-locality of 
the Coulomb exchange. For a static plasma with density ρ0, one 
finds Q2

0(L) = q̂0L with

q̂0 = 4πα2
s C F ρ0 ln

Q2
0(L)

m2
D

. (13)

For the more interesting case of a longitudinally expanding plasma, 
whose density ρ(τ ) ∝ T 3(τ ) is decreasing in time according to 
Eq. (2), we can neglect the additional time-dependence associated 
with the lower limit m2

D (τ ) of the logarithm in Eq. (10). Under this 
approximation, one can write

q̂0(τ ) � q̂0(τ0)

(
T (τ )

T0

)3

� q̂0(τ0)
(τ0

τ

)β

. (14)

Then the integral in Eq. (10) can be explicitly performed, to yield

Q2
0(L) =

L∫
τ0

dτ q̂0(τ ) � q̂0(τ0)τ
β

0

L1−β − τ
1−β

0

1 − β

� q̂0(L)L
1 − (τ0/L)1−β

1 − β
, (15)

where in the last equality we have used again Eq. (14) for q̂0(τ ). 
It is interesting to consider two limits of this result: (i) the large 
time limit L � τ0 for β < 1, and (ii) the ideal gas limit β → 1. 
One finds
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Q2
0(L) �

⎧⎪⎪⎨
⎪⎪⎩

q̂0(L)L

1 − β
for β < 1 ,

q̂0(τ0)τ0 ln
L

τ0
for β = 1 ,

(16)

where we have also used the fact that the quantity q̂(τ )τ is inde-
pendent of τ when β = 1. In both cases, one sees that the growth 
of the saturation momentum with L is significantly slowed down 
by the expansion (and the ensuing dilution) of the medium.

5. Radiative corrections to q̂

We now turn to the second issue that we would like to address 
in this paper, namely the calculation of the (dominant) radiative 
corrections to the jet broadening in 	φ and 	η for the case of 
a medium undergoing (boost-invariant) longitudinal expansion. As 
we shall see, our main conclusion and also most of the details of 
the calculation are quite similar to those corresponding to a static 
medium [30–33]. Notably, we shall find a class of radiative cor-
rections which are large since enhanced by double (energy and 
collinear) logarithms, and which can be resummed to all orders 
into a renormalization of the jet quenching parameter. But we shall 
also find some noticeable differences, coming from the fact that 
the scales which control the phase–space for quantum corrections 
are now changing with time, due to the expansion. Most inter-
estingly, we shall see that the dominant radiative corrections look 
quasi-local on the time scale for the expansion.

Physically, the radiative corrections to the transverse momen-
tum broadening express the recoil accumulated by the incom-
ing parton (here, a quark) via medium-induced gluon emissions. 
Clearly, the largest such contributions come from emissions which 
are relatively hard, in the sense of having a large transverse mo-
mentum k⊥ w.r.t. the “jet axis” (the direction of motion of the 
original quark). The logarithmic enhancement can be roughly un-
derstood as follows (see [30,31] for more details): at high k⊥ , 
the medium-induced radiation is controlled by a single, relatively 
hard, scattering, leading to a power-law tail ∝ 1/k4⊥ in the gluon 
spectrum dN g/(dωdk2⊥), together with the usual, bremsstrahlung, 
enhancement ∝ 1/ω at low energies. Accordingly, the recoil con-
tribution to the p⊥-broadening of the parent quark, estimated as

δ〈p2⊥〉 =
∫

dω

ω

∫
dk2⊥ k2⊥

dNg

dωdk2⊥
(17)

is enhanced by two potentially large logarithms: an energy log-
arithm and a transverse momentum one. The importance of this 
enhancement depends upon the precise arguments of the two log-
arithms, which are in turn determined by the phase–space for 
gluon radiation triggered by a single scattering. In what follows, we 
shall motivate this phase–space via physical considerations, which 
are ultimately supported by the explicit calculations presented in 
the Appendix. For more clarity, we shall first consider the case of 
a static medium.

For an emission to be insensitive to multiple scattering, the 
gluon momentum k⊥ should be much larger than the momen-
tum that could be acquired via collisions in the plasma during 
the “formation time” tf � 2ω/k2⊥ (the typical duration of the emis-
sion): k2⊥ � q̂0tf. On the other hand, k⊥ should be much smaller 
than the overall transverse momentum broadening 〈p2⊥〉 � q̂0L of 
the quark, since the recoil represents only a small contribution to 
the latter. Hence, the transverse logarithm in the case of a static 
medium comes from transverse momenta within the range q̂0tf �
k2⊥ � q̂0L. This transverse phase–space shrinks to zero when tf be-
comes comparable with L. This condition can be used to deduce 
an upper limit on the gluon energy ω, but as a matter of facts it is 
preferable to use the formation time tf itself as the variable char-
acterizing the longitudinal phase–space. Specifically, the temporal 
(or energy) logarithm comes from the range λ � tf � L, where the 
lower limit, which features the thermal wavelength λ = 1/T of a 
typical medium constituent, can be understood as follows: for the 
gluon to suffer a collision during its emission, the formation time 
should be at least as large as the longitudinal extent ∼ λ of a par-
ton from the medium [31,32].

These considerations motivate the following result for the one-
loop correction to the transverse momentum broadening in a 
static medium and in the double-logarithmic approximation (DLA) 
[31–33]:

δ〈p2⊥(L)〉 = ᾱq̂0

L∫
0

dt

L∫
λ

dtf

tf

q̂0 L∫
q̂0tf

dk2⊥
k2⊥

= q̂0L
ᾱ

2
ln2 L

λ
≡ δq̂(L)L ,

(18)

where ᾱ ≡ αs Nc/π is the QCD coupling at the emission vertex 
and the third integral runs over the time t at which the fluctua-
tion suffers a collision in the medium: this time can take any value 
between 0 and L and the gluon emission is localized within an 
interval tf around it. The overall result for δ〈p2⊥(L)〉 is roughly lin-
ear in L, so it can be also interpreted as a change δq̂(L) in the jet 
quenching parameter, as shown in the last equality in Eq. (18). This 
change is strictly speaking non-local, due to the fact that gluon 
emissions require a finite formation time, but this non-locality 
is very weak (δq̂(L) is only logarithmically sensitive to the path 
length L), because the typical values of tf which matter at DLA are 
much smaller than L.

Turning now to a longitudinally-expanding medium and for a 
test quark propagating along an arbitrary direction, cf. Eq. (3), it 
is useful to notice that the calculation resembles very much the 
one for a static medium provided one uses the “right” kinematical 
variables, that is, the LC coordinates introduced below Eq. (6) and 
which are better suited for a boost-invariant set-up. Specifically, 
the ordinary time variable t in the static medium case should be 
replaced3 by the proper time τ (and similarly tf → τf) and the 
transverse momenta like p⊥ and k⊥ should be understood in the 
sense of Eq. (5), e.g. k⊥ ≡ (kφ, kη). This correspondence is also sup-
ported by the explicit calculations in the Appendix.

As before, the transverse logarithm is generated by integrating 
over gluon transverse momenta k2⊥ which are much larger than 
the momentum broadening 	k2⊥(τf) that would be accumulated 
during the formation time, but much smaller than the overall mo-
mentum broadening 〈p2⊥(L)〉 � Q2

0(L) accumulated by the leading 
quark over a (proper) time L. The upper limit Q2

0(L) has already 
been computed (in the semi-classical approximation) in Eq. (16), 
so let us concentrate on the lower limit. This can be estimated as

	k2⊥(τf) =
τ+τf∫
τ

dτ ′ q̂0(τ
′) � q̂0(τ )τf , (19)

where we considered an emission which is initiated at τ and com-
pleted at τ + τf . In writing the last estimate, we have anticipated 
that to the double-logarithmic accuracy of interest, the formation 

3 To shed more light on this correspondence, one can observe that, already for a 
static medium, the time variable t is essentially the same as the LC time, x+ � √

2t , 
and similarly k+ � √

2ω, with the LC variables defined in the standard way for a 
leading parton with initial 4-momentum pμ

0 = p(1, �v); that is, x± ≡ (t ± �v · �x)/√2. 
For the expanding medium and with the new LC coordinates defined below Eq. (6), 
one rather has x+ � √

2τ , which makes it natural to identify the variables t and τ
in the two problems.
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time τf of a typical emission is much smaller than the absolute 
time τ when the fluctuation is initiated. It is furthermore instruc-
tive to separately consider the transverse logarithm, first for the 
case where the medium is an ideal QGP (i.e., β = 1 in Eq. (16))

Q2
0(L)∫

q̂0(τ )τf

dk2⊥
k2⊥

= ln
Q2

0(L)

q̂0(τ )τf
� ln

τ

τf
+ ln ln

L

τ0
� ln

τ

τf
for β = 1 .

(20)

In the last estimate above we kept only the term which will con-
tribute to DLA. Notice that this term is independent of L, due to 
the fact that the L-dependence of the upper limit Q2

0(L) is very 
weak for an expanding plasma. Clearly, this last estime makes 
sense if and only if τ is sufficiently large compared to τf (a prop-
erty that we have anticipated in relation with Eq. (19)). That is, 
a transverse logarithm can occur only for fluctuations which are 
emitted promptly enough on the typical time scale for the medium 
expansion (the same as the absolute time τ ). Fluctuations with 
much larger formations times are irrelevant (to the accuracy of in-
terest), due to the medium dilution through expansion.

These considerations explain why the proper generalization of 
Eq. (18) to the case of an expanding medium reads

δ〈p2⊥(L)〉 = ᾱ

L∫
τ0

dτ q̂0(τ )

τ∫
λ(τ )

dτf

τf

Q2
0(L)∫

q̂0(τ )τf

dk2⊥
k2⊥

. (21)

Strictly speaking, this expression has been here justified for the 
limiting case β = 1, but it remains valid when β < 1, since in that 
case the final integral over τ is controlled by its upper limit τ = L, 
hence there is no significant difference between choosing τ or L as 
the upper limit in the integral over τf . In particular, it can be easily 
checked that, to DLA, the transverse integral is again given by the 
last estimate in Eq. (20). Using this estimate, it is easy to see that 
the one-loop correction to the transverse momentum broadening 
for the expanding medium is consistent with a local renormaliza-
tion δq̂(τ ) of the jet quenching parameter:

δ〈p2⊥(L)〉 =
L∫

τ0

dτ δq̂(τ ), with δq̂(τ ) ≡ q̂0(τ )
ᾱ

2
ln2 τ

λ(τ )
.

(22)

The final result for δ〈p2⊥(L)〉 depends upon β , because of the re-
spective dependence of the tree-level piece q̂0(τ ), cf. Eq. (14), and 
of the thermal wavelength λ(τ ) = λ0(τ/τ0)

β/3, with λ0 ≡ 1/T0. 
One finds

δ〈p2⊥(L)〉 �

⎧⎪⎪⎨
⎪⎪⎩
Q2

0(L)
2ᾱ

27
ln2 L

τ0
for β = 1 ,

Q2
0(L)

ᾱ

2

(
1 − β

3

)2

ln2 L

τ0
for β < 1 ,

(23)

with Q2
0(L) given by Eq. (16) and L � τ0. In obtaining these re-

sults, we have neglected the difference between τ0 and λ0 within 
the arguments of the various logarithms, to simplify writing.

Eq. (23) presents the dominant quantum correction to the char-
acteristic scale Q2

0(L) within the p⊥-distribution in Eq. (12). For 
instance, when β < 1, one can define a renormalized version of 
that scale, including the above radiative correction, as follows:

Q2(L) ≡ Q2
0(L)

{
1 + ᾱ

2

(
1 − β

3

)2

ln2 L

τ0

}
. (24)
But for applications to other physical problems, like the medium-
induced radiation, it is useful to also have a local (in time) version 
of this renormalization, that is, a renormalized jet quenching pa-
rameter; for any β ≤ 1, this reads (cf. Eq. (22))

q̂(t) ≡ q̂0(τ ) + δq̂(1)(τ ) = q̂0(τ )

{
1 + ᾱ

2
ln2 τ

λ(τ )

}
, (25)

where the upper script “(1)” on δq̂(1) is meant to emphasize that 
this is a one-loop correction.

The experience with perturbative QCD teaches us that the 
appearance of an one-loop correction enhanced by a double 
(collinear and energy) logarithm signals the existence of a tower 
of higher-order such corrections — here, n-loop corrections of or-
der 

(
ᾱ ln2(τ/λ)

)n
—, which need to be resummed whenever the 

double logarithm is large, ᾱ ln2(τ/λ) � 1. Such corrections, that 
were explicitly computed and resummed for the case of a static 
medium [31–33,35], are generated by successive gluon emissions 
which are strongly ordered in both formation times and transverse 
momenta: τf and k2⊥ are both strongly decreasing from one emis-
sion to the next one. By following the same steps as in Refs. [31,
32,35], it is straightforward to carry out the all-order resummation 
of the leading double-logarithmic terms. One thus obtains

q̂(τ ) = q̂0(τ )
I1

(
2
√

ᾱ Y
)

√
ᾱ Y

= q̂0(τ )
e2

√
ᾱ Y

√
4π (

√
ᾱY )3/2

[
1 +O(1/

√
ᾱY )

]
, (26)

where Y = ln(τ/λ(τ )), I1 is the modified Bessel function of the 
first kind, and the second equality holds when Y � 1/

√
ᾱ, i.e. 

for sufficiently large time. As manifest on the above equation, the 
main effect of the resummation is to slow down the decrease of 
q̂(τ ) with τ . For instance, in the large time regime where the 
asymptotic expansion applies, the effective power for this decrease 
is reduced from β down to β − 2

√
ᾱ

(
1 − β/3

)
. In particular, for 

an ideal plasma, this amounts to 1 → 1 − 4
√

ᾱ/3. Clearly, this rep-
resents a significant reduction for a realistic value of the coupling 
like ᾱ = 0.3.

Eq. (26) is formally similar to the corresponding result for a 
static medium [31–33,35]. It differs from the latter merely via the 
τ -dependence of the functions q̂0(τ ) and λ(τ ) and, especially, via 
the replacement of L (the global distance traveled through the 
medium by the leading particle) by τ (the time of scattering, 
as measured from the beginning of the expansion) as the upper 
time scale in the argument of the logarithm. This last replacement 
makes it possible to treat the renormalized q̂(τ ) as a (quasi)local
transport coefficient, like its tree-level counterpart q̂0(τ ).
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Appendix A. One-gluon correction to momentum broadening in 
the expanding plasma

In this section, we shall succinctly present the calculation of the 
one-loop (one gluon emission) radiative correction to the trans-
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verse momentum broadening in the expanding plasma, with the 
purpose of providing an explicit mathematical proof for Eq. (21). 
Our calculation will closely follow the corresponding calculation 
for the case of a static medium in Refs. [30,31], as well as the 
original calculation of medium-induced radiation in the expand-
ing medium [37]. We shall use the dipole picture together with 
the light-cone coordinates introduced below Eq. (6), in which x+
is essentially the proper time (x+ � √

2τ ). Within this picture, the 
one-loop radiative correction corresponds to Feynman graphs in 
which a soft gluon, with longitudinal momentum k+ ≡ ω much 
smaller than the corresponding momentum of the incoming quark, 
is emitted by the dipole at some (proper) time τ1 and then reab-
sorbed at τ2, with 0 ≤ τ1 < τ2 ≤ L. The respective contribution to 
the momentum broadening of the quark, cf. Eq. (17), can be ob-
tained as

δ〈p2⊥〉 = −∇2
r δS(r)

∣∣∣
r⊥=0

, (A.1)

where δS(r) (with r ≡ r⊥) represents the one-loop correction to 
the dipole S-matrix, which arises from the fact that the system 
which scatters at intermediate times τ1 < τ < τ2 is not a dipole 
anymore, but a system of 3 partons: a quark, an antiquark, and 
a gluon. The essential ingredient of the calculation is therefore 
the Green function G(3)(B2, τ2; B1, τ1; r) describing the diffusion 
of this 3-parton system in the transverse space (B2 and B1 denote 
generic transverse coordinates, in the sense of Eq. (5)). This is the 
solution to the following equation (in the large Nc limit) [30,31]

i
∂

∂τ
G(3)(B, τ ; B1, τ1; r)

=
{

1

2ω
∇2

B − iq̂0(τ )

4

[
B2 + (B − r)2

]}
G(3)(B, τ ; B1, τ1; r),

(A.2)

with the initial condition G(3)(B2, τ1; B1, τ1) = δ(2)(B2 − B1). 
Eq. (A.2) is related to the Schrödinger equation for a two-
dimensional harmonic oscillator with an imaginary potential. Its 
solution can be constructed as in Appendix B of [37] and reads 
G(3)(B2, τ2; B1, τ1; r) = G 

(
B2 − r

2 , τ2; B1 − r
2 , τ1

)
, with

G(B2, τ2; B1, τ1) ≡ iω

2π D(τ2, τ1)
e

−iω
2D(τ2,τ1)

[c1 B2
1+c2 B2

2−2B2·B1]
,

(A.3)

with c1 ≡ c(τ2, τ1), c2 ≡ c(τ1, τ2) and the following definitions for 
the functions D(τ2, τ1) and c(τ2, τ1):

D(τ2, τ1) = πν
√

τ1τ2
[

Jν (2ν�1τ1) Yν (2ν�2τ2)

− Jν (2ν�2τ2) Yν (2ν�1τ1)
]
,

c(τ2, τ1) = πν
√

τ1τ2�2

sin(πν)

[
Jν−1 (2ν�2τ2) J−ν (2ν�1τ1)

+ J1−ν (2ν�2τ2) Jν (2ν�1τ1)
]
, (A.4)

where Jν , Yν etc. are the standard Bessel functions and we 
have used the shorthand notation �1,2 ≡ �(τ1,2) with �(τ) ≡√

iq̂0(τ )/ω and ν ≡ 1/(2 − β). For β = 0 (hence ν = 1/2), these 
equations reduce to the expected result for the case of a static 
medium, that is, Eq. (8) in [31].

Given the 3-body Green function, the one-loop correction δS(r)
to the dipole amplitude is computed as

δ

w
q̂
m
i

δ

w
G

i
τ

t
f
E
a

D

A
t
f
o
l

δ

T
l
v
r
t
t
a
t
c

R

u
b

S(r) = −αs Ncr2

2
Re

∫
dω

ω3

L∫
τ0

dτ2

τ2∫
τ0

dτ1

×
{

e
− r2

4

∫ L
τ0

dτ ′q̂0(τ ′)[θ(τ1−τ ′)+θ(τ ′−τ2)]∇B2

· ∇B1 G(3)(B2, τ2; B1, τ1; r)
} ∣∣∣∣∣

B2=r

B2=0

∣∣∣∣∣
B1=r

B1=0

, (A.5)

here it is understood that one has to subtract the vacuum limit 
0 → 0 of the integrand. To evaluate the correction (A.1) to the 
omentum broadening, one can expand Eq. (A.5) to lowest order 

n r2, to deduce4

S(r) � −αs Ncr2

4
Re

∫
dω

ω3

L∫
τ0

dτ2

τ2∫
τ0

dτ1
(∇B2 · ∇B1

)2

× [
G(B2, τ2; B1, τ1) − G0(B2, τ2; B1, τ1)

]∣∣∣∣
B1=B2=0

, (A.6)

here the vacuum subtraction, which involves the free propagator 
0, is now explicit.

To extract the double-logarithmic contribution to Eq. (A.6), it 
s convenient to change the time variables according to τ ≡ (τ1 +
2)/2 and τf ≡ τ2 − τ1, implying 0 < τf < τ < L. Specifically, the 
emporal logarithm arises from integrating over relatively small 
ormation times τf � τ . In this limit, the functions D and c in 
q. (A.4) are formally the same as for the static medium, but with 
 time-dependent q̂:

(τ2, τ1) � sin (�(τ )τf)

�(τ )
, c(τ2, τ1) � cos (�(τ )τf) . (A.7)

ccordingly, the subsequent analysis of Eq. (A.6) involves exactly 
he same manipulations as in the case of the static medium, except 
or the replacement q̂0 → q̂0(τ ) and for the fact that the integral 
ver the formation time should now be restricted to τf < τ . Fol-

owing the calculations in Ref. [31], one finds

〈p2⊥(L)〉 = ᾱ

L∫
τ0

dτ q̂0(τ )

τ∫
λ(τ )

dτf

τf

Q2
0(L)τf∫

q̂0(τ )τ 2
f

dω

ω
. (A.8)

he limits in the ω-integration can be understood as follows. The 
ower limit comes from the fact that the function D in Eq. (A.7)
anishes exponentially when |�(τ)τf| � 1. The upper limit rep-
esents the validity limit for the small-r2 expansion in Eq. (A.6): 
his expansion assumes r2 � τf/ω, where r2 ∼ 1/Q2

0(L). Finally, 
he lower limit λ on the formation time τf follows from a careful 
nalysis of the kinematics of the in-medium scattering [31]. After 
he change of integration variable ω → k2⊥ ≡ ω/τf , Eq. (A.8) be-
omes identical with (21) that was employed in the main text.
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