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Abstract

We revisit T-duality transformations for the open string via Buscher’s pro-
cedure and work-out technical details which have been missing so far in the
literature. We take into account non-trivial topologies of the world-sheet,
we consider T-duality along directions with Neumann as well as Dirichlet
boundary conditions, and we include collective T-duality along multiple di-
rections.
We illustrate this formalism with the example of the three-torus with H-flux
and its T-dual backgrounds, and we discuss global properties of open-string
boundary conditions on such spaces.
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1 Introduction

Dualities are remarkable features of string theory which have helped to expose and
understand some of the intricate structures of the theory. Examples for dualities
are S-duality, T-duality, mirror symmetry and heterotic–type I duality — and in
this work we will be interested in T-duality for open strings.

Non-geometric backgrounds

Dualities can be used to construct new backgrounds for string theory which are
well-defined only using duality transformations. An example is F-theory in which
S-duality is needed to construct globally-defined solutions, and in a similar way
T-duality can be utilized to build so-called non-geometric backgrounds. The latter
are spaces which do not allow for a description in terms of Riemannian geometry,
but in which O(D,D;Z) T-duality transformations are used as transition functions
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between local charts [1, 2]. In this way globally well-defined backgrounds can be
constructed.

The standard example for a non-geometric background is obtained by apply-
ing successive or collective T-duality transformations to a three-torus with H-flux.
After one T-duality one arrives at a twisted three-torus [3,4], which is a geometric
space and to which one can associate a geometric flux F k

ij . A second T-duality
transformation gives the T-fold background [2], which locally can be expressed in
terms of a metric and B-field but which globally is non-geometric. To this con-
figuration one can associate a Q-flux Qi

jk. Finally, even though the Buscher rules
cannot be applied, a formal third T-duality leads to a background with R-flux
Rijk [5, 6] and it has been argued that this space not even locally allows for a ge-
ometric description. This chain of T-duality transformations is often summarized
as follows

Hijk
Ti−−−−→ F i

jk

Tj−−−−→ Qk
ij Tk−−−−→ Rijk , (1.1)

where Ti denotes a T-duality transformation along the direction labelled by i.
Non-geometric backgrounds have interesting properties, for instance, they lead
to non-commutative [7–13] and non-associative [14–22] structures (for a review
see [23]). Furthermore, non-geometric Q- and R-fluxes can help in stabilizing
moduli in string-phenomenology (see e.g. [5,24,25,6,26–29]) and they can provide
mechanisms for the construction of potentials for inflationary scenarios in string-
cosmology (see e.g. [30, 31]).

The purpose of this paper is to investigate non-geometric backgrounds from an
open-string perspective. In particular, we want to understand the global properties
of D-branes in non-geometric spaces, which is important for applications in D-
brane model building. In the context of doubled geometry, D-branes in non-
geometric backgrounds have been discussed already in the original paper [2] and
have been investigated further in [32, 33]. However, here we are interested in a
description in string theory.

T-duality for open strings

In order to analyze D-branes in non-geometric backgrounds, we follow a strategy
similar to the closed-string situation and apply T-duality transformations to D-
brane configurations on a three-torus with H-flux.

T-duality for open strings in toroidal backgrounds with constant metric and
B-field can be studied via well-known conformal-field theory (CFT) techniques,
but for curved backgrounds with non-trivial B-field one usually has to rely on
Buscher’s procedure [34] of gauging a symmetry of the world-sheet action and
integrating-out the gauge field. This approach has been investigated already in
the literature, and some of the relevant papers are the following:
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• In [35] the authors discuss T-duality for the open string along a single di-
rection. They consider the bosonic string as well as the superstring from
a world-sheet point of view, and they analyze the behavior of the effective
target-space action. The direction along which the T-duality transformation
is performed has Neumann boundary conditions, and a Lagrange multiplier
is implemented in a way which does not allow for a generalization to Dirichlet
directions for non-trivial world-sheet topologies.

• In [36, 37] the case of a single T-duality transformation is studied from a
path-integral point of view and as a canonical transformation. The gauge
group on a stack of D-branes can be non-abelian, and the B-field is required
to be independent of the coordinate along which T-duality is performed. T-
duality is considered along a direction with Neumann boundary condition,
and the topology of the world-sheet is assumed to be trivial.

• In [38–40] the authors investigate T-duality along multiple directions with
a non-abelian isometry group. The B-field and consequently the H-flux are
set to zero, and the topology of the world-sheet is assumed to be trivial.

• T-duality for open-string sigma models has been studied also in [41] with the
inclusion of the fermionic sector on the world-sheet. Boundary conditions are
discussed and the case of a single T-duality is considered for world-sheets
with trivial topology.

In the present paper we extend the above analyses and work-out missing details:
1) we include world-sheets with a non-trivial topology in our studies, 2) we present
procedures for T-duality transformations along directions with Neumann as well as
Dirichlet boundary conditions, and 3) we include the case of performing collective
T-duality transformations along multiple directions. For part of our analysis we
include the case of a non-abelian isometry algebra, but final results are obtained
only for the abelian case.

We furthermore mention that T-duality for open strings has been studied via
canonical transformations also in [42, 43], and T-duality for D-branes from an
effective field theory point of view has been investigated for instance in [44–46].
D-branes in non-geometric backgrounds have been analyzed from an effective field
theory point of view in [15] and through boundary states in [47], and in the context
of generalized complex geometry D-branes and T-duality have been studied in [48].
Poisson-Lie T-duality for open strings has been discussed in [49] and [50], and in
a somewhat different approach T-duality for open strings has also been considered
in [51–53].
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Outline

This paper consists of essentially two parts: first we discuss on general grounds
open-string T-duality via Buscher’s procedure, and in the second part we apply
this formalism to D-brane configurations on a three-torus with H-flux. More
concretely:

• In section 2 we consider the world-sheet description of open strings, the
gauging of symmetries and how the ungauged action can be obtained from
the gauged one. We pay special attention to the topology of the world-sheet.

• In section 3 we perform collective T-duality transformations either along
all Neumann or all Dirichlet directions. We find for instance that, as ex-
pected, under T-duality Neumann and Dirichlet boundary conditions are
interchanged.

• In section 4 we consider D-branes on a three-torus with H-flux and study
T-duality along one, two and three directions. This is on the one-hand to
illustrate the procedure discussed in section 3, and on the other-hand to
obtain explicit examples for D-branes on the twisted three-torus and on the
T-fold.

• In section 5 we discuss the results from section 4. We review the Freed-
Witten anomaly cancellation condition, and we show that D-branes satisfying
this condition are globally well-defined on the twisted torus and on the T-
fold.

• Section 6 contains a brief summary of the results obtained in this paper.
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2 Non-linear sigma-model for the open string

We begin our discussion by reviewing the non-linear sigma-model description of
the open string and studying the gauging of world-sheet symmetries. The latter
are then employed in section 3 for performing T-duality transformations.

2.1 World-sheet action

We first introduce the sigma-model for the open string, specify boundary condi-
tions and consider global symmetries of the world-sheet action.

The action

The world-sheet action for an open string can be defined on a two-dimensional
world-sheet Σ with non-empty boundary ∂Σ 6= ∅. We allow for a non-trivial
target-space metric G, Kalb-Ramond field B, dilaton φ and open-string gauge
field a, although at a later stage we impose restrictions upon them. The field
strengths of B and a will be denoted by H = dB and F = da, respectively. For
later convenience we perform a Wick rotation and consider an Euclidean metric
on the world-sheet. The resulting action then reads

S = − 1

2πα′

∫

Σ

[
1

2
Gij dX

i ∧ ⋆dXj +
i

2
Bij dX

i ∧ dXj +
α′

2
Rφ ⋆ 1

]

− 1

2πα′

∫

∂Σ

[
2πiα′aidX

i + α′k(s)φ ds

]
,

(2.1)

where a = aidX
i is understood to be restricted to the boundary ∂Σ. Coordinates

on the world-sheet Σ are denoted as σa = {σ1, σ2} and on the boundary ∂Σ
as s. Coordinates on a D-dimensional target-space are denoted by X i(σ) with
i = 1, . . . , D, which can be interpreted as maps from the world-sheet Σ to the
target-space. The exterior derivative operator d acting on X i can therefore be
written as dX i = ∂aX

i(σ) dσa. The Hodge star-operator on Σ is denoted by ⋆,
the Ricci scalar for the world-sheet metric is R, and k(s) is the extrinsic curvature
of the boundary k = ta tb∇anb, where ta and na are unit vectors tangential and
normal to the boundary, respectively. Note furthermore that on the boundary we
have dX i|∂Σ = ta∂aX

ids.

Boundary conditions

Next, we consider the equations of motion for the fields X i and, in particular,
the corresponding boundary conditions. Denoting by Γi

jk the Christoffel symbols
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for the target-space metric Gij and by Hijk the components of the field strength
H = dB, the equations of motion for X i following from (2.1) read

0 = d ⋆ dX i + Γi
mndX

m ∧ ⋆dXn − i

2
H i

mndX
m ∧ dXn

− α′

2
Gim∂mφR ⋆ 1 ,

(2.2)

where the index of Hijk has been raised using the inverse of Gij. As boundary
condition we can impose Dirichlet boundary conditions of the form δX i|∂Σ = 0 or
Neumann boundary conditions. Denoting the tangential and normal part of dX i

on the boundary by

(
dX i

)
tan

≡ ta∂aX
i ds
∣∣
∂Σ

,
(
dX i

)
norm

≡ na∂aX
i ds
∣∣
∂Σ

, (2.3)

where ta and na are again unit tangential and normal vectors, and introducing
the gauge-invariant open-string field-strength F as 2πα′F = 2πα′F + B, we can
summarize the boundary conditions as

Dirichlet 0 =
(
dX î

)
tan

,

Neumann 0 = Gai

(
dX i

)
norm

+ 2πα′iFab

(
dXb

)
tan

+ α′k(s)∂aφ ds
∣∣∣
∂Σ

.
(2.4)

Here and in the following we split the target-space index i = 1, . . . , D into Dirichlet
and Neumann directions î and a, respectively.

Now, the Hodge decomposition theorem for manifolds with boundary (see for
instance [54]) allows us to decompose the space of closed p-forms Cp = {ω ∈ Ωp :
dω = 0} into exact p-forms Ep = {ω ∈ Ωp : ω = dη, η ∈ Ωp−1} and closed and
co-closed forms whose normal part vanishes on the boundary CcC

p
N = {ω ∈ Ωp :

dω = 0, d†ω = 0, ωnorm = 0}. Here, Ωp is the space of smooth differential forms on
Σ and d† denotes the co-differential. In formulas, this decomposition reads

Cp = Ep ⊕ CcC
p
N . (2.5)

For Dirichlet boundary conditions – with vanishing tangential part of dX î – this
implies in particular that the CcC1

N part of dX î vanishes and hence dX î is an
exact one-form on the world-sheet Σ.

Global symmetries

In order to perform T-duality transformations, let us now require the world-sheet
action (2.1) to be invariant under global symmetry transformations of the form

δǫX
i = ǫαki

α . (2.6)
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For global symmetries the infinitesimal transformation parameters ǫα are constant,
and we require the target-space vectors kα to satisfy a Lie algebra g as

[kα, kβ]L = fαβ
γ kγ , (2.7)

where fαβ
γ are the structure constants satisfying the Jacobi identity. The label α

takes values α = 1, . . . , N with N = dim(g).
The variation of the action (2.1) with respect to the transformations (2.6) does

not vanish in general. However, when the following conditions are met then (2.6)
is a global symmetry of the action

LkαG = 0 ,

LkαB = dvα , 2πα′Lkαa
∣∣
∂Σ

= (−vα + dωα)
∣∣
∂Σ

,

Lkαφ = 0 .

(2.8)

Here, G = 1
2
Gij dX

i⊗dXj, B = 1
2
Bij dX

i∧dXj , a = aidX
i and φ are interpreted

as target-space quantities.1 The Lie derivative along a vector field k is given by
Lk = d ◦ ιk + ιk ◦ d, with ι the contraction operator acting on dX i as ι∂idX

j = δi
j

and d is the exterior derivative acting as d ≡ dX i ∂i. Furthermore, in order to
apply Stokes’ theorem and show that (2.6) is a global symmetry of the action (2.1)
we require

vα . . . globally-defined one-forms on Σ ,

ωα . . . globally-defined functions on ∂Σ .
(2.9)

Let us also investigate when the boundary conditions (2.4) are invariant under
the global symmetry (2.6). For Neumann boundary conditions there are no restric-
tions due to (2.8), whereas for Dirichlet boundary conditions we find a non-trivial
requirement. These are summarized as

Dirichlet 0 = ∂ak
î
α

∣∣∣
∂Σ

,

Neumann ∅ .
(2.10)

However, strictly speaking the Dirichlet conditions read δX î|∂Σ = 0 which are
not preserved under global transformations of the form (2.6). For local symmetry
transformations on the other hand, the situation is different and we can preserve
Dirichlet conditions of this form.

1In order to keep our notation manageable, we do not explicitly distinguish between quantities
on the world-sheet and on target space, but assume this to be clear from the context. For instance,
on the world-sheet we have LkG = 1

2
(LkG)ijdX

i ∧ ⋆dXj.
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2.2 Gauged world-sheet action

In order to follow Buscher’s approach to T-duality, we now promote the global
symmetries (2.6) to local ones by introducing corresponding gauge fields.

Gauged action I

To gauge the global symmetries, we consider ǫα ≡ ǫα(σa) and introduce world-sheet
gauge fields Aα. The resulting gauged action takes the following form

Ŝ = − 1

2πα′

∫

Σ

[
1

2
Gij

(
dX i + ki

αA
α
)
∧ ⋆
(
dXj + k

j
βA

β
)
+

α′

2
Rφ ⋆ 1

]

− i

2πα′

∫

Σ

[
1

2
Bij dX

i ∧ dXj

+(ṽα + dχα) ∧ Aα +
1

2

(
ιk[α ṽβ] + fαβ

γχγ

)
Aα ∧ Aβ

]

− 1

2πα′

∫

∂Σ

[
2πiα′aadX

a − iΩ∂Σ + α′k(s)φ ds

]
,

(2.11)

where for later purpose we introduced a set of scalar fields χα with α = 1, . . . , N
and where we have defined

ṽα := vα − ıkαB . (2.12)

The one-form Ω∂Σ depends on whether the local symmetries are along Neumann
or Dirichlet directions and we specify its precise form below. The local symmetry
transformations for the gauged action (2.11) are given as follows2

δ̂ǫX
i = ǫαki

α ,

δ̂ǫA
α = −dǫα − fβγ

α ǫβAγ ,

δ̂ǫχα = −ιk(αvβ) ǫ
β − fαβ

γ ǫβχγ ,

(2.13)

however, under (2.13) the gauged action (2.11) is in general not invariant. For
invariance of the terms in the bulk Σ we have to require that dχα are globally
well-defined on Σ and have to impose the additional constraints

Lk[αṽβ] = fαβ
γ ṽγ , ιk[α fβγ]

δṽδ =
1

3
ιkαιkβ ιkγH . (2.14)

2Our convention for the (anti-)symmetrization of indices contains a factor of 1/n!, and for
better distinction we highlight the (anti-)symmetrized indices by under-lining or over-lining them.
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Boundary conditions

Let us now come to the boundary conditions for the gauged action. In particular,
the conditions (2.4) for the fieldsX i are preserved provided that the transformation
parameters ǫα satisfy on the boundary

Dirichlet 0 = kî
α

(
dǫα
)
tan

∣∣∣
∂Σ

,

Neumann 0 = Gaik
i
α

(
dǫα
)
norm

+ 2πα′iFabk
b
α

(
dǫα
)
tan

∣∣∣
∂Σ

,
(2.15)

where we employed the restrictions (2.10) coming from the global symmetries.
However, for Dirichlet boundary conditions we again have a stronger requirement
from demanding that δX î|∂Σ = 0. This implies in particular that kî

αǫ
α|∂Σ = 0.

We now turn to the boundary conditions for the gauge fields Aα and start with
the following two observations:

• For Dirichlet conditions we argued that the corresponding transformation
parameters ǫα have to vanish on the boundary. Comparing with the transfor-
mations (2.13), we can conclude that under local symmetry transformations
the gauge fields Aα do not change on the boundary. In fact, as we will discuss
in section 2.3, in order to show the equivalence to the ungauged action we
demand that Aα vanishes on the boundary.

• For Neumann conditions we can determine the equations of motion for X i

from the gauged action (2.11). If we require that for this variation boundary
terms vanish, we obtain conditions for the Aα summarized below.

Motivated by these observations, we then impose the following boundary condi-
tions for the gauge fields Aα [41]

Dirichlet 0 = kî
α

(
Aα
)
tan

∣∣∣
∂Σ

,

Neumann 0 = Gaik
i
α

(
Aα
)
norm

+ 2πα′iFabk
b
α

(
Aα
)
tan

∣∣∣
∂Σ

.
(2.16)

Note that these conditions are preserved under the local symmetry transformations
(2.13).

Gauged action II

After having discussed the boundary conditions for the gauge fields, we can now
specify the one-form Ω∂Σ in the action (2.11). For simplicity we consider local
symmetry transformations either all along Dirichlet directions X î or all along
Neumann directions Xa. Mixed cases can also be treated, but the presentation
becomes more involved.
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• We start with Dirichlet boundary conditions. In this case the infinitesimal
variation parameters ǫα vanish on the boundary, and hence the boundary
terms in (2.11) stay invariant under (2.13). For Ω∂Σ we then choose

Dirichlet Ω∂Σ = 0 . (2.17)

• For Neumann boundary conditions we introduce a second set of Lagrange
multipliers φα with α = 1, . . . , N , and we specify the one-form Ω∂Σ as

Neumann Ω∂Σ =
(
χα + φα + ωα − 2πα′ιkαa

)
Aα . (2.18)

The φα are required to be constant fields on the boundary ∂Σ, and the χα

have to be globally well-defined on the boundary ∂Σ. The latter requirement
implies that dχα is exact on the boundary, and hence it follows from the
Hodge decomposition (2.5) that CcCN -part of dχα vanishes. We therefore
have in summary

χα . . . globally-defined functions on Σ ,

φα . . . constant functions on ∂Σ .
(2.19)

Finally, in order for the gauged action (2.11) to be invariant under the sym-
metry transformations (2.13) in the case of Neumann boundary conditions,
in addition to (2.14) we impose

Lk[αωβ]

∣∣∣
∂Σ

=
1

2

[
fαβ

γωγ + ιk[αvβ]

] ∣∣∣
∂Σ

, 0 = fαβ
γφγ

∣∣∣
∂Σ

. (2.20)

Symmetries of the gauged action

The gauged action (2.11) has been constructed such that it is invariant under
the local transformations (2.6). However, by extending the original action by
additional fields vα, ωα and φα, further symmetries may arise. And indeed, we
find the following transformations which leave the action (2.11) invariant [38]:

1. Gauge transformations of the Kalb-Ramond field with a globally well-defined
one-form on the world-sheet Σ denoted by Λ:

B → B + dΛ ,

a → a− 1
2πα′

Λ ,

vα → vα + ιkαdΛ ,

ωα → ωα − ιkαΛ .

(2.21)
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2. Shifts of the one-forms vα by exact forms using functions λα:

vα → vα + dλα ,

χα → χα − λα ,

ωα → ωα + λα ,

Lk[αλβ] = fαβ
γλγ . (2.22)

3. Gauge transformations of the open-string gauge field a with a globally well-
defined function λ on the boundary ∂Σ:

a → a+ dλ ,

ωα → ωα + 2πα′ıkαdλ .
(2.23)

4. Shifts of the functions ωα by constants θα:

χα → χα + θα ,

ωα → ωα − θα ,
fαβ

γ θγ = 0 . (2.24)

5. Shifts of the functions φα by constants Θα:

φα → φα +Θα ,

ωα → ωα −Θα .
(2.25)

Note that for Dirichlet boundary conditions the boundary term Ω∂Σ vanishes, and
therefore the last two symmetries are slightly modified and less restrictive.

2.3 Recovering the ungauged world-sheet action

We finally want to show how the ungauged world-sheet theory (2.1) can be re-
covered from the gauged action (2.11). This will be done using the equations of
motion of the Lagrange multipliers χα (and φα) [55–57].

Equations of motion for χα (and φα)

Let us start by determining the equations of motion for the Lagrange multipliers
from the gauged action (2.11). We distinguish again between all-Dirichlet or all-
Neumann boundary conditions:

• In the case of Dirichlet boundary conditions, we recall from (2.17) that the
one-form Ω∂Σ vanishes. The variation of the action (2.11) with respect to χα

then leads to

δχŜ =
i

2πα′

∫

Σ

δχα

(
dAα − 1

2
fβγ

αAβ ∧Aγ

)
, (2.26)
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where the boundary term vanishes due to the Dirichlet conditions (2.16).
Setting to zero the variation (2.26) leads to the equations of motion for Aα,
and together with the boundary condition on Aα we have

0 = F α = dAα − 1

2
fβγ

αAβ ∧Aγ , 0 = Aα
∣∣∣
∂Σ

. (2.27)

• Next, we turn to the Neumann boundary conditions. In this case the bound-
ary one-form Ω∂Σ takes the form given in (2.18), and for the equations of
motion for χα and φα we determine

δχŜ =
i

2πα′

∫

Σ

δχα

(
dAα − 1

2
fβγ

αAβ ∧ Aγ

)
,

δφŜ =
i

2πα′

∫

∂Σ

δφαA
α ,

(2.28)

which gives the equations of motion

0 = F α = dAα − 1

2
fβγ

αAβ ∧Aγ , 0 = Aα
∣∣∣
∂Σ

. (2.29)

Here it also becomes apparent why in the case of Neumann boundary condi-
tions we introduced a second set of Lagrange multipliers φα. The latter are
needed in order to set to zero the gauge field on the boundary [38].

Abelian isometry algebra

Let us now consider abelian isometry algebras for which the structure constants
fαβ

γ are vanishing. In this case the equation of motion for χα imply that Aα is
closed, and according to (2.5) we can therefore decompose

Aα = daα(0) +
∑

m

aα(m)ϕ
m , (2.30)

where aα(0) are globally defined functions on Σ, aα(m) ∈ R and ϕm ∈ CcC1
N is a basis

of closed and co-closed one-forms on Σ whose normal part vanishes. However,
taking into account also the second condition in (2.27) and (2.29) we see that
the tangential part of Aα is required to vanish on the boundary. As we discussed
before, this implies that the CcC1

N part of Aα is trivial, i.e. aα(m) = 0. Therefore

Aα is exact – and using the gauge symmetry (2.13) we can set Aα to zero. We
have then recovered the original action (2.1) from the gauged one (2.11).
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Non-abelian isometry algebra

In the case of a non-abelian isometry algebra the situation is different. Since due to
the first condition in (2.27) and (2.29) the gauge fields Aα are not closed, we cannot
apply the Hodge decomposition theorem. Heuristically, we can follow a method
similar to the one in [58] where a field redefinition from DX i = dX i + ki

αA
α to

dY i has been discussed. This procedure allows to recover the original action from
the gauged action also in the case of non-abelian isometries, however, it does not
take into account a non-trivial topology of the world-sheet.

More accurate would be to start from the cohomology of the gauge-covariant
derivative and determine a corresponding Hodge decomposition theorem for man-
ifolds with boundary. This is however beyond the scope of this paper.

3 T-duality

In this section we discuss collective T-duality transformations for the open string.
In section 3.1 we first present results for the closed-string sector of the T-dual
theory, whereas in section 3.2 and 3.3 we consider the open-string sector with
Neumann and Dirichlet boundary conditions.

3.1 Closed-string sector

We start by determining the metric and Kalb-Ramond B-field of the T-dual back-
ground. We do so by following Buscher’s procedure [34,59] of gauging target-space
isometries – as discussed in section 2.2 – and integrating-out the corresponding
gauge fields Aα.

Equations of motion for Aα

The equations of motion for the gauge fields Aα are obtained by varying the gauged
action (2.11) with respect to Aα. Since the latter appear without a derivative, we
can solve the equations of motion algebraically. From the part of the action defined
on the bulk Σ we find using matrix notation [58]

Aα = −
([

G −DG−1D
]−1
)αβ(

1+ i ⋆DG−1
) γ

β

(
k+ i ⋆ ξ

)
γ
, (3.1)

where we recall that α, β = 1, . . . , N . For ease of notation, we have defined the
following quantities

Gαβ = ki
αGij k

j
β , ξα = dχα + ṽα ,

Dαβ = ιk[α ṽβ] + fαβ
γχγ , kα = ki

αGij dX
j .

(3.2)
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Note that although in (3.1) the inverse of the matrix G appears, in the integrated-
out action only the inverse of (G±D) plays a role. We therefore require invertibility
only for the latter.

The contribution to the equations of motion for Aα from the boundary ∂Σ de-
pends on the type of boundary conditions for the gauge fields (2.16). For instance,
if we impose Dirichlet conditions the gauge fields are absent on the boundary as
shown in (2.17). On the other hand, if Aα satisfy Neumann boundary condi-
tions we find a non-trivial condition which has to be imposed as a constraint. In
particular, we have

Dirichlet ∅ ,

Neumann 0 = 2πα′ ιkαa− (χα + φα + ωα)
∣∣∣
∂Σ

.
(3.3)

Integrated-out action

Using the expressions (3.1) and (3.3), we can now evaluate the action (2.11). We
obtain the following general form

Š = − 1

2πα′

∫

Σ

[
Ǧ+ iB̌ +

α′

2
Rφ ⋆ 1

]

− 1

2πα′

∫

∂Σ

[
2πiα′aadX

a + α′k(s)φ ds

]
,

(3.4)

with the world-sheet quantities Ǧ and B̌ given by the expressions

Ǧ = G− 1

2
(k+ ξ)T

(
G +D

)−1 ∧ ⋆(k− ξ) ,

B̌ = B − 1

2
(k+ ξ)T

(
G +D

)−1 ∧ (k− ξ) ,

(3.5)

in which matrix multiplications for the indices α, β = 1, . . . , N is understood. We
note that the original metric and B-field appearing in (3.5) read G = 1

2
Gij dX

i ∧
⋆dXj and B = 1

2
Bij dX

i ∧ dXj. The fields in (3.5) can be regarded as a “metric
and B-field” for an enlarged target space of dimension D + N , which is locally
parametrized by coordinates {X i, χα} [60].

Change of basis

The symmetric matrix Ǧ defined through (3.5) has N null-eigenvalues. In the
basis {dX i, dχα} the corresponding N null-eigenvectors are of the form [60, 58]

ňα =

(
ki
α

Dαβ − ιkα ṽβ

)
, (3.6)
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which can be used to perform a change of basis. Since the Killing vectors kα are
assumed to be linearly independent, we can always find a coordinate system in
which the N × N matrix kβ

α is invertible and where all other components of ki
α

vanish.3 Let us then define the following basis of one-forms

eα =
(
k−1
)α
β
dXβ ,

em = dXm ,

eα = dχα +
[
ιk(αvβ) + fαβ

γχγ

](
k−1
)β

γ dX
γ ,

(3.7)

where the indices take values α, β = 1, . . . , N and m,n = N + 1, . . . , D. We can
now express the fields (3.5) in this new basis:

• Since the symmetric two-tensor Ǧ has N zero-eigenvalues, it can be brought
into the form

Ǧ =
1

2
ǦIJ e

I ∧ ⋆eJ , (3.8)

where we employed the notation eI = {eα, em} with I = 1, . . . , D. Using the
definitions shown in (3.2) and (2.12), the components ǦIJ take the following
form

Ǧmn = Gmn − kαm
[
(G +D)−1 G (G −D)−1

]αβ
kβn

− kαm
[
(G +D)−1D (G −D)−1

]αβ
ṽβn

+ ṽαm
[
(G +D)−1D (G −D)−1

]αβ
kβn

+ ṽαm
[
(G +D)−1 G (G −D)−1

]αβ
ṽβn

Ǧα
n = +

[
(G +D)−1D (G − D)−1

]αβ
kβn

+
[
(G +D)−1 G (G − D)−1

]αβ
ṽβn

Ǧαβ = +
[
(G +D)−1 G (G −D)−1

]αβ

(3.9)

These expressions are the components of the metric of the dual background
after performing a collective T-duality transformation along N directions.
In particular, for the case of a T-duality along one direction these formulas
reduce to the usual Buscher rules [34].

3This is true when the isometry group has no fixed points or only isolated fixed points. If
however the isotropy of the isometry group is non-trivial, the matrix kβα is not invertible [56] and
a different basis of one-forms eα, em and eα in (3.7) has to be chosen.
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• For the two-form B̌ given in (3.5) we find a slightly different structure. In
particular, we can write

B̌ =
1

2
B̌IJ e

I ∧ eJ + B̌res. , (3.10)

where the anti-symmetric matrix B̌IJ takes the form

B̌mn = Bmn + kαm
[
(G +D)−1D (G − D)−1

]αβ
kβn

+ kαm
[
(G +D)−1 G (G − D)−1

]αβ
ṽβn

− ṽαm
[
(G +D)−1 G (G − D)−1

]αβ
kβn

− ṽαm
[
(G +D)−1D (G − D)−1

]αβ
ṽβn

B̌α
n = −

[
(G +D)−1 G (G − D)−1

]αβ
kβn

−
[
(G +D)−1D (G − D)−1

]αβ
ṽβn

B̌αβ = −
[
(G +D)−1D (G − D)−1

]αβ

(3.11)

These expressions give the B-field of the T-dual background, which in the
case of a single T-duality again match with the Buscher rules.

Let us finally address the residual B-field B̌res. mentioned in (3.10). Through
the one-forms eα it depends on dXα of the original background, and it takes the
explicit form

B̌res. = eα ∧
[
dχα + vα +

1

2

(
ιk[αvβ] + fαβ

γχγ

)
eβ
]
. (3.12)

We discuss this expression separately for Neumann and Dirichlet boundary condi-
tions in the following two subsections.

Dilaton

The dual dilaton φ̌ has to be determined by a one-loop computation as in [59].
However, here we determine φ̌ by demanding that the combination e−2φ

√
detG is

invariant under T-duality transformations. We then find

φ̌ = φ− 1

4

detG

det Ǧ
. (3.13)
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Closure of basis

In our above discussion, we have identified eI = {eα, em} with I = 1, . . . , D as the
basis one-forms of the T-dual background. As such, they have to be closed under
the exterior derivative d. Let us therefore compute the following expressions

deα = −1

2
fβγ

αeβ ∧ eγ −
(
k−1
)α
β

[
∂mkβ

γ

]
em ∧ eγ ,

dem = 0 ,

deα = −fαβ
γ eβ ∧ eγ +

(
∂m ιk(αvβ) −

[
ιk(αvγ) + fαγ

δχδ

](
k−1
)γ
ǫ

[
∂mkǫ

β

])
em ∧ eβ ,

(3.14)

from which we see that in general the basis eI = {eα, em} does not close under the
exterior derivative d. This means that the dual background may implicitly depend
on the original coordinates, which is a property expected from a non-geometric
background. Nevertheless, if we restrict ourselves to either of the following situa-
tions





0 = fαβ
γ

0 = ∂m ιk(αvβ)

0 = ∂mkβ
α





,

{
0 = fαβ

γ

0 = ιk(αvβ)

}
, (3.15)

we see that the basis eI = {eα, em} is closed under the exterior derivative. Note
also that, as mentioned in footnote 3, in the case of a non-trivial isotropy of the
isometry group a different basis of one-forms has to be chosen. In this case the
exterior algebra may take a different form.

Remark on non-geometric fluxes

Given the general form of the dual metric and B-field after a collective T-duality
transformation shown in (3.9) and (3.11), we want to take the opportunity and
remark on possible non-geometric fluxes. In particular, given ǦIJ and B̌IJ we can
define a new metric gIJ and bi-vector field βIJ via

(
Ǧ± B̌

)−1
= g ± β , (3.16)

where gIJ corresponds to the symmetric part and βIJ to the anti-symmetric part.
The non-geometric Q- and R-fluxes are then expressed in terms of β as follows

QI
JK = ∂Iβ

JK , RIJK = 3β [IM∂MβJK] . (3.17)

Let us now consider a D-dimensional background and perform a collective T-
duality transformation along all D directions. Ignoring for a moment that the
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basis of dual one-forms does not close among itself under d, from (3.9) and (3.11)
we can determine

gαβ = Gαβ , βαβ = Dαβ , (3.18)

where we note that for the dual coordinates χα the position of the index is reversed
as compared to the original coordinates Xα. For the non-geometric fluxes we
compute using (2.14) and the Jacobi identity of fαβ

γ

Qα
βγ = fβγ

α , Rαβγ = ιkαιkβ ιkγH . (3.19)

The general form of these expressions is as expected: for a background with a
non-abelian isometry group the metric is usually non-trivial and one expects a
corresponding non-geometric flux related to fαβ

γ . Under a collective T-duality
transformation along all directions this geometric flux should be mapped into the
non-geometric Q-flux, as in (3.19). Furthermore, under a collective T-duality
transformation along all directions the H-flux is expected to be mapped into the
non-geometric R-flux, as can be seen in (3.19). However, as mentioned above, the
dual-basis one-forms eα defined in (3.7) do not closed under the exterior derivative

deα = −fαβ
γ eβ ∧ eγ . (3.20)

In this way the dual geometry implicitly depends on the original coordinates, which
on general grounds is expected from a non-geometric background.

3.2 Open-string sector – Neumann directions

Let us now consider the open-string sector and specialize to T-duality transforma-
tions along multiple Neumann directions Xa. T-duality along Dirichlet directions
will be discussed in section 3.3, but the mixed case of collective T-duality along
Neumann and Dirichlet directions at the same time will not be studied separately.

Integrating-out I – gauge fields Aα

We start by integrating-out the gauge fields Aα from the gauged action (2.11),
taking into account the Neumann boundary conditions shown in (2.16). The so-
lution to the equations of motion for Aα in Σ has been given in equation (3.1),
which leads to the dual metric and B-field shown in (3.9) and (3.11), including
the residual B-field (3.12). The contribution to the equation of motion for Aα

coming from the boundary leads to the constraint (3.3), which we implement as a
δ-function into the path integral

δ
(
φα − χ̃α

)
∂Σ

, χ̃α = χα + ωα − 2πα′ιkαa . (3.21)
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Furthermore, the gauge fields Aα are subject to the Neumann boundary conditions.
Evaluating these for the solution (3.1) gives the following general condition on the
boundary

0 =
[
Gaik

i
α ⋆ Aα

∣∣
(3.1)

+ 2πα′iFabk
b
αA

α
∣∣
(3.1)

]
∂Σ

, (3.22)

where Aβ|(3.1) denotes the solution (3.1). In general (3.22) will take a complicated
form and has to be computed in a case-by-case analysis. However, if we restrict
ourselves for a moment to the abelian situation with fαβ

γ = 0 and contract (3.22)
with kβ, we find that

0 = dχ̃α

∣∣
∂Σ

. (3.23)

These relations describe Dirichlet boundary conditions for the dual coordinates
χα, which we expect on general grounds.

Integrating-out II – Lagrange multipliers φα

Next, we consider the Lagrange multipliers φα. After integrating-out the gauge
fields Aα and implementing the constraint (3.21), the path integral takes the fol-
lowing schematic form

Z =

∫
[DX i][Dχα]

Vgauge

∫
[Dφα] δ

(
φα − χ̃α

)
∂Σ

exp
(
Š[X i, χα]

)
, (3.24)

where Vgauge denotes the volume of the local gauge symmetry (2.13), χ̃α have been
defined in (3.21) and Š denotes the action (3.4). Since the latter does not depend
on φα, the integral over φα can performed trivially and the δ-function (3.21) gives
one.

Integrating-out III – coordinates Xα

The action Š still depends on the original coordinates Xα which satisfy Neumann
boundary conditions. This means in particular that dXα can have a non-vanishing
CcC1

N -part, so the local symmetry (2.13) cannot be used to set Xα to zero. How-
ever, the residual B-field (3.12) provides the required terms. In the following we
restrict ourselves again to the abelian situation and make the technical assumption
that kβ

α are constant, but more general cases can be treated in a similar fashion.
To start, let us note that in (2.8) we have shown conditions which relate the

open-string gauge field a, the one-forms vα and the functions ωα on the boundary
∂Σ to each other. All these quantities depend only on X i, which have a unique
continuation from the boundary ∂Σ to the bulk Σ. We can therefore assume that
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the relations (2.8) and (2.14) are valid also on Σ. This allows us to rewrite B̌res.

in the following way

B̌res. = d
[
−χ̃αe

α − 2πα′a
]
+ 2πα′

(
1
2
Fmne

m ∧ en
)
, (3.25)

with F = da the open-string field strength and χ̃α were defined in (3.21). The
dual action (3.4) contains B̌res. together with the open-string gauge field on the
boundary. For those we compute

− i

2πα′

∫

Σ

B̌res. − i

2πα′

∫

∂Σ

2πα′a

=+
i

2πα′

∫

∂Σ

χ̃αe
α − i

2πα′

∫

Σ

2πα′
(
1
2
Fmne

m ∧ en
)
. (3.26)

The second term in (3.26) denotes the open-string field strength along the direc-
tions which are not dualized and combines with Bmn in (3.11) into the gauge-
invariant open-string field strength. Turning to the first term in (3.26), since
the dXα with Neumann boundary conditions appearing in eα are closed, we can
expand them into an exact and a CcC1

N -part similarly as in equation (2.30)

dXα = dXα
(0) +

∑

m

Xα
(m)ϕ

m , (3.27)

where Xα
(0) are globally-defined functions on Σ, Xα

(m) ∈ R are constants and ϕm ∈
CcC1

N is a basis of closed and co-closed one-forms with vanishing normal part. A
corresponding basis of the first homology on ∂Σ will be denoted by γm and can be
normalized as

∫
γm

ϕn = δnm. Now, the exact part Xα
(0) appearing in (3.27) can be

set to zero using the symmetry (2.13), while for the CcC1
N -part we distinguish the

following two situations:

• Let us first assume that we can define winding/momentum numbers n(m) for
the Xα as follows

∮

γm

dXα = Xα
(m) = 2πnα

(m) , nα
(m) ∈ Z , (3.28)

which determine the Xα
(m) appearing in (3.27). For a compactification of Xα

on a circle or a flat torus without H-flux these momentum/winding sectors
always exist, but on more general backgrounds these may be either absent
or not be quantized. Coming now back to the first expression in (3.26),
we see that the path integral (3.24) (after integrating over φα) contains the
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following terms

Z ⊃
∫

[DXα]

Vgauge
exp

[
i

2πα′

∫

∂Σ

χ̃αe
α

]

⊃
∫ [

DXα
(0)

]

Vgauge

∑

nα
(m)

∈Z

exp

[
i

2πα′

∫

∂Σ

χ̃β

(
k−1
)β
α
dXα

]

⊃
∑

nα
(m)

∈Z

exp

[
i

α′
χ̃β

(
k−1
)β
α
nα
(m)

]

∂Σ

⊃
∑

mα(m)∈Z

δ

[
1

2πα′
χ̃β

(
k−1
)β
α
−mα(m)

]

∂Σ

,

(3.29)

where from the second to the third line we set to zero the exact part using
the local symmetries, and from the third to the fourth line we employed the
definition of the periodic Kronecker δ-symbol [55]. We therefore see that
coordinates χ̃α on the boundary ∂Σ are quantized as

1

α′
χ̃β

(
k−1
)β
α

∣∣∣
∂Σ

∈ 2πZ . (3.30)

• The second possibility is that Xα
(m) appearing in (3.27) are real numbers

determined via the equations of motion (2.2), which are in particular not
quantized. In this case the sum in (3.29) is replaced by integrals over Xα

(m),
leading to Dirac δ-functions which set

χ̃α

∣∣
∂Σ

= 0 . (3.31)

Let us also note that χ̃α defined in (3.21) contain a contribution from the open-
string gauge field a. This means that a non-vanishing ιkαa leads to a shift of the
dual coordinates χα, which is again expected on general grounds.

Summary

Let us summarize the main steps to obtain the dual open-string sector in the case
of Neumann boundary conditions. We illustrated this procedure with an abelian
isometry algebra with constant Killing vectors, but more general configurations
(subject to the questions discussed above) follow a similar pattern:

1. First, we integrate-out the gauge fields Aα from the gauged action (2.11).
This gives the dual metric and B-field in the bulk and imposes the constraint
(3.21) on the boundary. The boundary conditions for Aα shown in (3.22)
imply that the dual coordinates satisfy Dirichlet boundary conditions.
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2. Next, we integrate over the Lagrange multipliers φα in the path integral.
Due to the δ-function (3.21) this integral gives one.

3. Finally, we perform the path integral over the original coordinates Xα. The
exact part of dXα can be gauged to zero using the local symmetry (2.13),
while the co-homologically non-trivial part of dXα appears in the residual
B-field (3.12). The latter either gives rise to a periodic Kronecker δ-symbol
in the path integral leading to quantization conditions for the dual coordi-
nates on the boundary, or gives a Dirac δ-function which imposes Dirichlet
conditions for the dual coordinates.

We want to point-out that these results are in agreement with the well-known CFT
analysis of T-duality for the open string: T-duality along a Neumann direction
results in a dual Dirichlet direction, and a non-trivial Wilson line leads to a shift
of the dual coordinates on the boundary.

3.3 Open-string sector – Dirichlet directions

We now turn to collective T-duality transformations along directions with Dirichlet
boundary conditions. Due to the absence of the Lagrange multipliers φα, the
procedure differs slightly from the Neumann case.

Integrating-out I – gauge fields Aα

We start again by integrating-out the gauge fields Aα from the gauged action
(2.11). The equations of motion for Aα in the bulk Σ lead to the solution (3.1),
which in turn gives the dual metric and B-field shown in (3.9) and (3.11). The
residual B-field can be found in (3.12) and – as already summarized in (3.3) –
there are no additional conditions arising from the variation of the action with
respect to Aα on the boundary.

The boundary conditions for Aα shown in (2.16) require the gauge fields to
vanish on the boundary. For the solution (3.1) this implies in particular that

0 =
[
Aα
∣∣
(3.1)

]
∂Σ

, (3.32)

which using (3.1) and the basis eI = {eα, em} given in (3.7) can be expressed as

0 = Ǧα
I

(
eI
)
norm

+ iB̌α
I

(
eI
)
tan

. (3.33)

By comparing (3.33) with (2.4) we conclude that these relations describe Neumann
boundary conditions for the dual coordinates, which is again expected on general
grounds.
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Integrating-out II – coordinates Xα

Next, we turn to the original coordinates Xα which appear in the action via the
residual B-field. In the following we assume for simplicity that the Killing vectors
are constant and that vα = 0, but for more general configurations can be treated
in a similar way.

Since the original coordinates Xα satisfy Dirichlet boundary conditions, the
one-forms dXα are exact on Σ. This allows us to rewrite the residual B-field
(3.12) in the following way

B̌res. = eα ∧ dχα = d
[
Xα
(
k−1
)β
α
eβ

]
, (3.34)

which for the action implies

− i

2πα′

∫

Σ

B̌res. = − i

2πα′

∫

∂Σ

2πα′

[
Xα(k−1)βα

2πα′
eβ

]
. (3.35)

We therefore see that the position of the D-brane in the original theory Xα|∂Σ
determines a constant gauge field for the T-dual theory

ǎα =
1

2πα′

(
k−1
)α
β
Xβ
∣∣∣
∂Σ

. (3.36)

Using the local gauge symmetry (2.13) we can then fix Xα in the bulk Σ to a
convenient value, and trivially perform the corresponding integration in the path
integral. In this way we have then obtained the T-dual theory.

Summary

Let us briefly summarize the main steps for obtaining the dual background for a
collective T-duality transformation along Dirichlet directions.

1. We first integrate-out the gauge fields Aα form the gauged action (2.11)
and obtain the dual metric and B-field. The boundary conditions (3.32)
for the gauge fields then lead to Neumann boundary conditions for the dual
coordinates.

2. In contrast to the case of T-duality transformations along Neumann direc-
tions, in the present situation there are no Lagrange multipliers φα present.

3. In the case of an abelian isometry algebra and vanishing one-forms vα, we
can rewrite the residual B-field (3.12). The latter then leads to a Wilson
line along the dual directions determined by the position of the original D-
brane. Since the original one-forms dXα are exact, we can use the local
gauge symmetry to fix them to a convenient value in the bulk Σ (subject to
the boundary conditions on ∂Σ).
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We want to point-out again that these results agree with the results expected from
a CFT analysis on a background with constant metric and B-field. In particular,
a T-duality along a Dirichlet direction leads to a Neumann boundary condition,
and the position of the original D-brane corresponds to a constant gauge field in
the dual theory.

4 Examples – three-torus with H-flux

In this section we want to illustrate the formalism introduced above with the
example of the three-torus with H-flux. We discuss a number of different settings
and show explicitly that the results expected from toroidal compactifications with
constant B-field are obtained also for non-trivial B-field.

Setup

As a starting point we consider the background of a flat three-torus with H-flux
and different types of D-branes. We denote coordinates on the three-torus T3 byX i

with i = 1, 2, 3, and impose the identifications X i ∼ X i + 2π. The corresponding
basis for the co-tangent space is given by one-forms dX i, and the metric and B-field
read

Gij =



R2

1 0 0
0 R2

2 0
0 0 R2

3


 , B =

α′

2π
hX3 dX1 ∧ dX2 , φ = φ0 , (4.1)

where h ∈ Z due to the flux-quantization condition. The radii Ri have the dimen-
sion of the string-length ℓs, whereas the coordinates X i are dimensionless. The
dilaton φ is taken to be constant, and the Killing vectors we are interested-in (in
a basis dual to dX i) are given by

k1 =



1
0
0


 , k2 =



0
1
0


 , k3 =



0
0
1


 , (4.2)

which satisfy an abelian isometry algebra. Our conventions for the open-string sec-
tor is that a Dp-brane has Neumann boundary conditions along the time direction
and along p spatial directions in T

3, while the remaining directions are of Dirichlet
type. Finally, since in our convention the coordinates X i are dimensionless it turns
out to be convenient to use also dimensionless dual coordinates

χ̌α =
1

α′
χα . (4.3)
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4.1 One T-duality

We start with discussing one T-duality transformation for the above background.
For convenience we always take the direction X1, but the formalism introduced
in section 3 gives similar results for the other directions. In particular, we can
equally perform a T-duality transformation along the direction X3.

D1-brane along X1

Let us place a D1-brane along the direction X1 and consider a constant open-
string gauge field a. The corresponding field strength F = da vanishes, and the
boundary conditions (2.4) take the form

0 =
(
dX1

)
norm

, 0 =
(
dX2

)
tan

, 0 =
(
dX3

)
tan

. (4.4)

The constraints (2.8) and (2.14) for a T-duality along the X1-direction are solved
for instance by

a = a1dX
1 ,

v1 = 0 ,

ω1 = 0 ,

a1 = const. , (4.5)

and the dual metric and B-field can be determined from the general expressions
(3.9) and (3.11) (together with (4.3)) as

ǦIJ =




α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 +
α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3


 , B̌IJ = 0 . (4.6)

This background is known as a twisted three-torus [3, 4], and the dual basis can
be read-off from (3.7) as {dχ̌1, dX

2, dX3}. The boundary condition for dχ̌1 is
determined via (3.22), and together with the remaining directions we have

0 =
(
dχ̌1

)
tan

, 0 =
(
dX2

)
tan

, 0 =
(
dX3

)
tan

. (4.7)

The dual background therefore contains a D0-brane. The residual B-field (3.12)
can be determined as B̌res. = dX1∧dχ1, and by performing the path integral over
X1 gives the condition

[
χ̌1 − 2πa1

]
∂Σ

∈ 2πZ . (4.8)

However, since we do not know how to quantize the theory in the presence of a
non-trivial H-flux we have no information about the momentum/winding numbers
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of the original coordinate X1. Strictly speaking we should therefore set the right-
hand side of (4.8) to zero following (3.31). In summary, we see that the dual
background is a twisted torus with a D0-brane, whose position is specified by the
Wilson line a1.

D2-brane along X1–X2

As a second example, we consider a D2-brane along the directions X1 and X2 with
a non-trivial open-string field strength F12 = f = const. The boundary conditions
(2.4) then take the form

0 = R2
1

(
dX1

)
norm

+ 2πα′ i
(
f + h

4π2 X
3
) (

dX2
)
tan

,

0 = R2
2

(
dX2

)
norm

− 2πα′ i
(
f + h

4π2 X
3
) (

dX1
)
tan

,

0 =
(
dX3

)
tan

,

(4.9)

and for a T-duality along the direction X1 the constraints (2.8) and (2.14) are
solved by

a = a1dX
1 + a2dX

2 + fX1dX2 ,

v1 = −2πα′f dX2 ,

ω1 = 0 .

a1, a2, f = const. , (4.10)

The T-dual metric and B-field are again determined from the general expressions
(3.9) and (3.11) with (4.3), from which we find

ǦIJ =




α′2

R2
1

−α′2

R2
1

[
2πf + h

2π
X3
]

0

−α′2

R2
1

[
2πf + h

2π
X3
]

R2
2 +

α′2

R2
1

[
2πf + h

2π
X3
]2

0

0 0 R2
3


 ,

B̌IJ = 0 ,

(4.11)

which again describes a twisted three-torus. Note however that here the gauge-
invariant open-string field strength 2πα′F12 = 2πα′f + α′

2π
hX3 appears. The dual

basis is determined via (3.7) and reads as before {dχ̌1, dX
2, dX3}, and from (3.22)

we find the boundary conditions

0 =
(
dχ̌1

)
tan

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
tan

.

(4.12)
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These describe Dirichlet conditions for χ̌1 and X3 and a Neumann boundary con-
dition for X2, and hence the dual backgrounds contains a D1-brane along the
X2-direction. The residual B-field (3.12) is determined as B̌res. = dX1 ∧ (dχ1 −
2πα′f dX2), which via (3.26) cancels the open-string gauge field fX1dX2 ⊂ a on
the boundary. Performing then the path integral over X1 gives

[
χ̌1 − 2πa1

]
∂Σ

= 0 , (4.13)

following the same reasoning leading to (3.31). The Wilson line a2dX
2 ⊂ a is

untouched, so the dual open-string gauge field reads

ǎ = a2dX
2 . (4.14)

In summary, we find that the T-dual background is a twisted torus with a D1-
brane with constant Wilson line along the X2-direction. We also note that when
turning-off the H-flux and setting h = 0, the metric (4.11) becomes constant. The
boundary conditions (4.12) then describe a D1-brane at an angle in the X1–X2

torus, which reproduces the well-known CFT result.

D3-brane along X1–X2–X3

Let us also briefly discuss a D3-brane along all directions of the three-torus. Such
a configuration does not satisfy the Freed-Witten anomaly cancellation condition
[61], which says that H pulled-back to the D-brane has to vanish in cohomology.
Nevertheless, we perform a T-duality transformation along the X1-direction in
order to gain insight on the dual background.

For simplicity, we consider a setting similar to the above-discussed D2-brane
along X1–X2 but replace the Dirichlet boundary conditions along X3 by Neumann
boundary conditions and set a = 0. The dual background is then given by

ǦIJ =




α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 +
α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3


 , B̌IJ = 0 , (4.15)

with boundary conditions

0 =
(
dχ̌1

)
tan

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
norm

.

(4.16)

These relations describe a D2-brane with Dirichlet boundary conditions along χ1

and Neumann conditions along X2 and X3. Since the original configuration is
inconsistent, this T-dual configuration has to be inconsistent as well. We come
back to this point in section 5.1.
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D0-brane

We also want to illustrate T-duality transformations along Dirichlet directions.
To do so, we first consider a D0-brane which is point-like on the three torus. The
boundary conditions therefore read

0 =
(
dX1

)
tan

, 0 =
(
dX2

)
tan

, 0 =
(
dX3

)
tan

, (4.17)

and the constraints (2.8) are solved by

a = 0 , v1 = 0 , ω1 = 0 . (4.18)

The dual background is then given by (3.9) and (3.11) as

ǦIJ =




α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 +
α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3


 , B̌IJ = 0 , (4.19)

which describes again a twisted three-torus. The dual basis is determined via (3.7)
and reads {dχ̌1, dX

2, dX3}, which satisfy the boundary conditions

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 =
(
dX2

)
tan

,

0 =
(
dX3

)
tan

.

(4.20)

These expressions describe a Neumann condition for the direction χ̌1 and Dirichlet
boundary conditions for X2 and X3, and hence the dual background contains a
D1-brane. The residual B-field (3.12) takes the form B̌res. = dX1 ∧ dχ1, and since
X1 satisfies Dirichlet boundary conditions dX1 is exact and we can compute

− i

2πα′

∫

Σ

B̌res. = − i

2πα′

∫

∂Σ

2πα′
[
X1

2π
dχ̌1

]
. (4.21)

We can therefore identify a constant Wilson line along the direction χ̌1 with the
position of the D-brane along the original direction X1

ǎ =
X1|∂Σ
2π

dχ̌1 . (4.22)

In summary, the T-dual background is a twisted three-torus with a D1-brane and
a constant Wilson line corresponding to the position of D0-brane along the original
direction X1.
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D1-brane along X2

As a second example for a T-duality transformation along a Dirichlet direction we
consider a D1-brane along the X2-direction. We choose a constant Wilson line for
the D1-brane, and the boundary conditions read

0 =
(
dX1

)
tan

, 0 =
(
dX2

)
norm

, 0 =
(
dX3

)
tan

. (4.23)

The constraints (2.8) are solved for instance by

a = a2dX
2 ,

v1 = 0 ,

ω1 = 0 ,

a2 = const. , (4.24)

and the dual background is given again by

ǦIJ =




α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 +
α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3


 , B̌IJ = 0 , (4.25)

with dual basis {dχ̌1, dX
2, dX3}. The boundary conditions (3.32) are evaluated

as

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
tan

,

(4.26)

which describe a D2-brane along the directions χ̌1 and X2. For the residual B-
field a computation similar to (4.21) applies, which leads to the following dual
open-string gauge field

ǎ =
X1|∂Σ
2π

dχ̌1 + a2dX
2 . (4.27)

D2-brane along X2–X3

For completeness, let us also consider a D2-brane along the directions X2 and X3

with vanishing open-string field strength. The analysis is very similar to the case
of a D1-brane along X2 which we just discussed. The dual background is given
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by (4.25) with dual basis {dχ̌1, dX
2, dX3}. The boundary conditions (3.32) are

evaluated as

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
norm

,

(4.28)

which describe a D3-brane along the twisted three-torus. Note that since the H-
flux of this background vanishes, the Freed-Witten anomaly cancellation condition
is satisfied.

4.2 Two T-dualities

In this section we consider two collective T-dualities for the three-torus with H-
flux defined in (4.1). For concreteness we always perform a collective duality
transformation along the directions X1 and X2, which have the same boundary
conditions. However, other combinations can be studied in a similar way.

D2-brane along X1–X2

We start with a D2-brane along the directions X1 and X2 with a non-trivial open
string field strength F12 = f = const. The boundary conditions (2.4) then take
the same form as in (4.9), namely

0 = R2
1

(
dX1

)
norm

+ 2πα′ i
(
f + h

4π2 X
3
) (

dX2
)
tan

,

0 = R2
2

(
dX2

)
norm

− 2πα′ i
(
f + h

4π2 X
3
) (

dX1
)
tan

,

0 =
(
dX3

)
tan

.

(4.29)

For a collective T-duality transformation along two directions the the constraints
(2.8) and (2.14) are solved by

a = a1dX
1 + a2dX

2 + 1
2
f
(
X1dX2 −X2dX1

)
,

v1 = −2πα′f dX2 ,

v2 = +2πα′f dX1 ,

ω1 = − πα′f X2 ,

ω2 = + πα′f X1 ,

a1, a2, f = const. , (4.30)
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and the T-dual metric and B-field are determined from the general expressions
(3.9) and (3.11) together with our convention (4.3). We find

ǦIJ =




α′2R2
2

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0

0 0 R2
3


 ,

B̌IJ =




0
−α′2

[

2πα′f+ α′

2π
hX3

]

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0

+α′2
[

2πα′f+ α′

2π
hX3

]

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0 0 0




,

(4.31)

which are the metric and B-field of the T-fold background [2]. Note that here
again the gauge-invariant open-string field strength 2πα′F12 = 2πα′f + α′

2π
hX3

appears, and hence the open-string sector has an effect on the T-dual closed-string
background. The dual basis is determined via (3.7) and reads {dχ̌1, dχ̌2, dX

3},
and from (3.22) we obtain the boundary conditions

0 =
(
dχ̌1

)
tan

, 0 =
(
dχ̌2

)
tan

, 0 =
(
dX3

)
tan

, (4.32)

describing a D0-brane. The residual B-field (3.12) is found as B̌res. = dX1∧dχ1+
dX2 ∧ dχ2 − 2πα′f dX1 ∧ dX2, which via the computation below (3.26) leads to
the condition (3.31)

[
χ̌α − 2πaα

]
∂Σ

= 0 . (4.33)

D3-brane along X1–X2–X3

For later purposes let us also consider a D3-brane along the three-torus. Since
here the Freed-Witten anomaly is not cancelled, this configuration is inconsistent.
Nevertheless, applying a collective T-duality transformation along the directions
X1 and X2 gives the T-fold background (4.31) with a D1-brane satisfying the
boundary conditions

0 =
(
dχ̌1

)
tan

, 0 =
(
dχ̌2

)
tan

, 0 =
(
dX3

)
norm

. (4.34)

Since the original configuration is not allowed by the Freed-Witten anomaly, this
T-dual configuration is forbidden as well. We come back to this point in section 5.1.
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D0-brane

We now turn to collective T-duality transformations along Dirichlet directions.
For a D0-brane the boundary conditions take the form

0 =
(
dX1

)
tan

, 0 =
(
dX2

)
tan

, 0 =
(
dX3

)
tan

, (4.35)

and the constraints (2.8) are solved by

a = 0 , v1,2 = 0 , ω1,2 = 0 . (4.36)

The dual background is then determined by the general expressions (3.9) and
(3.11) as

ǦIJ =




α′2R2
2

R2
1R

2
2+[α

′

2π
hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[ α

′

2π
hX3]

2 0

0 0 R2
3


 ,

B̌IJ =




0
−α′2 α′

2π
hX3

R2
1R

2
2+[ α

′

2π
hX3]

2 0

+α′2 α′

2π
hX3

R2
1R

2
2+[α

′

2π
hX3]

2 0 0

0 0 0


 ,

(4.37)

which is again that of a T-fold. Note that here the open-string gauge flux F12 = f

is absent, since the original D0-brane does not support an open-string gauge field.
The boundary conditions (3.32) lead to the following expressions

0 = Ǧ11
(
dχ̌1

)
norm

+ i B̌12
(
dχ̌2

)
tan

,

0 = Ǧ22
(
dχ̌2

)
norm

+ i B̌21
(
dχ̌1

)
tan

,

0 =
(
dX3

)
tan

,

(4.38)

which take the expected form of Neumann boundary conditions (2.4) for the dual
coordinates.

D1-brane along X3

For completeness we also consider a D1-brane along the X3-direction. This con-
figuration is very similar to the case of a D0-brane which we just discussed, and a
collective T-duality along the directions X1 and X2 gives the T-fold background
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(4.37). The boundary conditions of the dual background describe a D3-brane and
are given by

0 = Ǧ11
(
dχ̌1

)
norm

+ i B̌12
(
dχ̌2

)
tan

,

0 = Ǧ22
(
dχ̌2

)
norm

+ i B̌21
(
dχ̌1

)
tan

,

0 =
(
dX3

)
norm

.

(4.39)

4.3 Three T-dualities

We finally discuss a collective T-duality transformations for the three-torus along
the directions X1, X2 and X3. As we can see from the second relation in (2.14),
in this case the H-flux has to vanish and we therefore set h = 0 in (4.1).

D3-brane along X1–X2–X3

Let us start with a D3-brane along all directions of the three-torus, and consider
an open-string field strength F12 = f = const. together with B = 0. The boundary
conditions (2.4) then read

0 = R2
1

(
dX1

)
norm

+ 2πα′ if
(
dX2

)
tan

,

0 = R2
2

(
dX2

)
norm

− 2πα′ if
(
dX1

)
tan

,

0 = R2
3

(
dX3

)
norm

,

(4.40)

and the constraints (2.8) and (2.14) are solved by

a = a1dX
1 + a2dX

2 + a2dX
2 + 1

2
f
(
X1dX2 −X2dX1

)
,

v1 = −2πα′f dX2 ,

v2 = +2πα′f dX1 ,

v3 = 0 ,

ω1 = − πα′f X2 ,

ω2 = + πα′f X1 ,

ω3 = 0 .

a1, a2, a3, f = const. , (4.41)
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The T-dual metric and B-field are determined from the general expressions (3.9)
and (3.11) for which we find

ǦIJ =




α′2R2
2

R2
1R

2
2+[2πα′f ]2

0 0

0
α′2R2

1

R2
1R

2
2+[2πα′f ]2

0

0 0 α′2

R2
3


 ,

B̌IJ =




0 −2πα′3f

R2
1R

2
2+[2πα′f ]2

0
+2πα′3f

R2
1R

2
2+[2πα′f ]2

0 0

0 0 0


 ,

(4.42)

and we see again that the open-string gauge flux f enters the T-dual closed-string
background. The dual basis {dχ̌1, dχ̌2, dχ̌3} is subject to the boundary conditions
describing a D0-brane

0 =
(
dχ̌1

)
tan

, 0 =
(
dχ̌2

)
tan

, 0 =
(
dχ̌3

)
tan

, (4.43)

where the location of each dual coordinate on the boundary is given by the open-
string gauge field as already shown in (4.33).

D0-brane

Finally, for a D0-brane there is no open-string field strength and hence the dual
metric and B-field after a collective T-duality transformation along all three di-
rections read

ǦIJ =




α′2

R2
1

0 0

0 α′2

R2
2

0

0 0 α′2

R2
3


 , B̌IJ = 0 . (4.44)

The dual coordinates are subject to the boundary conditions

0 =
(
dχ̌1

)
norm

, 0 =
(
dχ̌2

)
norm

, 0 =
(
dχ̌3

)
norm

, (4.45)

which describe a D3-brane. The open-string gauge field is characterized by the
position of the original D0-brane as in (3.36).

5 Freed-Witten anomaly and boundary condi-

tions

We now discuss the results obtained in section 4. We first briefly review the Freed-
Witten anomaly cancellation condition, and then study the global properties of
the open-string boundary conditions.
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5.1 Freed-Witten anomaly

It is known that D-branes in backgrounds with non-vanishing H-flux are subject to
the Freed-Witten anomaly cancellation condition [61]. In particular, the restriction
of the field-strength H = dB to the D-brane has to vanish (in cohomology).
Denoting the cycle wrapped by the D-brane by Γ and its Poincaré dual by [Γ], this
condition can be expressed as

H ∧ [Γ] = 0 . (5.1)

For backgrounds with geometric F -flux and non-geometric Q- and R-fluxes the
generalization of this condition has been discussed for instance in [62,25,63–65,31].
Here one finds the expression

(
d−H ∧ −F ◦ −Q • −R x

)
[Γ] = 0 , (5.2)

where the various fluxes are interpreted as operators acting in [Γ]. Using the
contraction with a vector field ιi ≡ ι∂i , in a coordinate basis they act as

H ∧ = 1
3!
Hijk dX i ∧ dXj ∧ dXk ,

F ◦ = 1
2!
F k

ij dX i ∧ dXj ∧ ιk ,

Q • = 1
2!
Qi

jk dX i ∧ ιj ∧ ιk ,

R x = 1
3!
Rijk ιi ∧ ιj ∧ ιk .

(5.3)

Let us now discuss this condition for the examples studied in section 4:

• For the three-torus with H-flux we mentioned already on page 28 that a D3-
brane is forbidden by the Freed-Witten anomaly. And indeed, since [ΓD3] is
a point on T

3 we see that in this case H
!
= 0.

• For the twisted torus we can determine the geometric flux F k
ij as the struc-

ture constants of the vielbein one-forms under the exterior derivative. We
see that for the examples in section 4.1 only F 1

23 is non-vanishing, and hence
(5.2) implies that on a twisted T

3 a D2-brane along the directions X2 and
X3 is forbidden. This is in agreement with our conclusion on page 28.

• For the T-fold backgrounds obtained in section 4.2 we can determine the
non-geometric Q-flux via (3.17). Here we find that the only non-vanishing
component is Q3

12, and hence (5.2) implies that on a T-fold a D1-brane along
the X3-direction is not allowed. This is again in agreement with our findings
on page 32.
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5.2 Boundary conditions

Next, we consider the global behavior of the open-string boundary conditions for
the backgrounds studied in the last section. To do so we first briefly recall how
the examples of section 4 can be interpreted as torus fibrations over a circle, and
then turn to the global properties of the boundary conditions.

Torus fibrations

We note that the three-torus with H-flux, the twisted three-torus and the T-fold
background can all be realized as T2-fibrations over a circle. In particular, for the
examples studied in section 4 we can express the metric and B-field as

Gij =

(
Gij(X

3) 0

0 R2
3

)
, Bij =

(
Bij(X

3) 0

0 0

)
, (5.4)

with i, j = 1, 2, 3 and i, j = 1, 2 labelling the fiber directions. These fibrations
are globally well-defined through gluing local charts with O(D,D;Z) transfor-
mations, which include gauge transformations, diffeomorphisms and so-called β-
transformations. This can be made precise by defining a generalized metric H
which contains the metric and B-field as

H =

(
1
α′
(G− BG−1B) +BG−1

−G−1B α′G−1

)
, (5.5)

for which we can explicitly check that he examples of section 4 satisfy

H
(
X3 + 2π

)
= O−T H(X3)O−1 . (5.6)

Here, O ∈ O(2, 2;Z) ⊂ O(3, 3;Z) are transformations which take the form

T
3 with H-flux: OB =

(
1 0
B 1

)
, B =




0 +h 0
−h 0 0
0 0 0


,

twisted T
3: OA =

(
A−1 0
0 AT

)
, A =




1 −h 0
0 1 0
0 0 1


,

T-fold: Oβ =

(
1 β

0 1

)
, β =




0 +h 0
−h 0 0
0 0 0


,

(5.7)

and which correspond to gauge transformations, diffeomorphisms and β-transfor-
mations, respectively.
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Boundary conditions

Let us now turn to the boundary conditions. Using 2D-dimensional matrix nota-
tion we can express the Dirichlet and Neumann conditions shown in (2.4) in the
following way

(
D

N

)
=

(
α′ 0

2πα′F G

)(
i
(
dX
)
tan(

dX
)
norm

)
, (5.8)

where the restriction of G and F to the boundary ∂Σ is understood. The dilaton
can be studied separately and we come back to it below. A particular D-brane
configuration is then specified by a projection operator Π acting on (5.8), which
takes the general form

Π =

(
∆ 0
0 1−∆

)
, ∆2 = ∆ . (5.9)

For instance, a D1-brane along the X1-direction is characterized by the D × D

matrix ∆ = diag(0, 1, . . . , 1).
We now want to determine how the boundary conditions (5.8) of the three-

torus with H-flux, twisted three-torus and the T-fold background behave under
X3 → X3+2π. For the coordinates we find that under O(D,D;Z) transformations
we have the following general behavior fiber-wise 4

(
i
(
dX
)
tan(

dX
)
norm

)
O−−−−→

(
i
(
dX̃
)
tan(

dX̃
)
norm

)
= Ω

(
i
(
dX
)
tan(

dX
)
norm

)
, (5.10)

where the 2D × 2D matrix Ω for each of the cases takes the form

T
3 with H-flux: ΩB =

(
1 0

0 1

)
,

twisted T
3: ΩA =

(
A−1 0

0 A−1

)
,

T-fold: Ωβ =

(
1+ 2πβF 1

α′
βG

1
α′
βG 1+ 2πβF

)
.

(5.11)

The matrices A and β have been defined in (5.7), and we note that for the case of
the T-fold the normal and tangential part of dX i are mixed under the O(D,D;Z)

4 For a general transformation of the form O =
(
a b
c d

)
∈ O(D,D;Z) the matrix Ω can be

determined as Ω =
(
a+ 2πbF 1

α′
bG

1

α′
bG a+ 2πbF

)
, with G the metric and F the gauge-invariant field-strength.
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transformation. Using these relations, for the examples of section 4 we then find
(
D

N

)

X3 + 2π

=

(
α′ 0

2πα′F G

)

X3 + 2π

(
i
(
dX̃
)
tan(

dX̃
)
norm

)

= O⋆

(
α′ 0

2πα′F G

)

X3
Ω−1

⋆

(
i
(
dX̃
)
tan(

dX̃
)
norm

)

= O⋆

(
D

N

)

X3

,

(5.12)

where the subscript ⋆ = (B,A, β) corresponds to the three-torus with H-flux,
the twisted T

3 and the T-fold. The coordinates dX̃ i in one patch are related to
dX i in another patch via (5.10), and we emphasize that these relations are to
be evaluated on the boundary. We then see that the boundary conditions are
globally-well defined using, respectively, gauge transformations, diffeomorphisms
and β-transformations.

Dilaton

In the expression (5.8) for the open-string boundary conditions we have omitted
the dilaton. This contribution can be discussed separately, and we first determine
using (3.13)

T
3 with H-flux: φ = φ0 ,

twisted T
3: φ = φ0 − log

[
R1√
α′

]
,

T-fold: φ = φ0 −
1

2
log

[
R2

1R
2
2

α′2
+
(
2πf + h

2π
X3
)2
]
,

(5.13)

where for the T-fold we included the open-string field strength f = const. which
in some examples vanishes. We now consider each of these cases separately:

• For the three torus with H-flux, a gauge transformation leaves the metric
invariant, and hence the combination e−2φ

√
detG is invariant under the ac-

tion of OB. Furthermore, since the dilaton is constant it does not change
under X3 → X3+2π and so the contribution to the corresponding boundary
conditions is well-defined.

• For the twisted three-torus e−2φ
√
detG is invariant under diffeomorphisms

OA and the dilaton is constant, so the contribution to the boundary condi-
tions is again well-defined.
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• For the T-fold on the other hand, the dilaton is not constant and trans-
forms under β-transformations. In particular, by requiring e−2φ

√
detG to

be invariant we can determine

φ(X3 + 2π) = Oβ

[
φ(X3)

]
, (5.14)

where the action of Oβ is understood in an abstract way and not as a matrix
multiplication. We therefore see that the dilaton is well-defined under X3 →
X3 + 2π using a β-transformation, and hence also the contribution to the
boundary conditions is well-defined.

Projection

So far we have studied how (5.8) behaves under X3 → X3 + 2π for the examples
of section 4. We now want to discuss how the projection operator (5.9) is imple-
mented on the boundary conditions. To do so, we again proceed by discussing the
examples:

• For the three-torus withH-flux the behavior underX3 → X3+2π is captured
by (5.12), provided that first theOB ∈ O(3, 3;Z) transformation is performed
and after that the projection (5.9). In particular, we have

Π

[(
D

N

)

X3 + 2π

]
= Π

[
OB

(
D

N

)

X3

]
. (5.15)

One quickly sees for instance from the (NN) case that if we perform the OB

transformation on the projected boundary conditions we do not reproduce
the expected result from (5.12).

• For the twisted three-torus a similar analysis can be made. We verified ex-
plicitly that a projection similar to (5.15) produces the expected behavior
of the boundary conditions from (5.12), and that performing the OA trans-
formation on the projected boundary conditions does not match with the
explicit computation.

• Finally, for the T-fold the condition (5.15) similarly applies. This means in
particular, that the type of D-brane does not change under the identification
X3 → X3 + 2π. The boundary conditions are therefore well-defined.
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6 Summary and conclusion

In this paper we have studied T-duality transformations for open-string back-
grounds via Buscher’s procedure. We illustrated this formalism with the example
of the three-torus with H-flux and its T-dual configurations, and we analyzed
global properties of the open-string boundary conditions for these backgrounds.
More concretely:

• T-duality transformations for open strings via Buscher’s procedure have been
discussed before in the literature [35,36,38]. Here we extended these analyses
and worked-out missing details: we took into account non-trivial world-sheet
topologies, we included T-duality along directions with Dirichlet boundary
conditions, and we allowed for collective T-duality transformations along
multiple directions.

We find that – as expected – also for curved backgrounds Neumann and
Dirichlet boundary conditions are interchanged under T-duality, and that
a constant open-string Wilson line along a Neumann direction shifts the
position of the D-brane in the T-dual Dirichlet direction and vice versa.

• In section 4 we illustrated the above formalism through various examples
for the three-torus with H-flux. We obtained D-brane configurations on
the twisted three-torus and on the T-fold, and we saw that an open-string
gauge-flux affects the closed-string sector of the T-dual theory.

• In section 5 we discussed the results of section 4. After briefly reviewing
the Freed-Witten anomaly cancellation condition, we showed that D-brane
boundary conditions for the three-torus with H-flux, the twisted three-torus
and for the T-fold are globally well-defined using, respectively, gauge trans-
formations, diffeomorphisms and β-transformations.

Since β-transformations mix the tangential and normal part of dX i on the
boundary, naively one might have thought that Dp-branes on the T-fold can
change their dimensionality under X3 → X3 + 2π. However, we show that
this is not true due to the mixing between the metric and B-field under
β-transformations. Our findings furthermore agree with results obtained in
doubled geometry in [2, 32, 33].

An interesting next step is to extend our formalism to non-abelian T-duality
transformations [66, 56, 57, 67–69]. We have already included the possibility of a
non-abelian isometry algebra for the gauging procedure and for integrating-out the
gauge fields, however, the change of basis (3.7) is singular in certain non-abelian
cases. One approach to avoid this problem is to find a different change of basis
which is non-singular, and we hope to come back to this question in the future.
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[9] D. Lüst, “T-duality and closed string non-commutative (doubled)
geometry,” JHEP 12 (2010) 084, 1010.1361.

42

http://xxx.lanl.gov/abs/hep-th/0208174
http://xxx.lanl.gov/abs/hep-th/0406102
http://xxx.lanl.gov/abs/hep-th/9908088
http://xxx.lanl.gov/abs/hep-th/0211182
http://xxx.lanl.gov/abs/hep-th/0508133
http://xxx.lanl.gov/abs/hep-th/0607015
http://xxx.lanl.gov/abs/hep-th/0401168
http://xxx.lanl.gov/abs/hep-th/0409073
http://xxx.lanl.gov/abs/1010.1361


[10] C. Condeescu, I. Florakis, and D. Lüst, “Asymmetric Orbifolds,
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