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Introduction
◆ LHC Run 3: 2021~ 2023 
‣ √s = 14 TeV, instantaneous luminosity will be 3.0 × 1034  cm-2s-1 

+50 % compared to Run 2 luminosity of ~2.0 × 1034  cm-2s-1  
‣ Integrated luminosity estimated to be ~150 fb-1 → Run 2 + Run 3 =  300 fb-1 

◆ ATLAS Trigger System - basic scheme will remain the same in Run 3 

◆ Phase-1 Upgrade for Level-1 Muon Trigger 
‣ With Run 2 trigger algorithm, the rate for muon trigger with pT > 20 GeV (L1_MU20)  

will become 30 kHz @ 3.0×1034 cm-2s-1   
‣ Run 3 requirement at this luminosity is 15 kHz (TDAQ TDR, ATLAS-TDR-023) 
‣ More powerful trigger strategy is needed to reduce the trigger rate,  

while keeping the trigger threshold and the efficiency
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L1 Muon Trigger in Run 2
◆ Run 2 Level-1 muon trigger rate is dominated by: 

① Triggers with no matching real muons (Fake triggers) 
② Triggers by Low pT muons  
especially in |η| > 1 region (Endcap region). 
→ Strategy: Reject these triggers by introducing new “coincidence logic”
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L1 Muon Endcap Trigger in Run 3  4
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Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming and
numbering scheme; top: sector with large chambers; bottom: sector with small chambers.
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Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming and
numbering scheme; top: sector with large chambers; bottom: sector with small chambers.
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◆ Run 3 Trigger scheme overview 
‣ TGC BW hit position defines the RoI, which will be the trigger seed. 
‣ TGC Big Wheel local dR/dPhi coincidence logic calculates the pT of the track.  
‣ Require additional inner coincidence to reject fakes, and also to re-calculate the pT
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◆ Main idea of the trigger logic: 
‣ dR, dφ defined as the hit position difference between M1and M3 
‣ dR, dφ are handed over to a Look-Up-Table,  

which immediately returns the trigger decision and the candidate’s pT 
‣ Similar logic to take coincidence with detectors inside to reject fake/low-pT muons 
→ New LUT for the Inner Coincidence is needed  
for additional fake and low-pT rejection
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Inner Coincidence Logic (1)
◆ Position matching 
‣ Matching between TGC BW and Inner station hit position. 
‣ Fake triggers can be rejected dramatically 
‣ Low-pT muons can also be rejected (with enough granularity at inner station)
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Inner Coincidence Logic (2)
◆ Angle matching 
‣ Angle information at the inner station can be used to  

further reject the low-pT triggers. 
‣ Combine position and angle to tag muons with large incident angle
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Trigger performance studies (1)
◆ Fake rejection power estimation 
‣ Fakes cannot be modeled in MC, so we used 2017 data for the estimation. 
‣ MDT segments are used to emulate NSW, by smearing its position and angles 

resolution to NSW resolution for the Level-1 trigger 
‣ ~90% fake triggers are rejected with η- and (rough) phi- position coincidence 

◆ Low-pT rejection power estimation 
‣ Single muon MC is used to estimate low-pT rejection for NSW and RPC BIS7/8. 
‣ Low-pT candidates are rejected effectively: -50% @10 GeV,  -85% @5 GeV
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Trigger performance studies (2)
◆ Fake rejection power estimation 
‣ Fakes cannot be modeled in MC, so we used 2017 data for the estimation. 
‣ MDT segments are used to emulate NSW, by smearing its position and angles 

resolution to NSW resolution for the Level-1 trigger 
‣ ~90% fake triggers are rejected with η- and (rough) phi- position coincidence 

◆ Low-pT rejection power estimation 
‣ Single muon MC is used to estimate low-pT rejection for NSW and RPC BIS7/8. 
‣ Low-pT candidates are rejected effectively: -50% @10 GeV,  -85% @5 GeV 

◆ Rate reduction and efficiency 
‣ Rate reduction  

Run 2 extrapolation: 30 kHz  
Run 3 14.2 kHz (~53% rate reduction) 

‣ Efficiency 
~ 95% for muons with pT > 20 GeV, 
relative to Run2 trigger 
(assuming NSW segment finding  
efficiency 97%)
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L1 Muon Trigger implementation
TGC Big Wheel New Small Wheel
BW1 BW2 BW3

New Trigger  
Processor

ηNSW : 8 bits

φNSW : 6 bits

dθ :  5 bits


flag, spare : 5 bits

Same as Run 2; 
202-bit /25 ns 
~8 Gbps

( ηBW, φBW )

muon

IP

( dR, dφ )

Trigger data 
to Central 

Trigger Processor

vector information
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New Sector Logic Board design  11



New Sector Logic Board design  12

Optical interfaces to use  
GTX transceiver* at 6.4 Gbps 

12 lanes × 6.4 Gbps = 76.8 Gbps 
for NSW and Tile, BIS7/8 **

Optical interfaces for 
G-Link connection at 0.8 Gbps 
14 × 0.8 Gbps =  11.2 Gbps 

for TGC BW and EI

795 × 36 Kb Block RAM 
→ × 20 times the resource compared to  
the FPGA for the current trigger board

* GTX: multi-gigabit transceivers for Xilinx Kintex-7 FPGAs [Link] 
** For Tile, we actually use 1.6 Gbps × 2 lanes

Xilinx Kintex-7 
XC7K410T

https://www.xilinx.com/support/documentation/user%20guides/ug476%207Series%20Transceivers.pdf


Firmware design for Fixed Latency  13
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Firmware design for Fixed Latency  14
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◆ Trigger decision part 
‣ Maximum 16 inner station candidates will be given for 1 BW trigger seed 
‣ Regardless of the number of candidates, we need the trigger decision in  

a fixed (and small) latency. What can we do?  
-> Try taking coincidence with all 16 candidates, choose the best one among them 

‣ In a simple implementation, this requires 16 times the latency, or 16 same LUTs,  
which is not realistic in terms of latency/resource on FPGA. 
-> Use a faster clock to re-use the same LUT while keeping the latency small  

‣

Firmware design for Fixed Latency  15

BW trigger seed pos. & pT
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Test results
◆ Firmware logic test for trigger part 
‣ Simulation test for trigger part, on Vivado software (Xilinx compiler, Link) 
‣ Shown below is an example of very simple test, where:  
‣ 1 LUT is implemented to process 8 candidates one-by-one, on 320 MHz clock. 
‣ The LUT simply returns least-significant 3 bits of the input address. 

‣ Other tests are successfully done with different input patterns, 
not only on simulation but also on the actual SL board. 

‣ Tests using more realistic LUTs (created from MC data), is ongoing.
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Test results
◆ Firmware logic test for trigger part 
‣ Simulation test for trigger part, on Vivado software (Xilinx compiler, Link) 
‣ Shown below is an example of very simple test, where:  
‣ 1 LUT is implemented to process 8 candidates one-by-one, on 320 MHz clock. 
‣ The LUT simply returns least-significant 3 bits of the input address. 

‣ Other tests are successfully done with different input patterns, 
not only on  simulation but also on the actual SL board. 

‣ Tests using more realistic LUTs (created from MC data), is ongoing.
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Summary
◆ Upgrade of the muon trigger system is essential for Run 3: 
‣ The main strategy is to take coincidence with NSW and other detectors,  

to reject fake and low pT muons. 
‣ New hardware is needed to combine data from current trigger chamber BW, NSW, 

and several other detectors. 

◆ Trigger Logic and Performance 
‣ Taking position matching and angle matching between BW and NSW can reject low 

pT muon candidates effectively. 
‣ The estimated rate is 14.2 kHz @ L = 3.0×1034 cm-2s-1,  

which meets the Run3 requirement of 15 kHz.  (ATLAS-TDR-023) 

◆ Hardware and Firmware development 
‣ New trigger processor board, New Sector Logic, has been produced for Run3. 
‣ Firmware is fully-designed with all the trigger LUTs implemented. 
‣ Fast clock is used in the trigger logic to overcome the latency limitation  

while keeping the FPGA resource usage reasonable.
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Physics Motivation
◆ Run 3 trigger rate estimation 

‣ Without the phase-1 upgrade, to keep 
the trigger rate to the require level, 
the pT threshold will need to be raised 
to ~40 GeV.
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◆ Physics Acceptance 

◆ If the threshold is raised to 40 GeV, 
the efficiency for muons from the 
decays of W boson produced in 
association with Higgs will be 61%.
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New Small Wheel
◆ Consists of sTGC and Micromegas 
‣ sTGC: small strip TGC 
‣ TGC chamber with strip width of 3.2mm,  
smaller than the strip width of current TGC (> 15 mm) 

‣ 4 wire-strip pairs are combined to make 1 module. 
‣ position resolution 60~150 μm  

‣ Micromegas: micro mesh gaseous structure 
‣ position resolution ~90 μm 
‣ 8 layers are sandwiched by sTGC 4-layer modules, 
to compose the New Small Wheel
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sTGC 
4 layers

Micromegas 
8 layers

sTGC 
4 layers

~22 cm
~36 cm

      Resolution: position ~30 μm 
                        angle  ~0.3 mrad.

NSW Technical Design Report,  ATLAS-TDR-020
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Region of Interest
◆ The smallest unit for the Level-1 Muon Trigger: 
‣ Each side is divided into 72 parts,  
shown as green line in this figure  
→ 72 ‘Sectors’ per side,  
    48 × Endcap sectors and 
    24 × Forward sectors  

‣ Each Endcap (Forward) sector  
is divided into 148 (64)  
‘Regions of Interest’ = RoI 

‣ One Endcap (Forward) SL board  
handles 2 Sectors,  
i.e. 296 RoIs (128 RoIs) 

‣ Trigger decision is performed RoI by RoI  
→ 296 trigger decision logic should run in parallel on a single FPGA  
→ 296 different LUTs need be implemented
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New Sector Logic Board design  23

FPGA (Xilinx Kintex-7 XCK410T)

CPLD (XC2C256-7PQ208C) 
for VME control

BPI (PC28F256P30TF) 
for FPGA configuration

14 optical inputs (800 Mbps) from BW-TGC  
SFP RX + G-Link RX chip

RJ45 connector 
for readout (SiTCP)

LEMO IN/OUT

16-pin connector 
to receive trigger/ 
timing information

6 optical inputs  
for other detectors 
SFP+ with GTX RX

6 optical inputs (6.4 Gbps) from NSW  
SFP+ with GTX RX in FPGA

2 optical outputs  
(6.4 Gbps) to MUCTPI 
SFP+ with GTX TX



Input Data Format (1)
◆ TGC BW 
‣ G-LINK 16 or 17 bits/BC per fiber 
‣ Endcap: 12 fibers per Sector Logic, 202 bits/BC 
‣ Forward: 6 fibers per Sector Logic, 100 bits/BC 

◆ TGC EI 
‣ G-LINK 16 bits/BC per fiber 
‣ Endcap only, 2 fibers per SL, 32 bits/BC 

◆ New Small Wheel 
‣ GTX 6.4 Gbps (= 128 bit/BC, with 8B/10B) per fiber 
‣ Endcap: 6 fibers per SL, 768 bit/BC 
‣ Forward: 8 fibers per SL, 1024 bit/BC
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Data format, connection and protocol Sector Logic receives both position (⌘, �) and angle272

information (d✓) of the track from the NSW trigger processor. These information are calculated273

separately on sTGCs and MicroMegas local trigger processor, and are merged by the NSW274

trigger processors. The expected resolution, range, and the assigned bit width for each of the275

variables are summarized in Table 2. In addition to these variables, NSW trigger processor are276

expected to send some flag bits for sTGC and MM track qualities. The track information are
packed into 24 bits, as shown in Figure 3.277

Table 2: Resolution and bit assignment

variable resolution range for 1 NSW sector range/ resolution assigned bit width
⌘ 0.005 1.2(1.3 ⇠ 2.5) 240 8 bits (256 patterns)
� 10 mrad. 2⇡/12(2⇡/24) rad. 52.3 (26.2) 6 bits (64 patterns)
d✓ 1 mrad. 32 mrad. (�15 ⇠ 15 mrad.) 32 5-bit (32 patterns)

Table 3: Bit assignment for one NSW track. Track information are encoded into 24 bits.

Bit Assigned information
7-0 ⌘[7 : 0]
13-8 �[5 : 0]

18-14 �✓[4 : 0]
20-19 MM type
22-21 sTGC type

23 spare

The data transfer from NSW trigger processor to the Sector Logic is performed through
optical serial connections. The Xilinx GTX transceiver, which is one of Multi-Gigabit Transceiver278

(MGT) technology, is adopted as the serial-parallel interface. GTX enables the data transfer279

rate of maximum 12.5 Gb/s [8]. The most popular SFP+ optics are directly supported by the280

transceiver. The optical links will be operated with bit rate of 6.4 Gb/s, synchronous with the281

LHC bunch crossing clock provided from CTP via TTC systems. 8b/10b encoding are used for282

the data transfer, therefore 128-bit data per fibre can be transferred every BC. The data format
is shown in Figure 9. Sector Logic can receive 4 track candidate per fibre, every BC.283
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Figure 9: Data format for data from NSW per BC, received using 1 fibre. 4 track candidate with
24-bit information can be received.

In order to cover boundaries of NSW sectors by a Sector Logic, as shown in Figure 8, track

10 2 Physics Algorithm



Input Data Format (2)
◆ Tile Cal. 
‣ GTX 1.6 Gbps (= 32 bits/BC with 8B/10B) per fiber 
‣ Endcap only, 1 fiber per SL 

◆ RPC BIS 7/8 
‣ GTX 6.4 Gbps (= 128 bits/BC with 8B/10B) per fiber 
‣ Endcap only, 1 fiber per SL
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Figure 14: Format for data from RPC BIS 7/8. 6.4 Gbps GTX.

Table 7: Bit assignment for RPC BIS 7/8 trac candidate. ⌘, � are the track position, and d⌘, d�
are the track segment angle. 2/3 flag shows whether the track candidate passed 3-out-of-3 or
2-out-of-3 locacl coincidence. 2 bits are assigned to this flag to show which 2 layers (layers 1-2,
1-3 or 2-3) are used to calculate the position/angle of the track.

Bit Assigned information
5-0 ⌘[5 : 0]
11-6 �[5 : 0]

14-12 d⌘[2 : 0]
17-15 d�[2 : 0]
19-18 2/3 flag[1:0]
23-20 spare

Secotr Logic will be connected to MUCTPI.343

Data format, connection and protocol Data format to MUCTPI board is well described in344

a document at MUCTPI PDR [9]. The number of muon candidate per sector will increase in345

Phase-I upgrade of MUCTPI. For each LHC bunch crossing, every Sector Logic will send four346

muon candidate information to MUCTPI. A specificpT value indicates if it is an empty candidate347

to be ignored by MUCTPI. The muon candidate will be ordered in terms of the pT-threshold348

value, the first muon candidate being the one with the highest pT-threshold value. 6.4 Gbps349

GTX protocol will be used for connection between the Sector Logic and the MUCTPI. The data
format is shown in Figure 15, and the content of each track information is shown in Table 8.350
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Figure 15: Format for data to MUCTPI, per trigger sector. Up to four candidates will be sent,
each muon candidate will have 16-bit data width.
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Output Data Format
◆ Output to Muon-to-CTP Interface (MUCPTI) 
‣ GTX 6.4 Gbps (= 128 bits/BC with 8B/10B) per fiber 
‣ 1 fiber per trigger sector, 2 fibers per SL board 
‣ Commas are sent at the end to gain latency.
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Level-1 Endcap Muon Trigger
Full Design Report

Draft 0.5, March 7, 2018 21:59

Table 8: Muon candidate data format. 16 bits are assigned for each muon candidate. 8 bits are
used to indicate the RoI of the candidate, 4 bits for the pT value, and 4 bits for other flags. 1 bit
of the flag bits are used to indicate the sign of the muon candidate’s charge. The other flag bits
can be used for inner coincidence debug signals, during the commissioning period.

Bit Assigned Data
7-0 RoI

11-8 pT value
12 Candidate sign

15-13 NSW/Inner Coincidence flags

2.3 Algorithms in the Sector Logic351

In this section, the algorithm that will be implemented on the new SL is explained. A brief352

block diagram of the endcap Sector Logic trigger algorithm is shown in Figure 16. The Sector353

Logic algorithm can be divided into several sub-modules. The Decoder part receives the data354

and translates the data into position/ track information, and provide them to the downstream355

logics. TGC Big-Wheel coincidence part receives the dR and d� information of the TGC BW, to356

take dR - d� coincidence. Inner coincidence part receives the information of the inside-magnet357

detectors such as NSW, to take BW - Inner coincidence. The Track Selection part selects up358

to 4 track candidates, and the output data is sent to the MUCTPI. The implementation of the
trigger logic on the firmware will be discussed in detail at Section 4.359

2.3.1 Decoder360

The Decoder module retrieves �R and �� information from the TGC BW signal received via
G-LINK.361

The Decoder module converts raw data of tracks into the format of BW-Inner Coincidence
and ditribute to each logic.362

2.3.2 TGC Big Wheel coincidence363

The Sector Logic uses LUTs for the R–� coincidence of TGC Big wheel, where the �R in-364

formation with �� information from the HPT boards is combined to get pT information of the365

muon track. To implement LUTs in FPGA embedded memory (Block RAM; BRAM), one sector366

is divided into small blocks called Sub-Sector-Cluster (SSC). Figure 17 shows one SSC which367

consists of 8 ROIs (2 rows of wire by 4 columns of strips). Thanks to the specification of HPT368

board coincidence, one SSC includes a maximum of only one hit in R and two hits in �. Hit369

information is 19 bits in total and is used as the LUT address. The output of the TGC-BW R–�
coincidence logic will be the pT of the track candidates in 4-bit resolution.370

2.3.3 Inner coincidence371

The main idea of the inner coincidence is simple: when the TGC Big Wheel finds a trigger372

candidate, confirm the decision by requiring hit in detectors inside the magnetic field. The373

simplest way to implement this algorithm is to require hit at approriate position in the inner374

detector (position matching). As shown in Fig. 18, the position matching algorithm will not only375

2.3 Algorithms in the Sector Logic 17
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‣ New Inner LUTs uses NSW position & angle information 
‣ Efficiency is calculated by simulation, for L1_MU20 
(L1_MU20: Level-1 trigger for muon with pT > 20 GeV) 

‣ The track finding efficiency is assumed to be 97%
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◆ Data reception Clock-Domain-Crossing part 
‣ choose a phrase of 40 MHz to latch the received data, so that they will have enough 

margin from the data transition point:

Firmware design for Fixed Latency  28

128-bit 
word

received data  
(phase unknown)

LHC 40 MHz

+ π/2

+ π

+ 3π/2
use this phase 
to latch data

data transition
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Run 3 Readout system

SROD on PC
‣Event Building 
‣Formatting for ROS 
‣Error handling

10GbE Switch
‣ N-to-1 connection

‣Hit information 
‣event ID

TTC Fan-out board

‣event ID 
‣Trigger Information

Read Out System

S-LINK 
Card

GbE 10 GbE

GbE

(Trigger, Timing  
& Control)

New Sector Logic

TTC

SiTCP

SiTCP

SiTCP

TTCrq

… × 12
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SiTCP[*] : 
Technology to connect FPGA to the Ethernet, 
and establish connection via TCP/IP

[*] Tomohisa Uchida, “Hardware-Based TCP Processor for Gigabit Ethernet”,  
IEEE Trans. Nucl. Sci. Vol.55, No.3, June 2008, [LINK]

http://repository.dl.itc.u-tokyo.ac.jp/dspace/handle/2261/15490

