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Introduction
¢ |HC Run 3: 2021~ 2023

» Js =14 TeV, instantaneous luminosity will be 3.0 x 1034 cm-2s-!
+50 % compared to Run 2 luminosity of ~2.0 x 1034 cm-2s-!
» Integrated luminosity estimated to be ~150 fb! - Run 2 + Run 3 = 300 fb-]

¢+ ATLAS Trigger System - basic scheme will remain the same in Run 3
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¢+ Phase-1 Upgrade for Level-1 Muon Trigger
» With Run 2 trigger algorithm, the rate for muon trigger with pt > 20 GeV (L1_MUZ20)

will become 30 kHz @ 3.0x 1034 cm-2s-1

Recorded

~1 kHz,
within a few sec.

» Run 3 requirement at this luminosity is 15 kHz (TDAQ TDR, ATLAS-TDR-023)
» More powerful trigger strategy is needed to reduce the trigger rate,
while keeping the trigger threshold and the efficiency



L1 Muon Trigger in Run 2

¢ Run 2 Level-1 muon trigger rate is dominated by:
@ Triggers with no matching real muons (Fake triggers)
@ Triggers by Low pr muons
especially in |n| > 1 region (Endcap region).
— Strategy: Reject these triggers by introducing new “coincidence logic”
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L1 Muon Endcap Trigger in Run 3

¢ Run 3 Trigger scheme overview
» TGC BW hit position defines the Rol, which will be the trigger seed.
» TGC Big Wheel local dR/dPhi coincidence logic calculates the pt of the track.
» Require additional inner coincidence to reject fakes, and also to re-calculate the pr
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Online hardware triggering

+ Main idea of the trigger logic:
» dR, d¢ defined as the hit position difference between M1and M3

» dR, d¢ are handed over to a Look-Up-Table,
which immediately returns the trigger decision and the candidate’s prt

» Similar logic to take coincidence with detectors inside to reject fake/low-ptT muons
— New LUT for the Inner Coincidence is nheeded
for additional fake and low-pt rejection M3

M2

What sort of LUTs M1

can effectively
Toroidal Field

reduce fake/low-pT -~ @

\
Detectors ."—‘--.‘ﬂ‘v \’ |

Inside the

L 4 N> Yy oo N =T
the A\ SAT RPN e T -
Magnetic Field (‘ o ]
| | .
. AN
L K
K

z=145 example of

Look-Up Tabl

e

-
-
----------

-
~
~
~
AES
.. .’
~ .” 14
~s -
. L .
.



Inner Coincidence Logic (1)

¢ Position matching
» Matching between TGC BW and Inner station hit position.

» Fake triggers can be rejected dramatically

TGC BW

» Low-pt muons can also be rejected (with enough granularity at inner station) M3
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Inner Coincidence Logic (2)

* Angle matching

» Angle information at the inner station can be used to

further reject the low-pt triggers.
» Combine position and angle to tag muons with large incident angle
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Trigger performance studies (1)

+ Fake rejection power estimation
» Fakes cannot be modeled in MC, so we used 2017 data for the estimation.

» MDT segments are used to emulate NSW, by smearing its position and angles

resolution to NSW resolution for the Level-1 trigger

» ~90% fake triggers are rejected with n- and (rough) phi- position coincidence

¢ Low-pT rejection power estimation
» Single muon MC is used to estimate low-pT rejection for NSW and RPC BIS7/8.

» Low-pt candidates are rejected effectively: -b0% @10 GeV, -85% @5 GeV
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Trigger performance studies (2)

+ Fake rejection power estimation
» Fakes cannot be modeled in MC, so we used 2017 data for the estimation.
» MDT segments are used to emulate NSW, by smearing its position and angles
resolution to NSW resolution for the Level-1 trigger
» ~90% fake triggers are rejected with n- and (rough) phi- position coincidence

¢ Low-pT rejection power estimation
» Single muon MC is used to estimate low-pT rejection for NSW and RPC BIS7/8.
» Low-pt candidates are rejected effectively: -b0% @10 GeV, -85% @5 GeV
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L1 Muon Trigger implementation 10

New Small Wheel

TGC Big Wheel
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New Sector Log
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New Sector Logic Board design 2

- § Optical interfaces to use
o GTX transceiver* at 6.4 Gbps

o 12 lanes x 6.4 Gbps = /6.8 Gbps £
§ for NSW and Tile, BIS7/8 **
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* GTX: multi-gigabit transceivers for Xilinx Kintex-7 FPGAs [Link]
** For Tile, we actually use 1.6 Gbps x 2 lanes


https://www.xilinx.com/support/documentation/user%20guides/ug476%207Series%20Transceivers.pdf

Firmware design for Fixed Latency
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Firmware design for Fixed Latency
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Firmware design for Fixed Latency *

¢ Trigger decision part
» Maximum 16 inner station candidates will be given for 1 BW trigger seed
» Regardless of the number of candidates, we need the trigger decision in
a fixed (and small) latency. What can we do?
-> Try taking coincidence with all 16 candidates, choose the best one among them
» In a simple implementation, this requires 16 times the latency, or 16 same LUTs,
which is not realistic in terms of latency/resource on FPGA.
-> Use a faster clock to re-use the same LUT while keeping the latency small

Schematic diagram
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Test results 16

* Firmware logic test for trigger part
» Simulation test for trigger part, on Vivado software (Xilinx compiler, Link)

» Shown below is an example of very simple test, where:
» 1 LUT is implemented to process 8 candidates one-by-one, on 320 MHz clock.
» The LUT simply returns least-significant 3 bits of the input address.

Name

s CLK_40

W BW_pT [3:0]

W NSW1_deta [5:0]
+ B NSW2_deta [5:0]
W NSW3_deta [5:0]
B NSW4_deta [5:0]
W NSW5_deta [5:0]
+ W NSW6_deta [5:0]

+ B NSW7_deta [5:0]

W NSW8_deta [5:0]
s CLK_320
M NSW _pos_LUT _out[3:0]
- ™ High_pT[3:0]
W Final_pT [3:0]

;<% pT [3:0]

» Other tests are successfully done with different input patterns,
not only on simulation but also on the actual SL board.
» Tests using more realistic LUTs (created from MC data), is ongoing.



https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf

Test results 7

* Firmware logic test for trigger part
» Simulation test for trigger part, on Vivado software (Xilinx compiler, Link)

» Shown below is an example of very simple test, where:
» 1 LUT is implemented to process 8 candidates one-by-one, on 320 MHz clock.
» The LUT simply returns least-significant 3 bits of the input address.

s CLK_40
W BW_pT [3:0]
W NSW1_deta [5:0]
+ B NSW2_deta [5:0]
W NSW3_deta [5:0]
B NSW4_deta [5:0]
W NSW5_deta [5:0]

+ B NSW6E_deta [5:0]

+ W NSW7_deta [5:0]
W NSW8_deta [5:0]
s CLK_320
M NSW _pos_LUT _out[3:0]
- ™ High_pT[3:0]
- W Final_pT [3:0] DUt

- Amm.ﬂ—=_—
I N R

» Other tests are successfully done with different input patterns,
not only on simulation but also on the actual SL board.
» Tests using more realistic LUTs (created from MC data), is ongoing.


https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf

Summary

¢+ Upgrade of the muon trigger system is essential for Run 3:
» The main strategy is to take coincidence with NSW and other detectors,
to reject fake and low pt muons.
» New hardware is needed to combine data from current trigger chamber BW, NSW,
and several other detectors.

¢ Trigger Logic and Performance
» Taking position matching and angle matching between BW and NSW can reject low
pT muon candidates effectively.
» The estimated rate is 14.2 kHz @ L = 3.0x 1034 cm-—2s-1,
which meets the Run3 requirement of 15 kHz. (ATLAS-TDR-023)

¢ Hardware and Firmware development
» New trigger processor board, New Sector Logic, has been produced for Run3.
» Firmware is fully-designed with all the trigger LUTs implemented.
» Fast clock is used in the trigger logic to overcome the latency limitation
while keeping the FPGA resource usage reasonable.
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Physics Motivation &

¢+ Run 3 trigger rate estimation ¢ Physics Acceptance
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New Small Wheel 2

sTGC Micromegas  sTGC
4 |layers 8 layers 4 |layers

¢ Consists of sTGC and Micromegas

» sTGC: small strip TGC

» TGC chamber with strip width of 3.2mm,

smaller than the strip width of current TGC (> 15 mm)
» 4 wire-strip pairs are combined to make 1 module.
» position resolution 60~150 um

. . < >
» Micromegas: micro mesh gaseous structure - Seem

» position resolution ~90 um Resolution: position ~30 um

» 8 layers are sandwiched by sTGC 4-layer modules, angle ~0.3 mrad.
to compose the New Small Wheel
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https://cds.cern.ch/record/1552862/files/ATLAS-TDR-020.pdf

Region of Interest

¢ The smallest unit for the Level-1 Muon Trigger:

» Each side is divided into 72 parts,

shown as green line in this figure
— (2 ‘Sectors’ per side,
48 x Endcap sectors and
24 x Forward sectors

» Each Endcap (Forward) sector
Is divided into 148 (64)
‘Regions of Interest’ = Rol

» One Endcap (Forward) SL board
handles 2 Sectors,
l.e. 296 Rols (128 Rols)

4

22

coverage per

» Trigger decision is performed Rol by Rol
— 296 trigger decision logic should run in parallel on a single FPGA
— 296 different LUTs need be implemented

Endcap SL

37

Rol =37 x4 =148

16
Rol =16 x4 =64



New Sector Logic Board design 3

6 optical inputs (6.4 Gbps) from NSW _ CPLD (XC2C256-7PQ208C)
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Input Data Format (1)

* TGC BW

» G-LINK 16 or 17 bits/BC per fiber

» Endcap: 12 fibers per Sector Logic, 202 bits/BC
» Forward: 6 fibers per Sector Logic, 100 bits/BC

¢ TGC E

» G-LINK 16 bits/BC per fiber

» Endcap only, 2 fibers per SL, 32 bits/BC

¢ New Small Wheel

» GTX 6.4 Gbps (= 128 bit/BC, with 8B/10B) per fiber
» Endcap: 6 fibers per SL, 768 bit/BC

» Forward: 8 fibers per SL, 1024 bit/BC

Second Byte First Byte
Word-0
Word-1 track0[15:8] track0[7:0]
Word-2 track1[7:0] track0[23:16]
Word-3 track1[23:16] track1[15:8]
Word-4 track2[15:8] track2[7:0]
Word-5 track3[7:0] track2[23:16]
Word-6 track3[23:16] track3[15:8]
Word-7 BCID[11:4] BCID[3:0] | ID[3:0]

Bit Assigned information
7-0 n[7 : 0]
13-8 @[5 : 0]
18-14 Af[4 : 0]
20-19 MM type
22-21 sTGC type
23 spare
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Input Data Format (2)

+ Tile Cal.

» GTX 1.6 Gbps (= 32 bits/BC with 8B/10B) per fiber

» Endcap only, 1 fiber per SL

First Byte

Second Byte
15 | 14 | 13 | 12 11 | 10 | 9 | 8 7 6
Word-0 BCID[3:0] TMDB[3:0]
Word-1 0 | Mod3[2:0] |

Mod2[2:0] Mod1[2:0] Mod0[2:0]

comma (K29.5)

Cable[1:0]

*+ RPCBIS 7/8

» GTX 6.4 Gbps (= 128 bits/BC with 8B/10B) per fiber

» Endcap only, 1 fiber per SL

Second Byte First Byte
Word-0 comma (K29.5) comma (K29.5)
Word-1 track0[15:8] track0[7:0]
Word-2 track1[7:0] track0[23:16]
Word-3 track1[23:16] track1[15:8]
Word-4 track2[15:8] track2[7:0]
Word-5 track3[7:0] track2[23:16]
Word-6 track3[23:16] track3[15:8]
Word-7 CRC[7:0] BCID[7:0]
Bit Assigned information
5-0 n[5 : 0]
11-6 &[5 : 0]
14-12 dn[2 : 0]
17-15 de[2 - 0]
19-18 2/3 flag[1:0]
23-20 spare
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Output Data Format

Output to Muon-to-CTP Interface (MUCPTI)

» GTX 6.4 Gbps (= 128 bits/BC with 8B/10B) per fiber
» 1 fiber per trigger sector, 2 fibers per SL board

» Commas are sent at the end to gain latency.

¢

Second Byte First Byte
15 | 14 | 13 12 | 11 | 10 | 9 | 8 7 | 6 | s 4 | 3 | 2 | 1 | o

Word-0 Muon Candidatel [15:0]

Word-1 Muon Candidate2 [15:0]

Word-2 Muon Candidate3 [15:0]

Word-3 Muon Candidate4 [15:0]

Word-4 Global flag [3:0] | BCID[11:0]

Word-5 CRC[7:0] 0xFD (K29.7)

Word-6 0xC5 (D5.6) 0xBC (K29.5)

Word-7 0xC5 (D5.6) 0xC5 (D5.6)

Muon candidate data format. 16 bits are assigned for each muon candidate. 8 bits are
used to indicate the Rol of the candidate, 4 bits for the pr value, and 4 bits for other flags. 1 bit
of the flag bits are used to indicate the sign of the muon candidate’s charge. The other flag bits
can be used for inner coincidence debug signals, during the commissioning period.

Bit Assigned Data
7-0 Rol
11-8 pr value
12 Candidate sign
15-13 || NSW/Inner Coincidence flags

26



Trigger Performance 7

» New Inner LUTs uses NSW position & angle information
» Efficiency is calculated by simulation, for L1_MUZ20

(LT_MUZ20: Level-1 trigger for muon with pt > 20 GeV)
» The track finding efficiency is assumed to be 97%
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Firmware design for Fixed Latency

¢ Data reception Clock-Domain-Crossing part
» choose a phrase of 40 MHz to latch the received data, so that they will have enough
margin from the data transition point:

received data 128-bit
(phase unknown) word

LHC 40 MHz dataétralfnsition

' «—— less margin

+ 17 /2

i<
quite a lot of margin

T

use this phase|
to latch data




Run 3 Readout system 2

New Sector Logic Read Out System

_ cee X

Card s

» Hit information
»event ID

10 GbE
3 | ‘ —
e
(Trigger, Timing 10GbE Switch SROD on PC
o & Control » N-to-1 connection » Event Building
» Formatting for ROS
*event ID | » Error handling
» Trigger Information
| SiTCPI:
TTC Fan-out board Technology to connect FPGA to the Ethernet,
and establish connection via TCP/IP

[*] Tomohisa Uchida, “Hardware-Based TCP Processor for Gigabit Ethernet’,
IEEE Trans. Nucl. Sci. Vol.55, No.3, June 2008, [LINK]


http://repository.dl.itc.u-tokyo.ac.jp/dspace/handle/2261/15490

