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1 Introduction

With about hundred inverse femtobarn of data in total collected by the CMS and ATLAS

collaborations and at least twice as much expected by the end of this year, the LHC

has established a golden era for precision measurements. To fully exploit the potential

for detecting deviations from the Standard Model (SM) predictions and/or constrain new

physics with sensitivities that go up to the multi-TeV scales, coordinated theoretical and

experimental efforts are ongoing following alternative and complementary strategies.

A possibility, which has become more and more motivated by the absence of any ev-

idence for new particles so far, is that new states might just be heavy enough to escape

production at the LHC, yet coupling with the SM strongly enough to modify the interac-

tions among SM particles via virtual particle exchanges. Thus, the search for new physics

in this scenario entails accurately measuring the strength and the structure of the couplings

among the SM particles and look for anomalies in their interactions.

A general and powerful framework to analyse and parametrise deviations in SM in-

teractions is the so-called SM Effective Field Theory (SMEFT) [1, 2], where the SM is
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augmented by a set of higher-dimensional operators

LSMEFT = LSM +
∑
i

Ci
Λ2
Oi +O(Λ−4) , (1.1)

which all respect the (linearly realised) SM gauge symmetries. The main hypothesis un-

derlying this approach is that Λ represents the ultimate scale up to which the EFT is valid.

Λ is taken to be larger than both v, the Electro-Weak Symmetry Breaking (EWSB) scale

in the SM, and the characteristic energy scale
√
s at which the measurement is performed,

i.e., v/Λ < 1 and s/Λ2 < 1. The ambitious program of laying down the theoretical basis

and of devising the best experimental analyses for interpreting in the SMEFT framework

the large set of precise measurements performed at LHC has already started. This includes

testing QCD as well as EW interactions, and in particular those involving heavy states

such as vector bosons, the top-quark and the Higgs boson, some of which are not very well

constrained yet. In this context, considerable progress has been recently achieved in many

directions, at the conceptual as well as technical level. One of the key and challenging as-

pects of the EFT, is related to the fact that a “global” approach is necessary to constrain

higher-dimensional operators. Typically, several (if not many) operators of very different

nature affect observables in a given process at the LHC, making it difficult to extract the

specific information that the process is especially meant to provide.

Among the interactions that could be modified by the existence of new physics at

higher scales and are of wide relevance at hadron colliders are those involving coloured

particles: they are omnipresent and can be probed over a very large range of energy scales

at the LHC. A first example is that of the four-light-quark interactions, that could be

mediated by new bosons, either gauge or scalars, even at the tree level. Such effects are

typically searched for in di-jet final states at very high parton-parton centre of mass energy,

with bounds on single operators reaching ∼10 TeV (with Ci = 1) [3, 4]. Another interesting

possibility, explored in this work, is that the gluon self-interactions could be modified by

the following CP-conserving dimension-6 operator

OG = gsfabcG
a,µ
ν Gb,νρ Gc,ρµ , (1.2)

with Gµν = − i
gs

[Dµ, Dν ] and Dµ = ∂µ + igst
aAaµ. This operator can be generated at

one loop by any coloured particle interacting with the gluon field minimally (the corre-

sponding Wilson coefficients are known for different colour representations and spin of the

particles running in the loop, see [5]). The analogous CP-violating one, the so-called Wein-

berg operator [6] OG̃, where one field strength tensor is replaced by its dual counterpart:

G̃µν = 1
2ε
µνρσGρσ starts to receive contributions at two loops. In fact, the CP-violating

three-gluon operator is strongly constrained by low-energy measurements, such as the neu-

tron EDM [7]. The CP-even operator, on the other hand, plays an important role in global

EFT interpretations of LHC measurements as it not only enters di-jet and multi-jet pro-

cess at the tree level, but also all scattering processes that feature gluon self-interactions,

such as heavy quark production, possibly accompanied by weak bosons. For example, any

attempt to extract information on top-quark couplings in tt̄ + X production as pursued

in [8] requires stringent constraints on the triple-gluon operator.
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For this reason, already starting during the Tevatron era, proposals and strategies have

been put forth to constrain the CP-conserving operator in eq. (1.2). The first relevant

observation [9] is that the 2 → 2 parton (qq̄ → gg and gg → gg) amplitudes featuring

a single anomalous three-gluon interaction, do not interfere with the corresponding SM

QCD amplitudes at tree-level. The three-gluon operator therefore only contributes to di-

jet production in matrix elements at order O(1/Λ4). This fact led to considering alternative

observables, in multi-jet final states [10] as well as in heavy quark production [5, 11] where

terms both linear and quadratic in 1/Λ2 contribute. Attempts to constrain the OG operator

using the dedicated three-jet observables suggested in [10] have so far not been pursued at

the LHC, while constraints from top pair production have been obtained in [8].

Motivated by new data made available on multi-jet measurements by the CMS col-

laboration performed in the context of search for black holes [12], Krauss, Kuttimalai and

Plehn [13] recently argued that strong constraints on OG could be obtained by using high-

multiplicity jet measurements at the LHC, more specifically using the particular observable

ST = �
�ET +

Njets∑
j=1

ET,j , (1.3)

where the sum runs over all jets with pT above 50 GeV as well as missing transverse

energy �
�ET if exceeding 50 GeV. This observable turns out to be sensitive to OG in the

high-energy region of ST > 2 TeV, where data are available. This study finds that the

sensitivity increases with the number of jets, and the measurement of the ST distributions

sets a stringent constraint on the operator:

CG
Λ2

< (5.2 TeV)−2. (1.4)

Taken at face value, this strong limit would imply that, currently, the triple gluon operator

should be ignored in EFT investigations of all other processes of interest at the LHC as

well as in global EFT fits. However, several questions and possible pitfalls arise concerning

the sensitivity from this observable, some of which were already discussed in ref. [13]. For

example, it was found that the constraint originates from the higher order contributions of

the operator, i.e., O(1/Λn) with n ≥ 4, as the linear contributions stay negligible even when

the number of jets exceeds two. As the limit is then based on considering OG contributions

that start at O(1/Λ4), one must carefully assess under which hypotheses this result can

be relied upon. In what follows, we shall elaborate on this potential limitation and discuss

several other issues that call for a detailed study before this limit based on multi-jet data

can be used in a broad context.

The goal of this work is multifold. First, we investigate the robustness of the limit

of ref. [13] in light of the limited validity of the EFT expansion. More specifically, we

will assess the validity of the EFT expansion considering also higher-order contributions

in 1/Λ2 to the observable considered in this particular CMS analysis. Second, we study

in detail the impact of the three-gluon operator in other jet observables, including hard

and well-separated jet configurations to be able to build a consistent picture of how the

numerically leading contributions appear in multi-jet events. Third, having established
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the reliability of the limits, we re-examine the relevance of the triple gluon operator in

heavy quark production. Fourth, we determine the sensitivity of di-jet production at order

O(1/Λ2) by computing for the first time the four-parton one-loop amplitudes featuring one

insertion of the OG operator. Finally, we follow up on the original suggestion of ref. [10]

and identify regions where the linear contributions are important by making use of the

different behaviour of pure QCD and OG amplitudes in three-jet events. We extend the

analysis at the LHC, critically assessing the relevance of observables for which terms linear

in 1/Λ2 can provide meaningful constraints.

2 A critical look at the bounds from multi-jet measurements

The stringent bound set on OG in [13] using the high-multiplicity jet measurements is

intriguing. On the one hand, it implied that the triple gluon operator can be ignored in

most SMEFT analyses that are and will be performed at the LHC. On the other hand, the

bound is to a large extent unexpected and raises a number of questions, mostly related to

its robustness. We list these questions below:

• The experimental selection of the CMS analysis implies that the ST measurement is

dominated by di-jet-like configurations, even for the high-multiplicity samples. This

naturally leads us to question why the sensitivity improves with the number of jets.

• The limits are set using data in the high-energy region, with ST ∼ Λ, which requires

further analysis to ensure the EFT condition of E < Λ is satisfied.

• The dominant contribution comes from the higher-order terms i.e., O(1/Λn) with

n ≥ 4. One has therefore to first understand why this is the case and whether it is in

general or specific for the observables considered. In addition, further investigation

is needed to establish whether such terms dominate over possible dimension-8 oper-

ators, formally of the same order, which in principle could also give an important

contribution to the relevant observables.

• The limit is set from the observable ST , and it is therefore worth exploring other multi-

jet observables that could be potentially used to improve this limit. For instance,

configurations involving hard and well separated jets could be considered.

In this section we scrutinise the results of [13] and carefully address each of the above-

mentioned points.

2.1 OG effects and jet multiplicity

The first interesting observation of [13] is the fact that the sensitivity of ST on OG increases

with the number of jets. We have reproduced this observation in figure 1, where we show

results for the production of 2, 3 and 4 partonic jets in the SM, considering amplitudes with

at most one OG operator insertion and including the O(1/Λ4) contribution from the square

of these amplitudes. We find that the ratio over the SM increases with ST but also with the
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Figure 1. Impact of jet multiplicity on the sensitivity to OG for multi-jet production at LHC13.

A maximum of one insertion of the OG operator is allowed in all of the amplitudes considered and

the O(1/Λ4) contributions are kept.

number of partonic jets considered. We note here that whilst [13] considers predictions ob-

tained from merging event samples featuring different partonic multiplicities, for simplicity

our investigation is based on separate simulations of various multiplicities of well-isolated

partonic jets. All results in this work are obtained using the MadGraph5 aMC@NLO

(MG5 aMC) framework [14].

For the loose jet pT selection cuts of pT > 50 GeV, the 3- and 4-jet final states with

ST > 2 TeV are dominated by di-jet configurations, where two jets are hard and back-

to-back, accompanied by one or two additional soft jets. One therefore wonders why the

sensitivity increases with the number of jets, given that the kinematical configurations are

indeed di-jet-like, and extra soft radiation cannot influence short-distance physics as the

one described by the OG operator.

In order to further study the origin of this increase in sensitivity with the jet multiplic-

ity, we investigate in figure 2 the contributions from gluon-only channels, that is gg → gg,

gg → ggg and gg → gggg. We find that there is no increase in the sensitivity in this case,

suggesting that this effect is not driven by the behaviour of the matrix elements for individ-

ual channels. This is consistent with the physical picture that long-distance (soft) radiation

cannot affect phenomena at short-distance (hard). Instead, the increase of the ratio over

the SM yield when more jets are considered is mostly a due to the fact that new partonic

channels open up. This is confirmed by studying the breakdown of the various contributing

channels for the production of 2, 3 and 4 partons in the large-ST region, revealing that the

opening of new channels receiving non-zero contributions from OG is indeed responsible

for the increased sensitivity. This breakdown is presented in tables 3–5 in appendix B

for jets with pT > 50 GeV, along with the ratio to the corresponding SM prediction for
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Figure 2. Impact of jet multiplicity on the sensitivity to OG from only-gluon channels.

each subprocess. At high ST the quark-initiated channels dominate due to the relative

importance of the valence quark luminosity at high x. Di-jet production receives no inter-

ference contributions of order O(1/Λ2). Contributions from the square of amplitudes for

the subprocesses with two and four gluons and featuring exactly one OG operator insertion

lead to terms of order O(1/Λ4), while the OG operator cannot contribute to the four-quark

process. Overall, this suppresses the OG contribution to di-jet production and make it

small compared to the SM yield, especially for large Bjorken x’s where the quark-initiated

processes dominate. Once more final-state partons are considered, all subprocesses receive

contributions from OG, in particular the ones enhanced by the valence quark PDFs, and

the overall ratio over the SM increases. In other words, the increase in sensitivity with

the number of jets is mostly related to the interplay between the different luminosity of

the various partonic channels and their different dependence to the OG operator. In fact,

based on figure 2 and tables 3–5, it is clear that if one could efficiently discriminate quark-

initiated jets against gluon-initiated jets, even more stringent limits could potentially be

obtained by selecting the channels with the largest OG effects. Given the recent progress in

quark/gluon discrimination, see, e.g., [15], we deem this could be an interesting direction

to explore in the future.

2.2 EFT validity for multi-jet limits

The sensitivity of the ST observable on OG is driven by contributions quadratic in 1/Λ2, and

possibly of even larger powers. This is demonstrated in figure 3 where the contributions

at O(1/Λ2), O(1/Λ4) and above are separated. The O(1/Λ4) contribution is growing

faster with the energy and therefore deserves further attention in order to ensure that the

EFT validity condition of E < Λ remains satisfied. The precise application of the EFT

validity constraint implies insuring that the characteristic energy probed by the observable
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Figure 3. Comparison between the contributions of order O(1/Λ2) (interference), O(1/Λ4) and

higher for the production of four partonic jets at LHC13.
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Figure 4. Distribution of the centre-of-mass energy (M) as a function of ST for the production of

four partonic jets at LHC13.

considered is smaller than Λ. This is in general a stronger constraint than just imposing

ST < Λ, since by definition we have Ec.o.m. > ST so that regions of ST below Λ can still

receive contributions from events with Ec.o.m. > Λ, as demonstrated in figure 4. In order

to assess the impact of excluding the Ec.o.m. > Λ region, we considered a simulation of the

production of four isolated partonic jets, allowing at most one insertion of the OG operator

(alike what was done in ref. [13]) and using Monte Carlo truth in order to remove all events

featuring Ec.o.m. > 5 TeV. We report the results obtained with this procedure in figure 5,

keeping only the contributions from events passing this cut on Ec.o.m.. We find that the
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Figure 5. Distribution of ST and corresponding deviation from the SM after applying a cut on

the partonic centre of mass energy of the events, Ec.o.m. < 5 TeV.

cut has no significant effect on the expected deviation w.r.t. the SM and therefore conclude

that the EFT expansion condition remains valid for the limit of 5 TeV set on Λ.

2.3 Dimension-8 effects on multi-jet observables

Although we have shown that the limit-setting analysis presented in ref. [13] respects the

EFT validity condition of probing energies smaller than Λ, we must also estimate the

magnitude of the omitted contributions of order O(1/Λ4). Given that the contribution

of OG is completely dominated by the squared terms of order O(1/Λ4), it is interesting

to compute the contribution of the interference of dimension-8 operators with the SM

amplitudes, which are formally of the same order in the 1/Λ2 expansion, in the relevant

regions of phase space. To this end, we implemented the following subset of dimension-8

operators:

O
(8)
4 =

g2
s

2
Gµνa GaµνG

b
ρσG

ρσ
b (2.1)

O
(8)
6 =

g2
s

2
Gµνa GbµνG

a
ρσG

ρσ
b , (2.2)

and computed their contribution to the ST observable, as shown in figure 6. We find that in

the ST region up to 5 TeV, the contribution from these dimension-8 operators is suppressed

compared to that of OG for identical values of Λ. This completes our checks related to the

validity of the EFT and confirms that the limits obtained in the original study of ref. [13]

are robust from the EFT validity standpoint.
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Figure 6. Impact of the dimension-8 operators of eqs. (2.1)–(2.2) on the ST observable. A maxi-

mum of one insertion of each operator is allowed at the amplitude level and all terms up to O(1/Λ8)

are retained.

2.4 Additional observables in multi-jet production

As already argued, the variable ST measured by CMS probes mainly di-jet configurations

where two jets are hard and the remaining tagged ones are soft in comparison. For these

configurations, the interference term is suppressed and the squared contribution domi-

nates. In order to investigate the contribution of the O(1/Λ2) interference in configurations

where all partonic jets are hard, we consider the tree-level contribution of OG to three-

and four-jet final states as a function of a minimum pT -cut applied to all partonic jets.

The cross-sections of the production of three hard parton jets for different jet-pT cuts and

∆R =
√

∆φ2 + ∆η2 = 0.4 are given in table 1, for Λ = 5 TeV. We observe that for all

chosen values of the pT -cut, the interference remains suppressed. The relative importance

of this interference decreases with the pT -cut. However, this is an accidental outcome of

the combination of the various partonic channels which feature a very different dependence

on both the pT -cut and the operator OG, as already discussed in the section 2. It is also

interesting to investigate which helicity configurations contribute to the gg → ggg am-

plitude, and we find that more configurations contribute to the amplitude featuring one

insertion of the OG operator compared to the pure QCD one, as was already noted in [10].

Very approximately, one should therefore expect the cross-section arising from the square

of this amplitude to be dominant as it involves the summation over a larger number of

positive contributions. The interference term, on the other hand, involves fewer contribu-

tions and being not positive definite its contribution drastically reduces once averaged over

phase space.

We also consider the production of four partonic jets, in the presence of the same cuts,

and report our results in table 2. We find that the suppression of the interference is smaller

– 9 –



J
H
E
P
0
7
(
2
0
1
8
)
0
9
3

pT,min(j) SM [pb] O(1/Λ2) [pb] O(1/Λ4) [pb]

50 8.85·10+5 3.37·10+1 3.03·10+1

100 3.13·10+4 5.14·100 9.99·100

200 7.82·10+2 5.94·10−1 2.23·100

500 2.44·100 1.89·10−2 1.10·10−1

1000 8.08·10−3 4.91·10−4 2.48·10−3

Table 1. Cross-sections for the production of three partonic hard jets, isolated using different

values of a pT,min-cut and ∆R = 0.4. The scale Λ is set to 5 TeV. In the computation of the result

of order O(1/Λ4), only the contributions from at most one insertion of the operator OG in the

amplitudes are considered.

pT,min(j) [GeV] SM [pb] O(1/Λ2) [pb] O(1/Λ4) [pb]

50 1.20·10+5 -2.55·10+1 1.48·10+1

100 2.87·10+3 -2.45·100 2.94·100

200 4.37·10+1 -1.55·10−1 3.57·10−1

500 5.18·10−2 -1.04·10−3 5.85·10−3

1000 4.55·10−5 -3.89·10−6 3.60·10−5

Table 2. Cross-sections for the production of four partonic hard jets, isolated using different values

of a pT,min-cut and ∆R = 0.4. The scale Λ is set to 5 TeV. In the computation of the result of order

O(1/Λ4), only the contributions from at most one insertion of the operator OG in the amplitudes

are considered.

than for three partonic jets. The relative importance of the interference decreases with the

partonic jet pT -cut, eventually reaching ∼ 10% for pT,min > 1000 GeV. We conclude that,

given the current constraint on the OG operator coefficient, we cannot identify any partonic

jet-pT region where the interference contribution is comparable to those of order O(1/Λ4)

and significant compared to the SM ones for these semi-inclusive measurements.

We note that for some observables the interference changes sign, for example in the

angular separation ∆R between the two leading jets in the production of four partonic jets,

shown in figure 7. In this observable, the interference dominates over the squared contri-

bution but the deviation from the SM is below the percent level. The overall contribution

of the OG operator can be enhanced when considering additional cuts (pT,min > 500 GeV,

Mjj > 500 GeV) restricting the kinematic configurations to four hard jets, as shown in

figure 8. Although the signal can reach 20% of the very small fiducial SM yield (for

2 < ∆R < 3), it is again dominated by contributions of order O(1/Λ4).

In light of the above results, one is lead to the conclusion that only when consider-

ing relatively simple observables such as the transverse momenta of jets or their angular

separation, we always find ourselves in a situation where the signal induced by the OG
EFT operator is either too small to ever be used for placing bounds on Λ at LHC13, or it

is dominated by contributions of order O(1/Λ4) which are potentially more sensitive to a

breakdown of the EFT validity.
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ST ¿2 TeV, ∆R > 0.4 and pT,min > 50 GeV (applied to all jets). In the computation of the result

of order O(1/Λ4), only the contributions from at most one insertion of the operator OG in the
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Figure 9. Invariant mass of a pair of top quarks produced at LHC13, for the SM and including at

most one insertion of the OG operator in the production amplitudes (O(1/Λ2) and O(1/Λ4) terms).

3 Impact of the multi-jet bound on OG in other observables

Having established the validity of the constraints set on OG from high-multiplicity jet

events, in this section we re-analyse the processes previously suggested in the literature

to constrain OG. We consider in turn heavy quark production and higher order QCD

corrections to di-jet production. In particular, we compute the 1-loop corrections to the

interference between the SM and OG di-jet amplitudes and study the angular observables

in 3-jet events as suggested in [10].

3.1 Constraining OG in heavy quark production

Massive quark pair-production opens up additional non-zero helicity configurations com-

mon between the amplitudes with and without one insertion of the OG operator [5, 11].

The interference contribution of order O(Λ2) is then once again resurrected and we con-

sider its possible phenomenological applications in this section. Its impact in the context

of top-quark pair production was first studied in refs. [5, 11]. We re-examine the situation

here in light of the constraints found in ref. [13] and considering the production of a pair

of top quarks, also in association with one QCD jet. We present our results in figures 9–10

and observe that the interference contribution of order O(Λ2) is indeed not suppressed

compared to that of O(Λ4), but its overall signal strength normalised to the SM yield is at

the percent level in the tail of the distributions. This implies that given the current experi-

mental and theoretical control over differential measurements in top quark pair production,

this process cannot improve on the current limit of Λ = 5 TeV for the OG operator.

Finally, we also consider the production of four b-quarks, as shown in figure 11, revis-

iting the same observable ST discussed in section 2 and in the high energy region. The
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(O(1/Λ2) and O(1/Λ4) terms). A transverse momentum cut of pT,min > 50 GeV is applied to the

jet produced.
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selection of this process is motivated by the fact that we found the OG contribution to

be enhanced in the multi-jet production channel gg → qqqq (see table 5). We find that

the presence of the b-quark mass indeed renders the OG contribution larger for four b-jet

production than inclusive four-jets, but the corresponding production rate is too small.

Indeed, the suppression of more than four orders of magnitude w.r.t. to four-jet produc-

tion, in combination with the eventual need of accounting for b-quark tagging efficiencies,

prevents this channel from providing significant constraints on the triple gluon operator.

3.2 One-loop corrections to the OG contribution to di-jet production

Up to this point we have established that the contribution of the interference of order

O(1/Λ2) is zero for tree-level di-jet production and suppressed compared to those of order

O(1/Λ4) for a variety of multi-jet observables. In this section we investigate whether

the 1-loop corrections of order O(1/Λ2) to di-jet production can lift the suppression of

the interference.

The helicity structure of the gg → gg and gg → qq̄ amplitudes with exactly one OG
insertion are orthogonal to the pure QCD ones. This implies that the interference term is

exactly zero at the tree level (see appendix A for details). One-loop amplitudes for these

processes, both with and without a single insertion of the OG operator, open up additional

helicity configurations yielding non-zero interfering contributions. Similarly, considering

one more parton in the final state turns on new interfering helicity configurations. These

two contributions can be thought of as the usual virtual and real-emission pieces of the

NLO QCD corrections to di-jet production. We however refrain from employing this ter-

minology since the tree-level Born contribution of order O(1/Λ2) vanishes. An important

consequence of this is that, by virtue of the factorisation properties of UV and IR diver-

gences, both these inclusive ‘virtual’ and ‘real-emission’ contributions are separately UV

and IR finite1 making the former akin to a loop-induced computation.

Using FeynRules [16] together with the NLOCT [17] module, we built a UFO [18]

model2 containing the necessary R2 counterterms3 allowing MadLoop [14, 19] to compute

the one-loop di-jet contribution of order O(1/Λ2). As the finite one-loop amplitudes for

di-jet production with exactly one insertion of the OG operator are computed here for the

first time, we provide more details on some analytical results obtained in the case of the

four-gluon one-loop amplitude in appendix A.

We now turn to discussing the phenomenological relevance of the finite one-loop di-

jet contributions of order O(1/Λ2), computed within the loop-induced module [20] of the

MG5 aMC [14] framework. Numerical results for this contribution and for different cuts

on partonic jets pT can be found in table 6 in appendix C.

1We stress that the amplitudes for pp→ jjj at order O(1/Λ2) still feature integrable IR singularities, im-

plying that local counterterms are still necessary in order to numerically perform an inclusive computation.
2The model is made publicly available through the online model repository of MG5aMC v2.6.1+, under

the name GGG EFT up to 4point loops, and at http://feynrules.irmp.ucl.ac.be/wiki/NLOModels. We stress

that this model is not suited for computations of n-points EFT loops, with n > 4.
3R2 counterterms reproduce the rational part of one-loop amplitudes that originate from the d − 4

dimensional part of the loop numerator and which can therefore not be reproduced by purely numerical

codes working in four dimensions.
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Figure 12. Value of the partonic jet cut pT,min(j) at which the contribution of order O(1/Λ4)

exceeds the one of the one-loop interference term of order O(1/Λ2).

We find quite large cancellations between the O(1/Λ2) contributions of the various

partonic subprocesses and the O(1/Λ4) term happens to dominate over the interference

for all pT regions shown for CG = 1 and Λ = 5 TeV. Given their different scaling with

the characteristic energy probed, it is interesting to study the value of the cut pT,min at

which the contributions of order O(1/Λ2) and O(1/Λ4) are equal to each other for different

values of the energy scale Λ. We report our results in figure 12 which shows that even for

Λ as large as 150 TeV, the squared contribution O(1/Λ4) dominates when restricting the

jet kinematics to pT (j) > 1 TeV.4

We stress that signal strength alone is not meaningful, as it must be normalised to

the background yield from which it ultimately needs to be separated. In the low pT
region where contributions of order O(1/Λ2) dominate, better experimental statistics may

allow for somewhat weaker signal strength. We investigate this and conclude that this is

unfortunately not the case by showing in figure 13, for various values of Λ, the O(1/Λ2)

contribution normalised to the SM yield and in presence of a minimum partonic jet cut

pT,min set at the value for which the two contributions of order O(1/Λ2) and O(1/Λ4) are

equal to each other (see figure 12). We find that even in the best case scenario (Λ ∼ 15 TeV),

the interfering contribution of order O(1/Λ2) is 10−5 smaller than the SM yield, making

an accurate measurement extremely challenging.

From the above, we are lead to conclude that the one-loop interference contribution

of order O(1/Λ2) in di-jet production has no phenomenological relevance at LHC13, as it

is always trumped by the squared contribution of order O(1/Λ4) in phase-space regions

featuring a strong enough signal.

4Whilst we show results as a function of pT,min, similar conclusions can be drawn if we consider slices of

pT , as the jet pT spectrum is steeply falling.
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Figure 13. Contributions from the one-loop interference contribution of order O(1/Λ2), normalised

to the SM yield and in presence of a minimum partonic jet cut pT,min set at the value for which the

two contributions of order O(1/Λ2) and O(1/Λ4) are equal to each other (see figure 12).

3.3 Angular observables in three-jet production

In this section we investigate in more detail angular observables that can enhance the

contribution of order O(1/Λ2) to three-jet production at LHC13. Three-jet production can

be viewed as the inclusively finite ‘real-emission’ counterpart of the one-loop interference

‘virtual’ contribution to di-jet discussed in section 3.2. The authors of ref. [10] noticed and

discussed in great detail the peculiar collinear limits of the O(1/Λ2) interference tree-level

contribution to three-jet production. More specifically, they proposed observables taking

advantage of this non-trivial behaviour under azimuthal rotations of two almost collinear

jets to discriminate this interference contribution against the QCD background. Their

study was intended for the Tevatron, and in this section we revisit their proposal in the

context of the LHC13 so as to determine if such an analysis has the potential of providing

additional constraints on the OG operator.

The observations of [10] are based on the angle ϕ, the angle associated with azimuthal

rotation of two collinear momenta around the direction of their sum in the c.o.m. frame.

Contrary to the pure QCD matrix elements, those of the O(1/Λ2) interference feature a

non-trivial ϕ-dependence which is correlated with the polarisation vector of the splitting

parton. The singular part of the three-jet amplitude vanishes upon integrating over ϕ,

rendering the inclusive three-jet cross-section of order O(1/Λ2) free of soft and collinear

divergences. The particular observable suggested in ref. [10] is the expectation value of

〈cos(2ϕ)〉 defined as:

〈cos(2ϕ)〉 =

∑
iwi cos(2ϕ)∑

iwi
, (3.1)

where
∑

i denotes the sum over all events, each with weight wi. Ref. [10] also studied the

distributions of the energy fraction of the most energetic jet x3 =
2E3√
ŝ

, the angle ψ between

the jets plane and the beam, and the centre of mass energy for well separated jets, all of
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which are very mildly affected by OG. They concluded that probing the collinear region

was key for finding enhancement of the OG contribution, and showed that 〈cos(2ϕ)〉 could

indeed efficiently discriminate the signal against the QCD background.

However, this highly collinear region is hard to access experimentally as it requires the

identification of two almost collinear jets. It is therefore convenient to open up the region of

phase-space probed so as to make it experimentally more accessible, while at the same time

retaining the discriminating power obtained from the sensitivity to the azimuthal angle ϕ.

This is what is achieved by the set of cuts labelled in ‘C’ in ref. [10] and repeated here:

•
√
ŝ ≥ 250 GeV

• x3 ≤ 0.95 on the leading jet and x5 ≥ 0.3 on the trailing jet (3.2)

• | cos θ| ≤ 0.8, 30◦ ≤ Ψ ≤ 150◦ and x4 sin θ34 ≥
5 GeV√
ŝmin/2

,

where the outgoing jets (3,4,5) are ordered using the energy fractions xi =
2Ei√
ŝ
, i = 3, 4, 5

in the c.o.m. frame of the three jets, θ is the angle between the leading jet and the beam

axis, Ψ(= ϕ+π/2) the angle between the plane defined by the leading jet direction and the

beam direction and the plane of the two sub-leading jets and finally θ34 the angle between

the leading and sub-leading jet. The cuts guarantee that the transverse momenta of the

two sub-leading jets are higher than 5 GeV. With the cut on x3, we avoid the extremely

soft and collinear region for the two sub-leading jets and the cut on Ψ avoids collinearity

with the beam direction.

Here we reproduce the results of [10] and examine whether the promising results found

in ref. [10] remain relevant at the LHC with more realistic cuts and also given the bounds

set by [13]. The behaviour of the SM and interference contributions as a function of x3

for the Tevatron (for 1.96 TeV instead of 1.8 TeV used in ref. [10]) is shown in figure 14

(top) for the values of CG and Λ used originally in ref. [10]. In this plot we also include the

contribution of the operator at O(1/Λ4) which was not computed in the original study.

As a first step towards a more realistic analysis, we consider additional modern cuts,

insuring that the phase-space region considered is at least experimentally accessible, i.e.:

• pjT > 50 GeV and ∆R > 0.4. (3.3)

These further cuts reduce the number of events in the collinear region as shown in figure 14

(bottom), again for the Tevatron. Whilst the shape of the distribution changes with the

additional cuts, we find that the ratios over the SM prediction are not significantly altered.

In figure 14, we note that the OG interference changes sign as we approach the collinear

region. In ref. [10], this feature was taken advantage of by considering the ratio r0.85:5

r0.85 =

(
dσ

d
√
ŝ

)
0.85<x3<0.95

−
(
dσ

d
√
ŝ

)
0.75<x3<0.95(

dσ

d
√
ŝ

)
0.85<x3<0.95

+

(
dσ

d
√
ŝ

)
0.75<x3<0.95

. (3.4)

5We note here that to reproduce the results of [10] an overall minus sign had to be added to eq. (3.4)

relative to the definition used in the paper. We believe this minus sign to be a typo in the original paper.
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Figure 14. Distribution of x3 in three-jet production with the cuts defined in eq. (3.2). Additional

cuts of pT (j) > 5 GeV and ∆R > 0.1 are applied in the case of the upper plot, while for the lower

plot the more realistic cuts of pT (j) > 50 GeV and ∆R > 0.4 are considered.

As a validation exercise, we reproduce in figure 15 the results of ref. [10] for the differential

distribution of r0.85 as a function of the c.o.m energy at the Tevatron at 1.96 TeV, for

CG = 1 and CG = 4π (the latter being the choice made in ref. [10]). In doing this, we

also include the O(1/Λ4) terms, which turns out to almost completely cancel the linear

contribution from the OG operator on this observable and for the original value of the

coefficient used in [10].
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Figure 15. Distribution of r0.85 as defined in eq. (3.4), as a function of the centre-of-mass energy

in three-jet production with the cuts defined in eq. (3.2), and for CG = 4π (upper plot) and CG = 1

(lower plot).

It is well understood that the quantities entering in this observable are not invariant

under boost along the beam axis and, as such, they are very challenging to reconstruct

in hadronic collisions. We leave the determination of experimentally-viable proxies to

these quantities to future work, and focus here only on investigating the potential of the

observable r0.85 at LHC13, in an ideal scenario where it can be perfectly measured. We

compute it at the LHC with the additional modern cuts of eq. (3.3), hence insuring that

the phase-space region considered is at least experimentally accessible. In this case, we

extend the range to 4 TeV and consider the case of CG = 1 and Λ = 5 TeV so as to match

the limit currently placed from the multi-jet analysis. We present our results in figure 16,

for the contributions of order O(1/Λ2) and O(1/Λ4), with up to either one or two insertions

of the OG operator in the contributing amplitudes.

We find that the contribution linear in O(1/Λ2) dominates and yields a significant

deviation from the SM. This is a rather unique example of an observable for which the

OG signal is dominated by the linear contribution at a high energy and also of significant

size compared to the SM prediction (up to ∼15% in the tail). Furthermore, r0.85 being a

ratio observable, it is prone to cancellation of the correlated theoretical uncertainties and
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Figure 16. Distribution of r0.85 as defined in eq. (3.4) as a function of the c.o.m energy in three-jet

production at LHC13 with the cuts defined eq. (3.2). The lower plot zooms in the high-energy

region of the upper one.

therefore offers good prospects for constraining the OG operator. We verify this assumption

by computing the LO renormalisation scale uncertainties which are indeed found to be very

moderate for this observable.6 The viability of this observable therefore crucially depends

on the ability to reconstruct the peculiar quantities entering the definition of r0.85 and

on the experimental accuracy that can be achieved in the contrived region of phase-space

considered here.

We elaborate on the latter of these requirements, by assuming that the experimental

uncertainty is entirely of statistical nature and compute it from the expected number of

events in each bin of the x3 distribution entering in the definition of eq. (3.4), multiplied

by an acceptance efficiency of 10%, which we believe to be a realistic estimate of the

efficiency, given the complexity of this observable. The experimental errors hence obtained

for each of the four terms of eq. (3.4) are then propagated to yield the one of the ratio-

observable r0.85, as shown in figure 17. We considered an integrated luminosity of both

6Our study is based on LO parton-level simulations and therefore our conclusions come with the caveat

that the transition towards the collinear region could be significantly affected by the resummation/parton

shower corrections that are ignored here.
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Figure 17. Distribution of r0.85 as defined in Equation as a function of the centre-of-mass energy

in three-jet production with the cuts defined in eqs. (3.2) and (3.3), along with the expected

experimental uncertainties for different integrated luminosities at the LHC.

20 fb−1, relevant for current measurements, and 3000 fb−1, as in the High Luminosity LHC

(HL-LHC) scenario. We find that even with the current integrated luminosity, the first few

bins in the range between 1 and 2 TeV lie close to the edge of the experimental uncertainty

band, therefore indicating that this observable could in principle already be used to place

competitive constraints on the OG operator. For the HL-LHC scenario, the situation is

even more promising as the statistics of the high-energy bins featuring the larger deviation

w.r.t. the SM is large enough so as to potentially constrain the OG operator beyond the

current limits.

We stress again that our study is a simplified one of an idealised observable, with

various aspects requiring a more realistic treatment. In particular, the quantities entering

in the definition of r0.85 are expected to be especially difficult to reconstruct in hadronic

collisions. The ordering of the jets and the cuts applied in the c.o.m. frame should be

traded for an observable more easily reconstructed than x3 but capturing the same physics.

Another shortcoming of our analysis is that we did not consider matching to parton showers,

which could potentially modify the outcomes. Finally our estimate of the experimental

and theoretical uncertainties is very simplified, and calls for a more careful investigation
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in order to formulate a definite statement. We therefore restrict our conclusion here to

stating that the idealised observable r0.85 of eq. (3.4), originally proposed in [10], retains

its discriminatory power at LHC13. This opens the possibility of deriving a more realistic

analysis that could place a strong limit on the OG operator, solely from the interference

terms of orderO(1/Λ2), thereby rendering it more robust from the EFT-validity standpoint.

4 Conclusions and outlook

We have examined the impact of the effective triple gluon operator OG on a series of ob-

servables at the LHC and in the light of the limit of Λ = 5 TeV recently placed on its

coefficient using high-energy multi-jet events. Focussing on the same observable, i.e. the

transverse energy of multi-jet events, we have investigated the dependence of the reach

of the analysis on the jet multiplicity, concluding that the opening of new partonic chan-

nels featuring enhanced OG contributions w.r.t. the SM is ultimately responsible for the

increased sensitivity. We also confirmed that the limit hence obtained is valid within the

EFT expansion by computing the impact of dimension-8 operators on the same observable.

We then investigated the impact of OG in various other jet observables, in particular

in three-jet and four-jet events with well separated and hard jets. We found that the signal

is most often dominated by terms of order O(1/Λ4) while the interference contribution

of order O(1/Λ2) is only relevant in cases where the overall signal strength is below the

percent level. Similarly, we showed that heavy-quark pair production processes lead to very

small deviations w.r.t. to the SM and are unlikely to improve the limits on this operator.

Given the stringent constraints that can be set on the triple gluon operator using

high-jet multiplicity measurements one might also wonder whether the CP-odd operator

OG̃ can also be constrained from the same measurements. On the one hand, it is well

known that OG̃ is strongly bound by the neutron EDM, see for example [7], giving a limit

on Λ for CG̃(MW ) = 1 of about 30 TeV. On the other hand, these limits suffer from model

assumptions as they are indirect. In this respect, even though weaker, collider constraints

could provide complementary information. It is straightforward to evaluate the impact

of OG̃ on the variable ST , which is found to be the same as that of OG in the high ST
region which is the one setting the limits, therefore yielding a bound of Λ > 5 TeV. Whilst

this is a naive estimate of a potential limit, it shows that collider results can potentially

compete with indirect bounds as higher energies get probed and more studies on OG̃ could

be welcome.

We have also computed for the first time here the contribution of OG to di-jet at

next-to-leading order in QCD. Di-jet production receives OG interference contributions of

order O(1/Λ2) when considering one-loop amplitudes featuring up to one insertion of the

OG operator. We established that they have no phenomenological relevance as they are

either too small compared the SM yield or trumped by the contributions of order O(1/Λ4),

depending on the jet pT range considered.

Finally, we have revisited in the context of the LHC a particular three-jet angular

observable first suggested in [10] for constraining the triple gluon operator at the Tevatron.

This ratio-observable, which is rather complicated, capitalises on the peculiar behaviour of
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OG operator in the collinear limit and we show that it retains its ability to discriminate

against both QCD and O(1/Λ4) contributions at the LHC, even with the stringent multi-jet

limits. Moreover, our very preliminary analysis of theoretical and statistical uncertainty

indicates that LHC jet data could potentially further constrain this operator, solely from

its linear contributions which are more robust from an EFT expansion standpoint. While

our analysis requires further investigation, we find promising results that will hopefully

prompt additional studies on the topic.
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A Analytic one-loop matrix elements for gg → gg at order O(1/Λ2)

The one-loop computations necessary for this work were performed using the automated

and numerical toolchain FeynRules [16]/NLOCT [17] + MadLoop [19]/MG5aMC [14,

20]. This head-on approach is typically less error-prone and allows to easily include all

partonic channels as well as marginal effects such as including the top-quark mass depen-

dence in the loop. It also provides a straight-forward access to the flexibility offered by

event generators.

However, given the simplicity of the 2→ 2 kinematics of the dijet amplitudes relevant

here, it is both possible and interesting to peek at the analytical structure of the loop

amplitudes computed in this work for the first time. In this appendix, we therefore explore

in more analytical depth the various contributions of the operator OG of eq. (1.2) to the

four-gluon amplitude. In the following we use the well-known spinor helicity notation, see

refs. [21, 22]. We introduce first the tree-level amplitudes of the process gg → gg and then

investigate the contribution driven by the known one-loop QCD amplitude for that process.

Finally, we share our original analytic result for the one-loop four-gluon amplitude featuring

one insertion of the OG operator and obtained via a numerical fit of MadLoop’s result.

Multi-gluon amplitudes at the tree level can be written in terms of partial amplitudes

A as

Mtree({pi}n1 , {εi}n1 , {ai}n1 ) =
∑

σI∈P ({2,··· ,n)}

[
Tr(ta1taσI (2) · · · taσI (n))

An
(
p1, ε1; pσI(2), εσI(2); · · · ; pσI(n), εσI(n)

) ]
, (A.1)
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where {pi}n1 , {εi}n1 and {ai}n1 denote the set of n momenta, polarisation vectors and adjoint

colour indices of the n gluons considered.

The four gluon partial amplitudes A(QCD)
4,tree , read [23]:

A(QCD)
4,tree (i+, j+, k+, l+) = 0 (A.2)

A(QCD)
4,tree (i−, j+, k+, l+) = 0 (A.3)

A(QCD)
4,tree (i−, j−, k+, l+) = ig2

s

〈ij〉4

〈ij〉〈jk〉〈kl〉〈li〉
(A.4)

A(QCD)
4,tree (i−, j+, k−, l+) = ig2

s

〈ik〉4

〈ij〉〈jk〉〈kl〉〈li〉
, (A.5)

where gs denotes the strong coupling constant. The tree-level four-gluon partial amplitudes

with one insertion of the OG operator have been computed in ref. [10], which we denote

A(Λ)
4,tree and read:

A(Λ)
4,tree(1

+, 2+, 3+, 4+) = g2
s

3i

Λ2

2stu

〈12〉〈23〉〈34〉〈41〉

A(Λ)
4,tree(1

−, 2+, 3+, 4+) = −g2
s

3i

Λ2

[23]2[34]2[42]2

[12][23][34][41]

A(Λ)
4,tree(1

−, 2−, 3+, 4+) = 0

A(Λ)
4,tree(1

−, 2+, 3−, 4+) = 0, (A.6)

where we used consecutive integer numbers in the argument of the partial amplitudes to

label external particles. We stress that the results presented here are however valid for any

assignment of external particle labels, although the reader must keep in mind that the usual

Mandelstam variables s, t and u (with s+ t+u = 0) are bound to a particular assignment.

The results above show why the interference contribution M
(Λ)×QCD
tree×tree is exactly zero at the

tree level: the helicity configuration supports of the QCD and (Λ) partial amplitudes are

orthogonal to each other (see eqs. (A.2) and (A.6)). At tree-level, the OG operator therefore

only contributes to the four-gluon matrix element via M
(Λ)×(Λ)
tree×tree, which is of order O(1/Λ4).

In order to unlock the linear OG contribution of order O(1/Λ2), one must open up new helic-

ity configurations, for example by considering one-loop contributions to the four-gluon am-

plitudes. The OG operator can then be inserted either in the tree-amplitude multiplying the

one-loop QCD one, yielding the contribution denoted with M
(QCD)×(Λ)
1−loop×tree or directly in the

loop, yielding M
(Λ)×(QCD)
1−loop×tree. In all the results presented here, the coupling CG is set to one.

We now present the QCD one-loop partial amplitudes AQCD
4,1−loop, as given in ref. [24].

The colour basis introduced in eq. (A.1) must be expanded in order to be able to project

one-loop amplitudes, and the resulting decomposition can be generalised as follows:

M1−loop({pi}n1 , {εi}n1 , {ai}n1 ) =

[n/2]+1∑
j=1

∑
σI∈Sn/Sn;j

[
Grn;j(σI(1), . . . , σI(n))

An;j(σI(1), . . . , σI(n))
]

(A.7)
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with:

Grn;1(1, . . . , n) = Tr(1) Tr(ta1 , . . . , tan) = Nc Tr(ta1 , . . . , tan)

Grn;j(1, . . . , n) = Tr(ta1 , . . . , taj−1) Tr(taj , . . . , tan). (A.8)

In eq. (A.7), the cyclic symmetry of the color traces is no longer lifted by setting their first

indices and it is therefore modded out from the permutation group summed over. Indeed,

we define permutations as part of the group Sn of all permutations of n indices, removed of

all permutations in Sn;j which, by definition, leave the double color trace Grn;j invariant up

to their respective cyclic symmetry. A more compact notation based on the colour adjoint

representation [25] is sufficient to show that in fact only the leading colour amplitudes

An;1(σI(1), . . . , σI(n)) are truly independent. One can then compactly write the colour-

summed loop matrix element (consisting of loop and tree amplitudes interferences) for

gg → gg in terms of A4;1 only, i.e.

M
(4g)
1−loop×tree({i

±}n1 ) = N3
c (N2

c − 1)
∑

σ∈Sn/Sn;1

2<
(
A1−loop

4;1 (σ({i±}n1 ))Atree
4 (σ({i±}n1 ))?

)
.

(A.9)

The explicit analytical expressions of the QCD 1-loop partial amplitudes AQCD
4;1 then

read (see ref. [26]):

AQCD
4;1 (1+, 2+, 3+, 4+) =

ig4
s

48π2

st

〈12〉〈23〉〈34〉〈41〉

AQCD
4;1 (1−, 2+, 3+, 4+) =

ig4
s

48π2

[24]2(t+ s)

[12]〈23〉〈34〉[41]
. (A.10)

Substituting eqs. (A.10) and (A.6) in eq. (A.9) then yields the exact expression for the

pure gluon contribution in M
QCD×(Λ)
1−loop×tree. The all-minus and all-plus helicity contributions

vanish, being proportional to s + t + u, as one would expect from their symmetries. For

the helicity configuration −+ ++, we find:

M(1−, 2+, 3+, 4+) = 2N3
c (N2

c − 1)
g6
s

8π2
Λ−2 (−1)

s4 + t4 + u4

stu
. (A.11)

One then arrives at the final result by summing over the eight contributions from all cyclic

and CP permutations of the result above:

M
QCD×(Λ)
1−loop×tree(gg → gg)|nf=0 =

1

2

1

2 · 2 · 8 · 8
N3
c (N2

c − 1)Λ−2 g
6
s

8π2
(16)

s4 + t4 + u4

stu
. (A.12)

We note that we checked numerically that including nf massless fermion flavours affects the

result above by an overall factor (1− nf
Nc

), as it could be anticipated from the supersymmetric

case where the physical contribution vanishes when considering an equal number of colour-

charged bosonic and fermionic degrees of freedom (of identical mass).

We can now consider the loop amplitudes in the EFT theory. As previously stated,

the A(Λ)
1−loop amplitudes have been computed for the first time and numerically in our

work. Taking advantage of MadLoop’s capability of providing numerical evaluations for
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specific helicity and colour-flow configurations, we could derive the analytical expression

of the amplitudes A(Λ)
4;j using a numerical fitting procedure on an ansatz factorising the

QCD partial amplitudes A(QCD)
4,tree in order to remove the dependency on the complex phase

introduced by the specific choice of polarisation vectors used by MadLoop. We obtain:

A(Λ)
4;1 (1−, 2−, 3+, 4+) =

(
−(3 +

nf
2

)t+ (3− nf )
ut

s

)
Λ−2 g

2
s

8π2
A(QCD)

4,tree (1−, 2−, 3+, 4+)

A(Λ)
4;1 (1−, 2+, 3−, 4+) = 0, (A.13)

where Nc has now been explicitly set to 3. We have verified the cyclic symmetry of the

partial amplitudes obtained from our numerical fitting procedure. Although not necessary

for the computation of the physical contribution M
(Λ)×QCD
1−loop×tree, we also provide here the

analytical expression for the partial amplitudes A(Λ)
4;3 , obtained using a numerical fit as well:

A(Λ)
4;3 (1−, 2−, 3+, 4+) = (−6t) Λ−2 g

2
s

8π2
A(QCD)

4,tree (1−, 2−, 3+, 4+)

A(Λ)
4;3 (1−, 2+, 3−, 4+) =

(
−6

st

u

)
Λ−2 g

2
s

8π2
A(QCD)

4,tree (1−, 2+, 3−, 4+). (A.14)

Summing over all non-cyclic permutations of the partial amplitudes A4;1 for the helicity

configuration −−++ and −+−+, we find their contributions to be:

M(1−,2−,3+,4+) = 2·33(32−1)
g6
s

8π2
Λ−2

(
t+u

ut
((nf−12)(t2+u2)−2(nf+6)tu)

)
M(1−,2+,3−,4+) = 2·33(32−1)

g6
s

8π2
Λ−2

(
t+s

st
((nf−12)(t2+s2)−2(nf+6)ts)

)
. (A.15)

Finally summing over all helicity contributions, we arrive at the final expression for

M
(Λ)×QCD
1−loop×tree:

M
(Λ)×QCD
1−loop×tree(gg→ gg) =

1

2

1

2·2·8·8
33(32−1)Λ−2 g

6
s

8π2

(
16
(

1−
nf
12

)) s4+t4+u4

stu
. (A.16)

It is interesting to note that for the purely gluonic contribution (nf = 0), we have:

M
(Λ)×QCD
1−loop×tree(gg → gg)|nf=0 = M

QCD×(Λ)
1−loop×tree(gg → gg)|nf=0 , (A.17)

while for six massless fermions (nf = 6):

M
(Λ)×QCD
1−loop×tree(gg → gg)|nf=6 =

(
−1

2

)
M

QCD×(Λ)
1−loop×tree(gg → gg)|nf=6. (A.18)

The rational one-loop finite four-gluon matrix element summed over all colours and helicity

configurations must be completely symmetric upon any relabelling of the external gluons.

This greatly restricts the functional space in which it can be expressed and perhaps renders

the above association less of a surprise. Indeed, when considering channels with external

quark lines or introduce new scales, in the form of the top-quark mass in the loop for

example, then the analytical treatment presented in this appendix quickly becomes more

cumbersome and the two contributions M
(Λ)×QCD
1−loop×tree and M

QCD×(Λ)
1−loop×tree exhibit different func-

tional dependence. In such cases, we resort only to the numerical computation performed

by MadLoop.
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B Partonic channel decomposition in multi-jet cross section

In this appendix we show in tables 3–5 the contributions of each partonic channel to

the dijet, three-jet and four-jet final states as a function of the cut on ST . The relative

contribution to the total cross section and the impact of OG compared to the SM prediction

is also shown for all partonic channels.

pp→ jj

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gg 1.11·10+7 54.97 gg → gg 1.11·10+7 54.97 1.00

gg → qq 3.93·10+5 1.94 gg → qq 3.93·10+5 1.94 1.00

qg → qg 7.72·10+6 38.16 qg → qg 7.72·10+6 38.16 1.00

qq → gg 1.35·10+4 0.07 qq → gg 1.35·10+4 0.07 1.00

qq → qq 9.83·10+5 4.86 qq → qq 9.83·10+5 4.86 1.00

total 2.02·10+7 100.00 total 2.02·10+7 100.00 1.00

ST > 2 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gg 8.56·10−1 9.91 gg → gg 9.99·10−1 10.98 1.17

gg → qq 3.83·10−2 0.44 gg → qq 5.47·10−2 0.60 1.43

qg → qg 4.44·100 51.37 qg → qg 4.72·100 51.83 1.06

qq → gg 4.35·10−2 0.50 qq → gg 6.49·10−2 0.71 1.49

qq → qq 3.27·100 37.78 qq → qq 3.27·100 35.88 1.00

total 8.64·100 100.00 total 9.10·100 100.00 1.05

ST > 3 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gg 2.04·10−2 4.34 gg → gg 3.55·10−2 6.50 1.74

gg → qq 9.48·10−4 0.20 gg → qq 2.75·10−3 0.50 2.90

qg → qg 1.96·10−1 41.67 qg → qg 2.50·10−1 45.74 1.28

qq → gg 2.49·10−3 0.53 qq → gg 7.89·10−3 1.44 3.16

qq → qq 2.51·10−1 53.26 qq → qq 2.51·10−1 45.82 1.00

total 4.70·10−1 100.00 total 5.47·10−1 100.00 1.16

ST > 4 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gg 7.01·10−4 1.73 gg → gg 2.20·10−3 4.12 3.14

gg → qq 3.37·10−5 0.08 gg → qq 2.21·10−4 0.41 6.56

qg → qg 1.25·10−2 31.02 qg → qg 2.25·10−2 42.13 1.80

qq → gg 2.16·10−4 0.53 qq → gg 1.58·10−3 2.96 7.35

qq → qq 2.69·10−2 66.63 qq → qq 2.69·10−2 50.38 1.00

total 4.04·10−2 100.00 total 5.35·10−2 100.00 1.32

Table 3. Contributions from the different partonic subprocesses contributing to di-jet production

at LHC13 in the SM (O(1/Λ0)) and when allowing at most one OG insertion in the amplitudes

(O(1/Λ2) and O(1/Λ4)).
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pp→ jjj

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → ggg 3.79·10+5 42.88 gg → ggg 3.79·10+5 42.88 1.00

gg → gqq 4.46·10+4 5.04 gg → gqq 4.46·10+4 5.04 1.00

qg → ggq 3.70·10+5 41.85 qg → ggq 3.70·10+5 41.85 1.00

qg → qqq 2.07·10+4 2.34 qg → qqq 2.07·10+4 2.34 1.00

qq → ggg 3.74·10+2 0.04 qq → ggg 3.74·10+2 0.04 1.00

qq → gqq 6.95·10+4 7.85 qq → gqq 6.95·10+4 7.85 1.00

total 8.85·10+5 100.00 total 8.85·10+5 100.00 1.00

ST > 2 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → ggg 1.84·100 11.00 gg → ggg 2.08·100 11.86 1.13

gg → gqq 2.02·10−1 1.21 gg → gqq 2.48·10−1 1.41 1.23

qg → ggq 8.28·100 49.59 qg → ggq 8.72·100 49.69 1.05

qg → qqq 4.41·10−1 2.64 qg → qqq 4.83·10−1 2.75 1.10

qq → ggg 6.22·10−2 0.37 qq → ggg 9.24·10−2 0.53 1.48

qq → gqq 5.87·100 35.19 qq → gqq 5.92·100 33.75 1.01

total 1.67·10+1 100.00 total 1.75·10+1 100.00 1.05

ST > 3 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → ggg 4.52·10−2 5.19 gg → ggg 7.28·10−2 7.06 1.61

gg → gqq 4.67·10−3 0.54 gg → gqq 9.60·10−3 0.93 2.06

qg → ggq 3.70·10−1 42.46 qg → ggq 4.64·10−1 45.04 1.25

qg → qqq 1.78·10−2 2.04 qg → qqq 2.44·10−2 2.37 1.37

qq → ggg 4.02·10−3 0.46 qq → ggg 1.25·10−2 1.21 3.11

qq → gqq 4.30·10−1 49.32 qq → gqq 4.47·10−1 43.38 1.04

total 8.71·10−1 100.00 total 1.03·100 100.00 1.18

ST > 4 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → ggg 1.52·10−3 2.18 gg → ggg 4.43·10−3 4.46 2.91

gg → gqq 1.54·10−4 0.22 gg → gqq 6.36·10−4 0.64 4.13

qg → ggq 2.33·10−2 33.41 qg → ggq 4.10·10−2 41.35 1.76

qg → qqq 1.07·10−3 1.54 qg → qqq 2.20·10−3 2.22 2.05

qq → ggg 3.56·10−4 0.51 qq → ggg 2.59·10−3 2.61 7.28

qq → gqq 4.34·10−2 62.15 qq → gqq 4.84·10−2 48.72 1.11

total 6.99·10−2 100.00 total 9.93·10−2 100.00 1.42

Table 4. Contributions from the different partonic subprocesses contributing to the production of

three partonic jets at LHC13 in the SM (O(1/Λ0)) and when allowing at most one OG insertion in

the amplitudes (O(1/Λ2) and O(1/Λ4)).
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pp→ jjjj

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gggg 4.27·10+4 35.48 gg → gggg 4.27·10+4 35.47 1.00

gg → ggqq 9.05·10+3 7.52 gg → ggqq 9.05·10+3 7.53 1.00

gg → qqqq 2.73·10+2 0.23 gg → qqqq 2.74·10+2 0.23 1.00

qg → gggq 4.97·10+4 41.35 qg → gggq 4.97·10+4 41.35 1.00

qg → gqqq 6.48·10+3 5.38 qg → gqqq 6.48·10+3 5.39 1.00

qq → gggg 3.76·10+1 0.03 qq → gggg 3.76·10+1 0.03 1.00

qq → ggqq 1.14·10+4 9.50 qq → ggqq 1.14·10+4 9.50 1.00

qq → qqqq 6.05·10+2 0.50 qq → qqqq 6.05·10+2 0.50 1.00

total 1.20·10+5 100.00 total 1.20·10+5 100.00 1.00

ST > 2 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gggg 1.96·100 11.24 gg → gggg 2.18·100 11.91 1.11

gg → ggqq 3.40·10−1 1.95 gg → ggqq 3.97·10−1 2.17 1.17

gg → qqqq 7.10·10−3 0.04 gg → qqqq 8.58·10−3 0.05 1.21

qg → gggq 8.19·100 46.97 qg → gggq 8.57·100 46.91 1.05

qg → gqqq 9.13·10−1 5.23 qg → gqqq 9.82·10−1 5.37 1.08

qq → gggg 4.61·10−2 0.26 qq → gggg 6.82·10−2 0.37 1.48

qq → ggqq 5.75·100 32.94 qq → ggqq 5.83·100 31.88 1.01

qq → qqqq 2.36·10−1 1.35 qq → qqqq 2.44·10−1 1.33 1.03

total 1.74·10+1 100.00 total 1.83·10+1 100.00 1.05

ST > 3 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gggg 5.10·10−2 5.68 gg → gggg 7.88·10−2 7.34 1.54

gg → ggqq 8.13·10−3 0.90 gg → ggqq 1.45·10−2 1.35 1.79

gg → qqqq 1.52·10−4 0.02 gg → qqqq 2.93·10−4 0.03 1.93

qg → gggq 3.71·10−1 41.22 qg → gggq 4.58·10−1 42.71 1.24

qg → gqqq 3.91·10−2 4.35 qg → gqqq 5.17·10−2 4.82 1.32

qq → gggg 3.25·10−3 0.36 qq → gggg 1.01·10−2 0.94 3.11

qq → ggqq 4.11·10−1 45.70 qq → ggqq 4.41·10−1 41.14 1.07

qq → qqqq 1.60·10−2 1.78 qq → qqqq 1.79·10−2 1.67 1.12

total 8.99·10−1 100.00 total 1.07·100 100.00 1.19

ST > 4 TeV

SM SM + OG[O(1/Λ2, 1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] Subprocess σ [pb] fraction [%]

gg → gggg 1.75·10−3 2.52 gg → gggg 4.68·10−3 4.54 2.67

gg → ggqq 2.67·10−4 0.38 gg → ggqq 9.04·10−4 0.88 3.39

gg → qqqq 4.62·10−6 0.01 gg → qqqq 1.74·10−5 0.02 3.77

qg → gggq 2.32·10−2 33.40 qg → gggq 3.99·10−2 38.75 1.72

qg → gqqq 2.31·10−3 3.32 qg → gqqq 4.48·10−3 4.35 1.94

qq → gggg 3.11·10−4 0.45 qq → gggg 2.28·10−3 2.21 7.33

qq → ggqq 4.01·10−2 57.73 qq → ggqq 4.87·10−2 47.29 1.21

qq → qqqq 1.53·10−3 2.20 qq → qqqq 2.01·10−3 1.95 1.32

total 6.95·10−2 100.00 total 1.03·10−1 100.00 1.48

Table 5. Contributions from the different partonic subprocesses to the production of four partonic

jets at LHC13 in the SM (O(1/Λ0)) and when allowing at most one OG insertion in the amplitudes

(O(1/Λ2) and O(1/Λ4)).
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C One-loop OG contribution to dijet production

In table 6 we show the one-loop contributions of OG to dijet production for different

partonic channels and different cuts on the jet transverse momentum.

pp→ jj, pT (j) > 100 GeV

SM OG[O(1/Λ2)]@1-loop OG[O(1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] σ [pb] fraction [%] σ [pb] fraction [%]

gg → gg 5.25·10+5 46.06 -5.31·100 -28.02 2.12·10+1 66.49 1.00

gg → qq 1.98·10+4 1.74 5.59·100 29.52 1.96·100 6.14 1.00

qg → qg 5.02·10+5 44.06 2.28·10+1 120.46 8.48·100 26.59 1.00

qq → gg 1.33·10+3 0.12 4.16·10−1 2.20 2.52·10−1 0.79 1.00

qq → qq 9.15·10+4 8.02 -4.58·100 -24.17 0.00 0.00 1.00

total 1.14·10+6 100.00 1.89·10+1 100.00 3.19·10+1 100.00 1.00

pT (j) > 200 GeV

SM OG[O(1/Λ2)]@1-loop OG[O(1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] σ [pb] fraction [%] σ [pb] fraction [%]

gg → gg 2.02·10+4 37.60 -8.71·10−1 -29.15 9.70·100 61.05 1.00

gg → qq 8.09·10+2 1.51 8.16·10−1 27.34 9.52·10−1 5.99 1.00

qg → qg 2.64·10+4 49.26 4.00·100 133.94 5.05·100 31.82 1.00

qq → gg 9.69·10+1 0.18 1.09·10−1 3.64 1.80·10−1 1.13 1.00

qq → qq 6.13·10+3 11.45 -1.07·100 -35.76 0.00 0.00 1.00

total 5.36·10+4 100.00 2.99·100 100.00 1.59·10+1 100.00 1.00

pT (j) > 300 GeV

SM OG[O(1/Λ2)]@1-loop OG[O(1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] σ [pb] fraction [%] σ [pb] fraction [%]

gg → gg 2.43·10+3 31.66 -2.69·10−1 -32.17 5.06·100 56.54 1.00

gg → qq 1.01·10+2 1.31 2.29·10−1 27.44 5.15·10−1 5.76 1.01

qg → qg 4.00·10+3 52.10 1.24·100 148.20 3.24·100 36.22 1.00

qq → gg 1.87·10+1 0.24 4.45·10−2 5.32 1.32·10−1 1.48 1.01

qq → qq 1.13·10+3 14.69 -4.08·10−1 -48.78 0.00 0.00 1.00

total 7.68·10+3 100.00 8.36·10−1 100.00 8.94·100 100.00 1.00

pT (j) > 500 GeV

SM OG[O(1/Λ2)]@1-loop OG[O(1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] σ [pb] fraction [%] σ [pb] fraction [%]

gg → gg 1.25·10+2 23.27 -4.73·10−2 -43.40 1.68·100 49.19 1.01

gg → qq 5.46·100 1.02 3.15·10−2 28.91 1.79·10−1 5.24 1.04

qg → qg 2.92·10+2 54.34 2.17·10−1 198.57 1.48·100 43.41 1.01

qq → gg 1.80·100 0.34 1.09·10−2 9.97 7.36·10−2 2.16 1.05

qq → qq 1.13·10+2 21.04 -1.03·10−1 -94.06 0.00 0.00 1.00

total 5.37·10+2 100.00 1.09·10−1 100.00 3.41·100 100.00 1.01

pT (j) > 1 TeV

SM OG[O(1/Λ2)]@1-loop OG[O(1/Λ4)]
(SM + OG)/SM

Subprocess σ [pb] fraction [%] σ [pb] fraction [%] σ [pb] fraction [%]

gg → gg 9.86·10−1 11.92 -1.82·10−3 -341.74 1.69·10−1 35.90 1.17

gg → qq 4.60·10−2 0.56 9.89·10−4 186.06 1.93·10−2 4.09 1.44

qg → qg 4.24·100 51.19 1.03·10−2 1932.63 2.66·10−1 56.40 1.07

qq → gg 3.59·10−2 0.43 7.99·10−4 150.30 1.71·10−2 3.62 1.50

qq → qq 2.97·100 35.91 -9.71·10−3 -1827.25 0.00 0.00 1.00

total 8.28·100 100.00 5.31·10−4 100.00 4.71·10−1 100.00 1.06

Table 6. Contributions from the different partonic subprocesses of di-jet production at the LHC13

in the SM and with exactly one insertion of the OG operator in the amplitudes, leading to matrix

element contributions of order O(1/Λ4) at the tree level and O(1/Λ2) at the one-loop level, shown

separately here. We remind the reader that tree-level interference contributions with exactly one

insertion of the OG operator are exactly zero.
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