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Abstract

We consider decoupling in the context of an e�ective quantum �eld theory of two scalar �elds

with well separated mass scales and a Z2 � Z2 symmetry. We �rst prove, using Wilson's exact

renormalization group equation, that the theory is renormalizable, in the same way that we showed

in a previous paper that theories with a single mass scale were renormalizable. We then state and

prove a decoupling theorem: at scales below the mass of the heavy particle the full theory may be

approximated arbitrarily closely by an e�ective theory of the light particle alone, with naturalness

scale the heavy particle mass. We also compare our formulation of e�ective �eld theory with the

more conventional local formulation.
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In a previous paper [1] we considered an e�ective scalar quantum �eld theory containing a

single propagating scalar particle with a Z2 global symmetry. We constructed a regulated classical

action for this theory which is expandable as a convergent in�nite series of local terms, and is

characterized by some such naturalness scale, �0, at which all the coupling constants in the action

are of order one when expressed in units of �0. The particle mass m is assumed to be �ne{

tuned so that m � �0, so that we can consider scattering amplitudes at energy scales E � �0.

We were then able to show that not only is the S{matrix of the theory well{de�ned, unitary

and causal at all scales, but that the theory is perturbatively renormalizable, in the sense that

these low{energy scattering amplitudes can be expressed with great accuracy in terms of only a

�nite number of physically relevant parameters. Technically this separation of scales was achieved

through a systematic exploitation of Wilson's exact renormalization group equation [2,3]. All the

results may be readily generalized to theories with many scalar or spin{half particles, possibly with

linearly realized global symmetries, provided all the particles have masses mi of the same order of

magnitude.

Now as the energy scale E at which the physics of the theory is being probed is increased,

we were able to show further that the degree of predictivity of the theory can be maintained by

including more and more measurable parameters (by �xing more and more low energy renormal-

ization conditions on couplings). We could also derive Weinberg{style bounds on the growth with

E of Euclidean Green's functions [4]. For energies of order �0 we need formally an in�nite number

of parameters and have no real predictive power beyond that o�ered by S{matrix theory; indeed

it was possible to show that the e�ective �eld theory and S{matrix theory are formally equivalent.

As physicists we are su�ciently optimistic to hope that the naturalness scale �0 will be the

scale at which we will �nd some sort of new physics which will serve to substantially restrict

the in�nite number of possible theories to some more manageable �nite subset, so as to regain a

reasonably predictive theory over a new range of energy scales. However, the e�ective theory as

considered so far is phenomenologically neutral, in the sense that by construction it is completely

independent of the form this new physics may take, provided only that it be consistent with the

basic principles of special relativity and quantum mechanics. Indeed, this is why there are so many

possible e�ective theories of even a single scalar particle. So at �0 it is desirable to put forward

additional assumptions. Here we will consider what is probably the simplest such assumption:

that a new scalar particle of mass M of the order of �0 is discovered, and that the naturalness

scale of the new theory can then be pushed, by further �ne tuning, to even higher scales. We are

thus led to consider the following simple paradigm; a theory containing two scalar particles with

signi�cantly di�erent masses m � M � �0, in which we can then determine the dependence of

the physics at various scales depends on the ratio of the masses of the particles. In particular, we

will be able to see exactly how the heavy particle `decouples' from the low energy e�ective theory

containing only the light particle.

Decoupling in local quantum �eld theories was �rst investigated in the early 1970's, with the

development of a decoupling theorem [5] which stated that if we have a local quantum �eld theory
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in which some particles have masses M very large compared to the others then Green's functions

for light particle processes at energies E � M are the same as those in the local theory obtained

by simply omitting the heavy particles, up to corrections of inverse powers of the heavy mass. The

only e�ect of the heavy particles is thus to renormalize the masses and relevant couplings in the

light particle theory. Rigorous proofs [6] of this decoupling theorem using the BPHZ subtraction

formalism took some time to develop, however, essentially because in this formalism one attempts

to deal with all the di�erent scales, including of course the cut{o� �0, at the same time. If the light

particles are massless, there are further complications, and extensions of the decoupling theorem

to include the leading order E2=M2 corrections [7] become increasingly awkward to deal with

satisfactorily.

We will �nd here that on the contrary, since exact renormalization group techniques are very

good at separating the physics at di�erent scales, it is relatively straightforward to use them to prove

an extended decoupling theorem which can treat corrections to the light particle e�ective theory of

arbitrarily high orders in E2=M2 . In e�ect the theorem reduces to a statement of complex analysis:

the light particle vertex functions of the full theory, which have Taylor expansions with radius of

convergence M , may be approximated to arbitrary accuracy within their circle of convergence by

the regular vertex functions of the light theory.

This relatively straightforward interpretation of decoupling is also due in part to our particular

formulation of e�ective �eld theory in [1]. In the more conventional approach to e�ective theories

which was in fact motivated in part by precisely the sort of decoupling situation discussed here[8],

the e�ective theory of the light particle is always considered only in the strictly local limit in which

the cut{o� is removed. This makes it di�cult to entertain the possibility of an e�ective theory

which is not tied in some way to an underlying local `fundamental' theory. For us the light particle

theory is simply an e�ective theory with naturalness scale of order M , to be (perhaps) superseded

at scales of order M by another e�ective theory with naturalness scale �0 � M , to which it is

matched.

Once we have de�ned precisely the full theory we are working with, with the three well{

separated scales m� M � �0, our �rst step will be to prove the boundedness and convergence of

this theory (x2). Once we have done this it will be relatively easy to prove in x3 the conventional

form of the decoupling theorem. In x4 we will then show how we can systematically improve

this decoupling theorem to make the predictions of the low energy theory arbitrarily accurate at a

given low energy scale, and �nally in x5 we discuss the relation between our formulation of e�ective

theories and the more conventional one.

1. De�ning the Theory

We will prove the decoupling theorem for the simplest case, i.e. a single light scalar particle

described by the �eld �, and a single heavy scalar particle described by the �eld �, where the

theory is invariant under a Z2�Z2 global symmetry, under which the �elds transform as �! ��,

�! ��.
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We must �rst de�ne the theory containing these two particles. As explained in [1], the e�ective

quantum �eld theory is de�ned by its �eld content, global symmetries, the form of the propagators,

and a full set of boundary conditions on the renormalization group 
ow for the interaction part of

the Lagrangian. As in [1] we separate the Euclidean classical action into a quadratic part and an

interaction:

S[�;�;�0] =
1
2

�
�; P

�1
� �

�
+ 1

2

�
�; eP�1

� �
�
+ Sint[�;�;�0]: (1:1)

The propagators are de�ned by

P�(p) =
K((p2 +m2)=�2)

(p2 +m2)
=

K�(p)

(p2 +m2)
;

eP�(p) = eK((p2 +M2)=�2)

(p2 +M2);
=

eK�(p)

(p2 +M2)
;

(1:2)

where K(x); eK(x) are regular regulating functions with the same properties as those used in [1].1

The interaction part of the action is de�ned to be power series in the �elds � and �; because of the

assumed Z2 � Z2 global symmetry only even powers appear. For perturbative purposes it is also

assumed to be a formal power series in three small expansion parameters, gm, gM , gmM , beginning

at �rst order in at least one of these (gm, gM and gmM will normally be related to the coupling

constants of the theory). So

Sint[�;�;�]�

1X
m;n=0

1X
r;s;t=0

grmg
s
MgtmM

(2(m+ n))!

Z
d4p1 � � �d

4p2(m+n)

(2�)4(2(m+n)�1)

V
r;s;t
2m;2n(p1; : : : ; p2(m+n); �)�

4
�P2(m+n)

i=1 pi
�
�p1 � � ��p2m�p2m+1

� � ��p2(m+n)
;

(1:3)

where V
r;s;t
2m;2n(p1; : : : ; p2(m+n); �) � V

r;s;t
2m;2n(pi; �) is the value, at order r in gm, order s in gM and

order t in gmM , of the vertex in the e�ective action de�ned at � with 2m �-legs and 2n �-legs;

V
r;s;t
2m;2n(pi; �) � 0 if r = s = t = 0 or if m = n = 0.

We de�ne a complete set of boundary conditions on the renormalization group 
ow by setting

all of the irrelevant couplings at �0, the naturalness scale for the full theory, equal to zero (this

assumption will be relaxed in x2.2 below),

@jpV
r;s;t
2m;2n(�0) = 0 2(m+ n) + j > 4; (1:4)

and choosing the relevant couplings at � = 0 to be equal to �0-independent constants (at each

order in perturbation theory):

lim
�!0

V
r;s;t
2;0 (P0;�P0; �) = �2

m
b�r;s;t1 ;

lim
�!0

V
r;s;t
0;2 (fP0;�fP0; �) = �2

M
b�r;s;t4 ;

lim
�!0

�
@p�@p�V

r;s;t
2;0 (p;�p; �)jp=P0

�
���

= b�r;s;t2 ;

lim
�!0

�
@p�@p�V

r;s;t
0;2 (p;�p; �)j

p=eP0���� = b�r;s;t5 ;
(1:5)

V
r;s;t
4;0 (P1; P2; P3; P4; 0) = b�r;s;t3 ; V

r;s;t
0;4 ( eP1; eP2; eP3; eP4; 0) = b�r;s;t6 ; V

r;s;t
2;2 (P5; P6; eP5; eP6; 0) = b�r;s;t7 ;

1 In practice it would be simpler to take K = eK, but this is not necessary.
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where
P4

1 Pi =
P4

1
ePi =P5;6(Pi+

ePi) = 0. By convention the series expansions for those couplings

corresponding to vertices with m = 0 are such that r = 0; t = 0, those for n = 0 have s = 0; t = 0

and for both m 6= 0 and n 6= 0, r = s = 0. We choose the external momenta Pi with magnitudes

of order �m, where �m � m, for the legs of vertices corresponding to � �elds, and the external

momenta ePi with magnitudes of order �M , where �M �M , for the legs of vertices corresponding

to � �elds; the only vertex where we have a mixture of magnitudes of momenta is then the vertex

with two � legs and two � legs, where we have two momenta � �m and two momenta � �M .

In this way the renormalization conditions (1.5) may be readily continued on{shell, where they

would correspond to physically observable masses and couplings. Setting all the renormalization

conditions for momenta of the same order of magnitude would be arti�cial, in the sense that

the relation between the renormalized `masses' and `couplings' �i �
P

r;s;t
b�r;s;ti and the physical

parameters could (and in general will) involve large renormalization factors, depending on the ratio

�M=�m �M=m.

The quantum theory of these two massive particles is then de�ned as in [1] by reducing � from

the naturalness scale �0 through the two mass scales �M and �m down to zero, while keeping the

connected amputated Green's functions eGc
2m;2n; the interaction Sint[�;�;�] must the satisfy the

exact renormalization group equation

@Sint

@�
= 1

2

Z
d4p

(2�)4

�
@P�

@�

�
�Sint

��p

�Sint

���p
�

�2Sint

��p���p

�
+

@ eP�
@�

�
�Sint

��p

�Sint

���p
�

�2Sint

��p���p

��
: (1:6)

The connected amputated Green's functions may then be read o� directly from Sint[�;�; 0]:

eGc
2m;2n(p1; : : : ; p2(m+n)) �

2mY
i=1

�
�

�

��pi

� 2nY
j=1

�
�

�

��pj

�
Sint[�;�; 0]

���
�=�=0

: (1:7)

2. Renormalizability.

We now consider the theory described in the previous section when all three scales are well

separated: �m � �M � �0. We wish to derive bounds on Green's functions analogous to

those proved in [1] for the theory with only a single mass scale (i.e. with �m � �M � �0),

and then show further that the Green's functions are convergent (independent of �0 up to power

suppressed corrections) and universal (independent of the boundary conditions at �0 on irrelevant

vertices, again up to power suppressed corrections). We will then have proven that the theory is

`renormalizable', and can proceed to an investigation of decoupling.

2.1. Boundedness.

In order to derive appropriate bounds, we use similar methods to those in used in [1] for

lemmas 1{3; we �rst derive bounds on the vertices and their derivatives using the 
ow equation
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(1.6), and then proceed by induction in the order of the vertices and the number of their legs. The

norm on the vertices is now de�ned as

kV2m;2nk�1;�2
� max
fp1;:::;p2(m+n)g

�2mY
i=1

[K�1
(pi)]

1=4

2nY
j=1

[ eK�2
(pj)]

1=4
jV (p1; :::; p2(m+n); �)j

�
: (2:1)

If a vertex does not have legs corresponding to one of the �elds (i.e. if either m or n is zero) we

will omit the superscript referring to the damping factors attached to these legs.

The 
ow equation for the vertices is obtained by substituting (1.3) into (1.6) and we can bound

the jth momentum derivative of the left hand side to give




 @

@�

�
@jpV

r;s;t
2m;2n(�)

�





�;�

� �k@jpV
r;s;t
2m+2;2n(�)k�;� + �k@jpV

r;s;t
2m;2n+2(�)k�;�

+

r�1X
r0=1

s�1X
s0=1

t�1X
t0=1

X
ji;j1+j2+j3=j

h mX
l=1

nX
k=0

��3�j1k@j2p V
r0;s0;t0

2l;2k (�)k�;� � k@
j3
p V

r�r0;s�s0 ;t�t0

2m+2�2l;2n�2k (�)k�;�

+

mX
l=0

nX
k=1

��3�j1k@j2p V
r0;s0;t0

2l;2k (�)k�;� � k@
j3
p V

r�r0;s�s0;t�t0

2m�2l;2n�2k+2(�)k�;�

i
;

(2:2)

for � 2 [�M ;�0]. For � 2 [0;�M ] we �nd instead




 @

@�

�
@jpV

r;s;t
2m;2n(�)

�





�0;�M

� �k@jpV
r;s;t
2m+2;2n(�)k�0;�M +�k@jpV

r;s;t
2m;2n+2(�)k�0;�M

+

r�1X
r0=1

s�1X
s0=1

t�1X
t0=1

X
ji;j1+j2+j3=j

h mX
l=1

nX
k=0

��3�j1 k@j2p V
r0;s0;t0

2l;2k (�)k�0;�M � k@j3p V
r�r0;s�s0;t�t0

2m+2�2l;2n�2k (�)k�0;�M

+

mX
l=0

nX
k=1

��3�j1K1=2(M
2

�2 )k@
j2
p V

r0;s0;t0

2l;2k (�)k�0;�M � k@j3p V
r�r0;s�s0 ;t�t0

2m�2l;2n�2k+2 (�)k�0;�M

i
;

(2:3)

where �0 = max(�;�m): for � 2 [�m;�M ] we take �0 = �, while for � 2 [0;�m] we take

�0 = �m. We have explicitly retained the factor of K1=2(M2=�2) arising from the �{derivative of

the propagator in the last term since it will turn out to be be important for part of the argument.

We may then prove the following bounds:2

Lemma 8:

i) For � 2 [�M ;�0], and for all m, n, j, r, s and t,

k@jpV
r;s;t
2m;2n(�)k�;� � �4�2m�2n�j

 
P log

�
�

�m

�
+

�

�0

P log

�
�0

�m

�!
: (2:4)

ii) For � 2 [�m;�M ], and for all m, j, r, s and t, except m = 0, n = 1 and j = 0; 1,

k@jpV
r;s;t
2m;2n(�)k�;�M �

8>><
>>:
�4�2m�2n�jP log

�
�M
�m

�
; if n > 0;

�4�2m�jP log

�
�
�m

�
; if n = 0.

(2:5)

2 To avoid confusion we number the lemmas in [1], [4] and the present paper consecutively.
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iii) For � 2 [0;�m], and for all m, j, r, s and t, except for m = 0, n = 1, and j = 0; 1,

k@jpV
r;s;t
2m;2n(�)k�m;�M �

8<
:�4�2m�2n�j

m P log

�
�M
�m

�
; if n > 0;

�4�2m�j
m ; if n = 0.

(2:6)

iv) For the special case m = 0, n = 1, j = 0; 1,

k@jpV
r;s;t
0;2 (�)k�M � �

2�j
M P log

�
�M

�m

�
; (2:7)

for all � 2 [0;�M ]. 3

The lemma is proven using essentially the same inductive method as we used for lemma 1 in

[1]; the fact that we have more than one expansion parameter causes no problems, since we may

simply perform the inductive arguments successively in the parameters. We thus assume that the

lemma is true at order r� 1; s� 1; t� 1 in the expansion parameters and order m+ 1; n+ 1 in the

number of legs, and then investigate whether it is true at order r; s; t and m;n; the vanishing of

the vertices for large enough m and n for any given order in r; s; t, and the fact that the bounds

are trivially true when r = s = t = 0 then completes the induction. Complications arise however

because we had to set the renormalization conditions (1.5) at momenta consistent with two di�erent

scales, �m and �M . This causes no real di�culties if we are careful about the order in which we

bound the vertices. In fact each inductive step now proceeds in six distinct steps: a) we prove i)

for the irrelevant vertices; b) ii) for the irrelevant vertices; c) iii) for the irrelevant vertices; d) iii)

for relevant vertices involving only light �elds, and ii), iii) and iv) those involving heavy �elds; e)

ii) for the relevant vertices involving only light �elds; and �nally f) i) for the relevant vertices.

a) We �rst consider irrelevant vertices for � 2 [�M ;�0]. The 
ow equations are perfectly

consistent with i), so integrating from � � �M up to �0 and using the fact that the irrelevant

vertices at �0 are equal to zero, just as in part a) of the proof of lemma 1, i) is seen to be true at

the next order.

b) We now investigate the irrelevant vertices for � 2 [�m;�M ]. If we integrate the left hand

side of (2.3) from � up to �M , where �m � � � �M , we obtain the equality

@jpV
r;s;t
2m;2n(�)� @jpV

r;s;t
2m;2n(�M) =

Z �M

�

d�0
@

@�0

�
@jpV

r;s;t
2m;2n(�

0)

�
; (2:8)

3 The necessity for this exceptional case is easy to understand if we remember that V r;s;t

0;2 (�) are the

corrections to the mass term of the e�ective Lagrangian for the heavy �eld. As discussed in x3.2 of [1],

we would naively expect these corrections to be of order �2

0 for all �, but the �ne-tuned renormalization

condition (1.5) which speci�es the mass corrections to be of order �2

M at each order in the two point

Green's function, forces them to be of order �2 as we 
ow down from �0 to �M . However as we 
ow down

further the corrections now behave as we would actually expect from the naive dimensional argument, and

are thus roughly the same for all � � �M . This is in contrast with the mass corrections on the light

particle, which are forced to be `unnaturally' small by their renormalization condition, so that V r;s;t

2;0 (�)

satis�es ii) and iii).
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which is easily turned into the inequality

k@jpV
r;s;t
2m;2n(�)k�;�M � k@jpV

r;s;t
2m;2n(�M)k�M ;�M +

Z �M

�

d�0






 @

@�0

�
@jpV

r;s;t
2m;2n(�

0)

�





�0;�M

:(2:9)

We �rst consider the vertices with n > 0, in which case all vertices on the right{hand side of

(2.3) also have n > 0. Simply by evaluating i) at � = �M , we know that the �rst term on the

right{hand side of (2.9) is � �
4�2m�2n�j
M P log(�M

�m
). However, we might think that the bound on

V
r;s;t
0;2 (�) and its �rst momentum derivative would cause the second term on the right of (2.9) to be

inconsistent with (ii). It actually causes no problem since, as we see from (2.3), it always appears

along with the factor K1=2(M2=�2). M � �M , so as far as the right hand side of the 
ow equation

is concerned the bound on V
r;s;t
0;2 (�) is

kV
r;s;t
0;2 (�)k�M � �2

MK1=2(
�2
M

�2 )P log

�
�M

�m

�
� �2P log

�
�M

�m

�
; (2:10)

since xK1=2(x) � c. A similar result is obviously true for the �rst momentum derivative of V
r;s;t
0;2 (�).

We can therefore say that






 @

@�

�
@jpV

r;s;t
2m;2n(�)

�





�;�M

� �3�2m�2n�jP log

�
�M

�m

�
; (2:11)

for n > 0. Thus, the term on the far right in (2.9) is perfectly consistent with ii), and (2.9) coupled

with the induction hypothesis and the bounds already obtained on the vertices at �M immediately

lead to the veri�cation of ii) for all the irrelevant vertices with n > 0.

We can now prove ii) for the irrelevant vertices with n = 0. The only obstacle to

proving this bound using (2.9) comes from the term on the right{hand side of (2.3) contain-

ing kV
r;s;t
2m;2(�)k�;�M . From above we already know that when � is between �m and �M ,

kV
r;s;t
2m;2(�)k�;�M � �2�2m�jP log(�M=�m) for all vertices which could appear on the right{

hand side of (2.3). Thus, within this range of �, the problematic term is bounded by

�3�2m�jK1=2(
�2
M

�2 )P log(�M
�m

). To show that this term in the 
ow equation is consistent with

the induction argument needed to prove ii), we may use the inequality

K1=2(�M
�
)P

"
log

�
�M

�

�
+ log

�
�

�m

�#
� P log

�
�

�m

�
; (2:12)

for all � 2 [�m;�M ]. By substituting this bound into the right hand side of (2.3) we obtain






 @

@�

�
@jpV

r;s;t
2m;0(�)

�





�;�M

� �3�2m�j

 
P log

�
�

�m

�
+

�

�0

P log

�
�0

�m

�!
; (2:13)

for all � 2 [�m;�M ]. The induction argument now goes through as normal and the irrelevant

vertices with � legs only satisfy ii).
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c) The proofs of iii) for the irrelevant vertices follow much the same lines as those of ii). In both

cases we integrate the left{hand side of (2.3) from � up to �m. The boundary conditions obtained

from ii), evaluated at � = �m, are consistent with iii). We therefore only have to be concerned

with the right{hand side of (2.3). We �rst consider n > 0. We may substitute K1=2(M
2

�2 )�
�3�j1

in the last term on the right{hand side by ��3�j1m (we could obviously do better than this if we

wanted, but this result is su�cient to prove the lemma), or for the two point vertex for the heavy

�eld, replace K1=2(M2=�2)��3�j1�2
M by �1�j1 . Once we have done this we may write




 @

@�

�
@jpV

r;s;t
2m;2n(�)

�





�m;�M

� �3�2m�2n�j
m P log

�
�M

�m

�
; (2:14)

for n > 0 and all � 2 [0;�m]. With this result the proof of iii) immediately goes through. For

n = 0, it is again only the term containing kV
r;s;t
2m;2(�)k�m;�M that causes a potential obstruction.

We easily see that K1=2(�2
M=�2)P log(�M

�m
) � c for � � �m, and so






 @

@�

�
@jpV

r;s;t
2m;0(�)

�





�m;�M

� �3�2m�j
m ; (2:15)

for all � 2 [0;�m]. The proof of iii) for n = 0 can now also go through without obstruction.

d) It is now possible to show that the lemma is also true for the relevant vertices. We start

with the four{point vertex with � legs, and prove ii) and iii). In order to do this we use the

renormalization conditions (1.5) at � = 0 to provide bounds on the relevant coupling constant,

i.e the vertex for the momenta ePi at which the renormalization conditions are set, at �M . We

therefore use (2.3), and the bounds already obtained for the vertices at lower order in the expansion

parameters or at equal order in the expansion parameters, but with greater numbers of legs, to

verify (2.11) and (2.13), and write����� @@�V r;s;t
0;4 ( ePi; �)

����� � ��1P log

�
�M

�m

�
; (2:16)

for � 2 [�m;�R], and the same if we replace ��1 by ��1m for � 2 [0;�m]. But,

jV
r;s;t
4 ( ePi; �R)j � jV

r
0;4(

ePi; 0)j+
Z �R

0

d�0

����� @

@�0
V
r;s;t
0;4 ( ePi; �0)

�����: (2:17)

So, using the renormalization condition on V
r;s;t
0;4 ( ePi; 0), and splitting the integral into two, one

from � = 0 to �m and the other from �m to �M , we �nd that

jV
r;s;t
0;4 ( ePi; �M)j � P log

�
�R

�m

�
; (2:18)

and we obtain a bound on the vertex de�ned at �M for the particular momenta at which the

renormalization condition is set. Using Taylor's formula at � = �M we can verify ii) for � = �M ,

and obtain a boundary condition on the vertex at �M ; kV
r;s;t
0;4 (�M)k�M � P log(�M

�m
). Using this
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boundary condition it is then straightforward to verify ii) and iii) for V
r;s;t
0;4 (�) in the same way

as these bounds were veri�ed for the irrelevant vertices. Thus, ii) and iii) are veri�ed for the

four{point vertex with � legs only.

Exactly the same argument works for V
r;s;t
2;2 (�) and for @2pV

r;s;t
0;2 (�). We may then verify iv)

for k@pV
r;s;t
0;2 (�)k�M by using the bounds on k@2pV

r;s;t
0;2 (�)k�M and Taylor's formula about zero

momentum. It is then straightforward to verify iv) for kV
r;s;t
0;2 (0)k�M by using the boundary

condition on the vertex at �0 and Taylor's formula, obtaining kV
r;s;t
0;2 (0)k�M � �2

MP log(�M
�m

).

Using this boundary condition on the vertex we may verify iv) for all � 2 [0;�m] by integrating

the left{hand side of (2.3) from 0 to � and using (2.13). Also, using the boundary condition from

evaluating (vi) at �m, we then verify iv) for all � 2 [�m;�M ] by integrating (2.3) from �m up

to � and using (2.11). In this way we may verify ii), iii) and iv) for all the relevant vertices with

n > 0.

We can then prove iii) for the relevant vertices involving only � �elds. The method for doing

this is essentially the same as in [1]. Once we use the bounds obtained from iii) in order to bound

the term involving kV
r;s;t
2m;2(�)k�;�M , the right-hand side of (2.3) is consistent with iii), i.e we obtain

the result in (2.15). Thus, it simply remains to verify i) for the relevant vertices, and ii) with

n = 0.

e) In order to prove ii) for the relevant vertices with n = 0 we use the same method as used in

part d) of lemma 1, i.e. we integrate the left{hand side of (2.3) de�ned at the momenta at which

the renormalization conditions were set from � 2 [�m;�M ] down to �m, and use the derived

boundary condition on the coupling constant at �m (obtained from iii) evaluated at �m for the

particular momenta) to obtain a bound on the coupling constant de�ned at �. For example, we

�nd that jV
r;s;t
4;0 (Pi; �)j � P log( �

�m
) + �

�0
P log(�m

�0
). We may then verify ii) by using these results

along with Taylor's formula. We simply have to remember to work downwards in number of legs,

and then in number of derivatives.

f) Finally, we may verify i) for all the relevant vertices in the same manner. We simply integrate

the �{derivative of the coupling constants from � down to �M , use the derived boundary conditions

on these couplings at �M , along with the bound on the �{derivative, to provide a bound on the

coupling constant de�ned at �, and use Taylor's formula to derive the bound on the norm of the

vertex. Again, we must do this �rst for the four-point vertices, and then for the two-point vertices

in decreasing number of derivatives (though for given number of legs it does not matter whether

we deal with vertices with � or � legs �rst). Once this is complete we have veri�ed i){iv) for all

vertices.

We have thus demonstrated that lemma 8 is true for all m and n at orders r, s and t in the

expansion coe�cients. At next order in any of these coe�cients the lemma is true at large enough

m and n, and again the proof by induction goes through and the lemma is true at this next order.

But the lemma is trivially satis�ed at zeroth order in all the expansion coe�cients, and thus, by

induction, lemma 8 is true for all m, n, r, s and t.
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We have therefore been able to obtain a bound on all the vertices for all � up to, and including,

�0. In particular, iii) and iv) evaluated at � = 0 tell us that for n > 0, for all m, j, except for

m = 0, n = 1, and j = 0; 1,

k@jp
eGc
2m;2n(�0; �i)k�m;�M � �4�2m�2n�j

m P log

�
�M

�m

�
; (2:19)

for n = 0, for all m, j,

k@jp
eGc
2m;0(�0; �i)k�m � �4�2m�j

m ; (2:20)

and for the special case m = 0, n = 1, j = 0; 1, the heavy two{point vertex satis�es

k@jp
eGc
0;2(�0; �i)k�M � �

2�j
M P log

�
�M

�m

�
: (2:21)

These bounds show that the amputated connected Green's functions have a maximum value which

is independent of �0, and thus that they remain �nite in the limit �0 !1.

2.2. Convergence and Universality.

By combining the methods used to prove the convergence and universality of Green's functions

in the in�nite cut{o� limit in [1] (lemma 2 and lemma 3 respectively) with those described above to

prove lemma 8, it is now relatively straightforward to prove convergence and universality lemmas

for the theory under consideration here. The proofs of these lemmas will thus be omitted.

The convergence lemma takes the form

Lemma 9:

For n > 0,, for all m; j; except for m = 0; n = 1, and j = 0; 1,







�
�0

@

@�0

@jp
eGc
2m;2n(�0; �i)

�
�i







�m;�M

�

�
�M

�0

�2

�4�2m�2n�j
m P log

�
�M

�m

�
P log

�
�0

�m

�
; (2:22)

while for n = 0, for all m; j,







�
�0

@

@�0

@jp
eGc
2m;0(�0; �i)

�
�i







�m

�

�
�m

�0

�2

�4�2m�j
m P log

�
�0

�m

�
; (2:23)

and for the special case m = 0, n = 1, j = 0; 1,







�
�0

@

@�0

@jp
eGc
0;2(�0; �i)

�
�i







�M

�

�
�M

�0

�2

�
2�j
M P log

�
�M

�m

�
P log

�
�0

�m

�
: (2:24)

Thus the connected amputated Green's functions, and hence the S-matrix elements, calculated

using the e�ective Lagrangian at any scale between �m and �M have a well de�ned limit as �0 !

1. Therefore our theory containing particles of masses m and M is perturbatively renormalizable

in the conventional sense.
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To prove universality we consider, just as in lemma 3, a second theory with more general

irrelevant boundary conditions at �0 than those of the �rst, (1.4), namely

V
r;s;t

2m;2n(p;�p; �0) = �
r;s;t

2m;2n(�0)�
2
0 + p2�

r;s;t

2m;2n(�0) + �2
0�

r;s;t
2m;2n(p;�p; �0); m+ n = 1;

V
r;s;t

2m;2n(p1; p2; p3; p4; �0) = �
r;s;t

2m;2n(�0) + �
r;s;t
2m;2n(p1; p2; p3; p4; �0); m+ n = 2;

V
r;s;t

2m;2n(p1; � � � ; p2(m+n); �0) = �
4�2(m+n)
0 �

r;s;t
2m;2n(p1; � � � ; p2(m+n) ; �0); m+ n > 2:

(2:25)

The functions �
r;s;t
2m;2n(pi; �0) satisfy the same general conditions as those in x3.1 of [1], namely they

are real functions of the momenta pi, regular when continued into the complex plane, are natural

in the sense that

k@jp�
r;s;t
2m;2n(�0)k�0

� �
�j
0 P log

�
�0

�M

�
(2:26)

for 2(m+n)+j > 4, and vanish form+n > r+s+t+1. By convention we also take �
r;s;t
2m;2n(�0) = 0

if m = 0 and r > 0, or if n = 0 and s > 0, or if mn = 0 and rs > 0.

We can then show that if we write � eGc
2m;2n for the di�erence between the amputated connected

Green's functions of the two theories,

Lemma 10:

For n > 0, for all m; j, except for m = 0; n = 1, and j = 0; 1



@jp� eGc
2m;2n




�m;�M

�

�
�M

�0

�2

�4�2m�2n�j
m P log

�
�M

�m

�
P log

�
�0

�m

�
; (2:27)

while for n = 0, for all m; j,



@jp� eGc
2m;0




�m

�

�
�m

�0

�2

�4�2m�j
m P log

�
�0

�m

�
; (2:28)

and for the special case m = 0, n = 1, j = 0; 1,

k@jp�
eGc
0;2k�M �

�
�M

�0

�2

�2�j
M P log

�
�M

�m

�
P log

�
�0

�m

�
: (2:29)

Thus all S{matrix elements are universal, in the sense that they are independent, up to power

suppressed terms, of all the irrelevant parameters �
r;s;t
2m;2n(pi; �0), provided that these are natural at

�0. The e�ective theory of the two particles is thus renormalizable in the precise sense explained

in [1]. As expected from power counting, corrections to light particle processes are suppressed

�2
m=�

2
0 (up to logarithms), while those involving heavy particles are only suppressed by powers of

�2
M=�2

0.

Both lemma 9 and lemma 10 may be systematically improved, after the fashion of x3.2 of [1].

We here defer discussion of systematic improvement until x4.
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2.3. Weinberg Bounds.

The bound (2.19) derived from lemma 8 is actually rather weak; by considering in more detail

the number of heavy particle legs on a given vertex, rather than just splitting vertices into those

with either some heavy particle legs or no heavy particle legs, it is possible to obtain much more

stringent bounds on the Green's functions with heavy particle legs (we already have the best

possible bound, namely (2.20), for Green's functions with light particle legs only). To do this we

need to also incorporate the notation and arguments in ref.[4] in order to consider the number ee
of heavy particle exceptional momenta for a particular vertex (i.e. the total number of momenta

within all irreducible sets (except for the largest) which have magnitudes between some minimum

value E and �M). The resulting bounds, analogous to lemma 6, are summarized in the following

lemma:

Lemma 11:

i) For all m > 0, n > 1, and 0 � ee � 2n � 3



@jp eGc
2m;2n(�0; �i)



E;ee
�m;�M

8><
>:
� �3+ee�2n

M �2�2m�j
m �

�1�ee
P log

�
�M
�m

� ee odd,
� �2+ee�2n

M �2�2m�j
m �

�ee
P log

�
�M
�m

� ee even, (2:30)

where � = max(E;�m);

ii) for m = 0, and n > 0, except for n = 1; j = 0; 1, then for ee = 0



@jp eGc
0;2n(�0; �i)




�m;�M

� �
4�2n�j
M ; (2:31)

while for 1 � ee � 2n� 3,



@jp eGc
0;2n(�0; �i)



E;ee
�m;�M

8><
>:
� �3+ee�2n

M �
1�ee�j

P log
�
�M
�

� ee odd,
� �2+ee�2n

M �
2�ee�j

P log
�
�M
�

� ee even; (2:32)

iii) for m = 0, n = 1, j = 0; 1,

k@jp
eGc
0;2(�0; �i)k�M � �

2�j
M ; (2:33)

iv) for all m > 0, n = 1,



@jp eGc
2m;2(�0; �i)




�m;�M

� �4�2m�j
m P log

�
�M

�m

�
: (2:34)

Here ee denotes the maximum number of exceptional momenta for the external legs corresponding

to heavy particles; all the external momenta for light particle legs can be individually exceptional

as low as zero. All derivatives are assumed to act on light particle legs, or else heavy particle

legs carrying exceptional momenta (if this is not the case they would produce inverse powers of

�M rather than �). The vertices with m > 0 and n = 1 are a special case because the large

number of light particle legs mean that the total number of possible exceptional momenta already

exceeds 2m+2n�3. It is convenient to have these best possible bounds, since then the bounds are
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comparable to the renormalization conditions on the vertices involving heavy particles.4 However

as lemma 8 is su�cient to prove the decoupling theorem, we leave the proof of lemma 11 (a

straightforward, but rather lengthy, combination of the methods of this paper and [4]) to the more

enthusiastic reader.

3. The Decoupling Theorem.

In the context of the e�ective scalar �eld theories discussed so far, the decoupling theorem

consists of the following statement: if we calculate connected amputated Green's functions involving

only light particles at scales � �m, using an e�ective theory containing only � �elds (as de�ned in

[1]), with naturalness scale �M , then these Green's functions will be the same as those calculated

using the full theory (as de�ned in x1 above), up to corrections suppressed by powers of (�m=�M ).

When viewed in this way, decoupling is nothing but a generalization of universality: the

light particle theory with regular boundary conditions on its irrelevant vertices is approximately

equivalent at low energies to one in which these vertices have heavy particle poles and cuts. Indeed

the method we will use to prove the decoupling theorem is very similar to that used to prove

universality in x3.1 of [1].

In this section we state and prove a lemma which contains the decoupling theorem in its

most simple form. Then in the next section we will generalize this result. We thus introduce a

theory containing only � �elds, and in fact de�ned precisely as in x2.1 of [1], with zero boundary

conditions on the irrelevant couplings at �M , and boundary conditions on the relevant couplings

which are the same as (1.5) for the vertices containing only � �elds. We denote the vertices of this

new theory by bV r;s;t
2m (p1:::::p2m; �), and consider the di�erence between this theory and the one

containing both � and � �elds by introducing the quantity

D
r;s;t
2m (�) � V

r;s;t
2m;0(�)�

bV r;s;t
2m (�); (3:1)

which gives us a measure of the di�erence between the two theories.

Subtracting the 
ow equation for the bV r;s;t
2m (�) away from that for the V

r;s;t
2m;0(�) and taking

norms, we easily obtain, for � 2 [0;�M ],






 @

@�

�
@jpD

r;s;t
2m (�)

�





�0

� �k@jpD
r;s;t
2m+2(�)k�0 +K1=2(

�2
M

�2 )�k@
j
pV

r;s;t
2m;2(�)k�0;�M

+

mX
l=1

r�1X
r0=1

s�1X
s0=1

t�1X
t0=1

X
ji;j1+j2+j3=j

��3�j1
�
k@j2p D

r0;s0;t0

2l (�)k�0

+ k@j2p
bV r0;s0;t0

2l (�)k�0
�
� k@j3p D

r�r0;s�s0 ;t�t0

2m+2�2l (�)k�0

(3:2)

4 Though in practice the on{shell renormalization conditions for vertices with heavy particle legs may

be larger than the corresponding Euclidean space bounds because of the proximity of the poles in the

Green's functions to branch points due to light particle bremmstrahlung.
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where again �0 = max(�;�m) just as in (2.3).

If we consider � 2 [�m;�M ], we have the equality

@jpD
r;s;t
2m (�)� @jpD

r;s;t
2m (�M) =

Z �M

�

d�0
@

@�0

�
@jpD

r;s;t
2m (�0)

�
; (3:3)

which in the same way as previous equalities is easily turned into the inequality

k@jpD
r;s;t
2m (�)k� � k@

j
pD

r;s;t
2m (�M)k�M +

Z �M

�

d�0






 @

@�0

�
@jpD

r;s;t
2m (�0)

�





�0

: (3:4)

This equation is useful for bounding the di�erence between the irrelevant vertices for our two

theories for � 2 [�m;�M ]. For � 2 [0;�m] we can derive similarly

k@jpD
r;s;t
2m (�)k�m � k@

j
pD

r;s;t
2m (�m)k�m +

Z �m

�

d�0






 @

@�0

�
@jpD

r;s;t
2m (�0)

�





�m

: (3:5)

To obtain equations which are useful for �nding bounds on the di�erence between the relevant

coupling constants in the range � 2 [�m;�M ] it is necessary to integrate with respect to � down to

� = �m, put the momenta equal to those at which the renormalization conditions on the relevant

coupling constants are set, and take bounds to obtain

���@jpDr;s;t
2m (�)jpi=Pi

��� � ���@jpDr;s;t
2m (�m)jpi=Pi

��� + Z �

�m

d�0






 @

@�0
@jpD

r;s;t
2m (�0)







�0

: (3:6)

For an equation useful for �nding bounds on the di�erence between the relevant vertices for our

two theories for � 2 [0;�m], we must integrate from � down to 0 and take bounds with respect to

�m to obtain

k@jpD
r;s;t
2m (�)k�m � k@

j
pD

r;s;t
2m (�m)k�m +

Z �

0

d�0






 @

@�0
@jpD

r;s;t
2m (�0)







�m

: (3:7)

Equations (3.2) {(3.7), together with the values of the vertices at �M and the bounds on

the vertices in both theories, which are already known from lemmas 1 and 5 (since the theory

containing just the � �elds is the same as that in [1] with �m = �R, �M instead of �0), will now

be shown to lead to a bound on the di�erence between the vertices, and thus the Green's functions,

in the two theories. These bounds are summarized in

Lemma 12:

i) For all � 2 [�m;�M ],

k@jpD
r;s;t
2m (�)k �

�

�M

�4�2m�jP log

�
�M

�m

�
: (3:8)

ii) For all � 2 [0;�m],

k@jpD
r;s;t
2m (�)k�m �

�m

�M

�4�2m�j
m P log

�
�M

�m

�
: (3:9)
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Once again, the proof follows the same induction scheme as that used to prove lemma 1; we

assume that the lemma is true at order r � 1; s � 1; t � 1 in gm, gM and gmM , and vertices with

more than 2m+2 legs at next order in the coupling constants, and then show that it remains true

for vertices with 2m legs at order r; s; t. Each induction step then follows the same four steps a){d)

as lemma 1.

a) For the irrelevant vertices with � 2 [�m;�M ] we simply have to use (3.4) and the fact that

the values of the vertices in each theory at �M are consistent with lemma 12, and therefore so is

their di�erence, as we see by substituting � = �M into lemma 8ii), and i) is immediately seen to be

true at this order in the expansion parameters for vertices with 2m legs. The second term in (3.2)

causes no problem since, using (2.5) we see that it is bounded by K1=2(M
2

�2 )�
3�2m�jP log(�M

�m
),

which is less than or equal to the bound �3�2m�j ( �
�M

)P log(�M
�m

) required of all terms on the

right-hand side of (3.2) in order for the induction argument used to prove i) to go through.

b) The proof of ii) for the irrelevant vertices is much the same. We use the derived boundary

conditions obtained by evaluating i) at �m along with (3.5), and ii) is clearly veri�ed. As in a)

the second term in (3.2) is no obstruction since, using (2.6) and the fact that the vertex has an

associated factor of K1=2(
�2
M

�2 ), we see that it is bounded by �3�2m�j
m (�m

�M
)P log(�M

�m
).

c) The di�erence between the relevant coupling constants in the two theories is zero by def-

inition. Using this result along with Taylor's formula and the bounds already obtained for the

irrelevant vertices we can prove ii) for each of the relevant vertices, by working down in number

of legs and number of derivatives. In order to prove ii) for the relevant vertices for all � 2 [0;�m]

we use the derived boundary conditions at � = 0 along with (3.7), again working downwards in

number of legs and number of derivatives. The potentially troublesome second term in (3.2) is

dealt with in the same way as in b).

d) From ii) there are now good bounds on the di�erence between the relevant coupling con-

stants at �m. Feeding these into (3.6) it is simply a repetition of previous exercises to bound the

relevant couplings and to prove the lemma for the relevant vertices, using Taylor's formula and the

same methods used for the relevant vertices in x's 3.1 and 3.2. Once this is done, then as explained

in these previous sections, the proof by induction is complete, and lemma 12 is true for all r, s, t

and m.

In particular, setting � = 0, lemma 12 yields

k@jp(
eGc
2m;0(�0; �i)� bGc

2m(�M ; �i))k�m �
�m

�M

�4�2m�j
m P log

�
�M

�m

�
; (3:10)

where the amputated connected Green's functions for the theory with both light and heavy particleseGc
2m;0 depend on �i, the seven coupling constants corresponding to the relevant vertices with either

(or both) light and heavy particle legs, while the amputated connected Green's functions for the

light particle theory, bGc
2m, depend only on the three coupling constants corresponding to the

relevant vertices with light particle legs only. Thus, we see that if we simply delete the heavy

particle �elds � from the original theory, while keeping the renormalization conditions on the
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relevant couplings at � = 0 �xed, we change the amputated connected Green's functions including

only � �elds at external momenta of order �m by terms of order �m=�M . This is particularly

transparent if we adopt the convention described following (1.5). In this case the vertices in the

theory containing only the light particle have an expansion in gm only, and we see from (3.9) that

all terms in the low{energy light particle vertices in the full theory at greater than zeroth order in

either gM or gmM are suppressed by �m=�M .

Thus, if we were to take M=m ! 1 lemma 12 would therefore amount to a proof of the

conventional decoupling theorem[5]. Combining lemma 12 with the universality of both two theories

(lemmas 3 and 10) also gives us trivially a proof of decoupling in e�ective theories. More subtly,

combining it with the proof of infrared �niteness of the light particle theory in [4] (lemma 5) gives

us a proof of the decoupling theorem when the light particles are massless; this is very di�cult

using more conventional techniques[6].

4. Systematic Improvement.

Since in any realistic scenario the mass of the heavy particle is not in�nite but �nite, it

would be useful to improve our decoupling theorem in much the same way that we improved

the renormalizability of the e�ective theory in x3.2 of [1]. There we were able to show that one

can decrease the dependence of low energy Green's functions on the irrelevant couplings at the

naturalness scale �0 by specifying more and more low energy renormalization conditions, and thus

determining the coupling constants corresponding to higher and higher dimension operators. Here

we might expect that it would be possible to decrease the dependence of the Green's functions

for the low mass particle on the details of the theory of large mass particle M by specifying more

and more renormalization conditions on the theory containing only the light particle. It is easy to

verify that this is indeed the case.

First we consider the theory containing both particles. Consider setting renormalization con-

ditions on all irrelevant vertices up to a given canonical dimension eD. As with (1.5), these must

be set with light particle legs having momenta of order �m, and heavy particle legs with momenta

of order �M . We can apply the same arguments as used in [1] to show that the bounds in lemma

8 are still satis�ed, while those in lemmas 9 and 10 are improved: (2.22), (2.24), (2.27), and (2.29)

all acquire an extra factor of (�M
�0

)eD�4 on the right hand side, while (2.23) and (2.28) acquire an

extra factor of (�m
�0

)eD�4 .
To improve the decoupling theorem, we repeat the argument in the previous section, with the

physically relevant vertices in the light particle theory (all vertices with dimension not exceeding

D, where for the moment we let D = eD) having identical low energy renormalization conditions

to the vertices involving light particles alone in the theory containing both particle. For simplicity

the remaining irrelevant vertices (with dimension greater than D) are set to zero at �M in the

light particle theory, as are the undetermined irrelevant vertices at �0 in the full theory. Lemma

12 is then superseded by the following improved bounds:
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Lemma 13:

(i) For all � 2 [�m;�M ],

k@jpD
r;s;t
2m (�)k �

�
�

�M

�D�2

�4�2m�jP log

�
�M

�m

�
: (4:1)

(ii) For all � 2 [0;�m],

k@jpD
r;s;t
2m (�)k�m �

�
�m

�M

�D�2

�4�2m�j
m P log

�
�M

�m

�
: (4:2)

In order to prove this lemma we may use exactly the same induction argument as that for

lemma 12. Since both sets of boundary conditions on @jpD
r;s;t
2m (�) are consistent with the lemma,

and the 
ow equation (3.2) is also consistent with it (partly due to the exponential in the second

term on the right falling of more quickly than any �nite power), the proof goes through just as

before, and we see no reason to write it out in detail. Just as for lemma 12 the assumptions on

the irrelevant vertices may be relaxed using the (improved) universality lemmas 4 and 10.

Setting � = 0 in (4.2), we see immediately that (3.10) now becomes

k@jp(
eGc
2m;0(�0; �i)� bGc

2m(�M ; �i))k�m �

�
�m

�M

�D�2

�4�2m�j
m P log

�
�M

�m

�
; (4:3)

the amputated connected Green's functions for the two theories only di�er by terms of order

(�m
�M

)D�2 (up to logarithms) when we consider external momenta with magnitudes of order �m.

So setting renormalization conditions on light particle couplings down to dimension 4 �D means

that we can calculate amputated connected Green's functions (and thus S{matrix elements) for

scatterings of light particles with energies of order �m simply by using a theory containing just

the light particle �eld with precision of order (�m
�M

)D�2. Thus, as far as the bounding arguments

are concerned, we have shown that the naturalness scale �0 in [1] could equally be the mass of

another particle: all the results proven in x2 and x3 of this paper sections being also true in this

case, as we might naively have expected.

However the physically relevant renormalization conditions for the light particles are now

dictated, up to small corrections, by matching to the theory with the heavy particle: more precisely

in the phenomenologically `neutral' e�ective theory discussed in [1], if all renormalization conditions

corresponding to vertices of dimension D have been �xed, those of dimension D+2 may be speci�ed

within a freedom of order (�m
�M

)D�2 (as explained in x3.3 of [1]); matching to the massive theory

means that this freedom is only of order (�m
�0

)D�2. This means, in fact, that we have the freedom

to choose D to be greater than eD, as long as it satis�es the requirement that (�m
�0

)eD�2 � (�m
�M

)D�2.

In this case we set the renormalization conditions for the light particle theory to be identical to

those for the light particle vertices in the full theory for dimension up to eD and equal to the

values obtained by calculating using the full theory for those vertices of higher dimension. (If the

renormalization conditions are set by matching to experiment this will be true automatically, up
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to corrections of order (�m
�0

)eD�2.) The proof of lemma 13 then goes through with no obstruction

and the conclusions expressed in (4.3) and the following paragraph still hold.

In particular, in the local limit �m
�0

! 0, with �m
�M

held �xed, simply choosing eD = 4 the

matching conditions �x the renormalization conditions of the e�ective theory of the light particle

alone precisely, and we may choose any D � 4; this generalizes the result of [7] to all D > 6 with,

it seems to us, remarkably little e�ort. Conversely, if �0 is not very much larger than �M , we must

choose D to be much the same as eD, and relatively little is gained in the precision of the light

particle theory by matching it to the heavy particle one. Of course, we expect that in all realistic

theories we will be somewhere between these two extremes.

Finally we consider stability. We can use the technique described in x5 of [1] to construct a

large class of nonperturbatively stable theories containing only the light particle (with two scales

�m � �M), and also another large class containing both the light particle and a stable heavy

particle5 (now with three scales �m � �M � �0), each with the same renormalization conditions

on physically relevant couplings. It should be clear that both these theories will have S{matrices

which, at least in perturbation theory, are both unitary and causal. Furthermore the S{matrix

of the latter is unitary not only on the full space of light and heavy particle external states of

arbitrary energy, but also on the subspace of light particle states with energies less than 2M , since

from the cutting relation the heavy particles can only contribute to the imaginary parts of light

particle amplitudes above threshold. There is no guarantee however that the light particle theories

on this subspace, when analytically continued to describe light particle processes of arbitrarily high

energies, will remain stable non{perturbatively. However it is not di�cult to see from (4.3) that

there always exists a stable light particle theory whose S{matrix is arbitrarily close to that of the

full theory when restricted to this subspace.

We may now consider a wider class of scalar �eld theories. In particular, if we were to relax

the Z2 symmetry of the heavy particle interactions, they would be free to decay into the light

particles. We can only really do this in the e�ective theory, since as explained in x6 of [1] if the

vacuum is to be stable then the couplings g0M and g0mM for vertices involving an odd number of

heavy particles are bounded above (by (M=�0)g
1=2
M and (M=�0)g

1=2
mM respectively); in the local

limit the Z2 symmetry is thus restored. The unitarity and causality of theories in which a heavy

particle is allowed to decay into lighter particles was discussed long ago by Veltman[9]; the issue

is a subtle one since in principle only the light particles of such a theory may be considered as

external states, the heavy particle pole being no longer on the physical sheet (though it approaches

it in the limit gmM ! 0). However, it can be shown that there exists a unitary and causal S-matrix

for the scattering of the light particles alone. This S{matrix restricted to the subspace of light

particle states with energies less than M is manifestly unitary, and using the methods of [1] we

may clearly construct an e�ective light particle theory whose S{matrix tends arbitrarily close to

that of the full theory on this subspace, and the improved decoupling theorem still holds.

5 A single heavy particle cannot decay into light ones because of the global Z2 symmetry imposed on

the heavy particle �eld.
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The question of stability is a little more complicated for such theories. Veltman showed [9]

that the light �eld equations of motion obtained by integrating out the unstable heavy particle give

a stable vacuum for the light �eld. However, the manifestly stable light particle theory obtained

from adiabatic quantization [1] may not be able to reproduce the light particle theory obtained by

formally integrating out the heavy �eld at �M , and then expanding all nonanalytic terms in powers

of momenta. This is because the `higher derivative' terms generated via adiabatic quantization

come about purely from the radiative part of the renormalization group 
ow, while when the heavy

�eld is integrated out such operators are generated from tree diagrams. Thus the `higher derivative'

operators in the latter may be larger than those we can feasibly produce in the former. This is

not really an important restriction for the present theory because the coupling between the light

and heavy particles is necessarily weak compared to the couplings in the light particle theory due

to the stability condition. However, in certain regions of coupling space, and for theories with

unstable particles in which there is no reason for the coupling leading to the heavy particle decay

to be relatively small (as for example in electroweak theory) normal adiabatic quantization may

not be su�cient to produce a suitable e�ective �eld theory. In these cases it is however possible to

obtain a manifestly stable primordial action by �rst writing it in terms of both the heavy and light

�eld and then integrating out the unstable heavy particle. Expanding all nonanalytic terms in

powers of momenta, and matching their Taylor series (which will all have radiuses of convergence

of at least M) to analytic vertex functions, we may then use adiabatic quantization to produce a

manifestly unitary and causal e�ective theory. It is not di�cult to see that at scales below �M this

e�ective theory will be identical (order by order in powers of momenta) to the manifestly stable

theory obtained by adiabatically quantizing the full theory and then decoupling the heavy �elds

at �M .

We can also consider a theory in which not only the Z2 symmetry of the heavy particle interac-

tions is broken, but in which the Z2 symmetry of the light particles is also broken at scales of order

�M by its interactions with the heavy particle. Thus while the physically relevant renormalization

conditions on Green's functions involving only light particles are still set at momenta of order �m,

they will no longer be Z2 symmetric, since amplitudes with an odd number of light particle legs

may be induced by corrections involving virtual heavy particles. It is not di�cult to see that the

result (4.3), when generalized to cover this softly broken case, now implies that the amputated

connected Green's functions of the light particle theory with an odd number of legs 2m+ 1 must

be suppressed relative to those with 2m legs by a factor of (�m
�M

). This result is a simple paradigm

for the breaking of parity by the weak interaction.

5. The Local Limit.

When working with an e�ective quantum �eld theory it is usually simplest both conceptually

and technically to keep the regularization scale � below the naturalness scale �0; indeed when

constructing stable theories as described in x5.2 the theory was only formally quantized for � <
� �0.

This was particularly obvious in our discussion of decoupling in the previous section, where the
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naturalness scale �M of the light particle theory was identi�ed with the mass of some new heavy

particle. When formulated in this way, we are always free to choose the number of physically

relevant couplings we wish to work with, quite independently of technical details such as the order

at which we truncate our perturbation theory.

Of course it is not necessary to follow this approach; as Green's functions are by construction

independent of � we may use the full renormalization group equations to take �=�0 to in�nity

with impunity. Furthermore as explained in [1] all physical quantities are independent of the

from of the regulating function K�, so in this limit it might seem reasonable to introduce an

alternative regularization procedure, for example dimensional regularization. The e�ective theory

would then closely resemble a local quantum �eld theory, and indeed this is the approach which is

most frequently to be found in the original literature[8,10]. We feel that this approach obscures the

relationship between physics at di�erent scales and in particular more and more counterterms must

be introduced as we work to higher and higher loop order, simply in order to render the theory

�nite (thus destroying some of the properties of conventional local �eld theory, such as manifest

stability). Indeed none of the conjectures formulated in the framework of local e�ective theories

have, to our knowledge, been rigorously proven.

We are perhaps best able to see how our approach relates to this `conventional' approach if

we consider it in the context of decoupling. In x2 we can consider the theory containing the two

particles in the local limit �0=�m ! 1; this does not change x3 at all if we consider the e�ective

theory containing only the light particle to have naturalness scale �M . More relevantly, we could

instead set the boundary conditions on the irrelevant couplings of the light particle theory at �0,

and thus also take this theory in the local limit; the bounds lemma 1 will be unchanged because

the low energy renormalization conditions on the relevant couplings are independent of �0, and

the proof of decoupling, lemma 11, goes ahead just as it did in x3.

The case for the improved decoupling theorem presented in x8.3 is not so simple. In order

to match the physical renormalization conditions on the vertices with dimension D > 4 in the

light particle theory to those of the theory containing the heavy particle, they must be such as to

be natural when evolved back to �M . This means that they cannot remain natural if we evolve

them above �M to �0, but rather will begin to diverge as powers of �0=�M (up to logarithms).

In the local limit, we will thus �nd a theory with in�nite counterterms which are just such as to

guarantee that the renormalized insertions in the light particle theory reproduce the e�ects of the

heavy particle. The light particle theory is then an e�ective theory in the conventional (local)

formulation.

Unfortunately, the combination of scales (or scales and factors of ��1 if one were to use

dimensional regularization) now makes the scale dependence of the physics of the e�ective theory

rather more di�cult to disentangle. In particular, it is in general necessary to work with the full

in�nite set of counterterms, even though after renormalization operators with dimension greater

than D are discarded; even if the renormalized couplings corresponding to these operators were

set to zero, the form of the 
ow equations means that they will be nonzero when evolved back to

�0, and in�nite in the local limit.
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Consider, for example, computations in the loop expansion. The form of the 
ow equations

shows us that to create the natural e�ective Lagrangian at �M from that at �0 we can only decrease

the number of legs of a vertex by forming loop diagrams, and each loop causes a maximum reduction

of two legs. Therefore, a vertex with 2m + 2n legs at �0 will make a contribution to a vertex at

�M at a power of �h which is at least n higher. So even if we only wish to work to an accuracy of

order (�m
�M

)D�2, and therefore at retain renormalized vertices with at most D legs, if we work at

order l in the loop expansion it will be necessary to include vertices at �0 with 2l + 4 legs, just

to render the renormalized vertices �nite. At arbitrarily high order, we thus need an arbitrarily

large number of counterterms. Outside perturbation theory the number of counterterms would in

general be in�nite.

Of course, there may well be situations where for practical reasons the local formulation is

advantageous. For example when making perturbative computations in theories with local or

nonlinearly realized symmetries (as in [10]) dimensional regularization is convenient because it

manifestly preserves such symmetries; in the 
ow equations they seem to be necessarily broken by

the introduction of the regularization function.6 Similarly, nonperturbative computations in an

e�ective theory could perhaps be performed on the lattice if the lattice spacing a � ��1
0 (though

there would in general be problems with spurious instabilities on the scale of the lattice spacing if

the �nite di�erence equations were truncated at �nite order). But formal issues, which in general

bene�t from a clear separation of scales are, we feel, most readily formulated and proven within

the quasi{local formulation of e�ective �eld theory as presented in [1].

6. Predictivity.

To summarize, we have shown that a theory of two scalar particles with Z2 � Z2 symmetry

and well separated mass scales �m � �M � �0 may be approximated arbitrarily closely at scales

below �M by an e�ective theory containing the light particle alone. This decoupling theorem,

which we proved to all orders in perturbation theory, may be readily extended to any theory of

scalar and/or spin half particles, with global symmetries, since as explained in x6 of [1] no new

ideas are then necessary. All that is required is that the particles are arranged in a hierarchy

of mass scales �m � �M1
� �M2

� � � � � �0; each scale may then be decoupled sequentially.

The decoupling theorem will also remain valid for e�ective �eld theories set in space{times with

dimensions other than four, such as Kaluza{Klein theories. Theories with spontaneously broken

symmetries, nonlinearly realized symmetries, or local symmetries are more di�cult to handle,

however, and indeed for them the decoupling theorem may sometimes break down.

We consider �nally the opposite problem of attempting to predict the existence of new particles

at higher mass scales than current experiments. We showed in [1] that we can describe the physics

of processes below a certain energy scale �M , using an e�ective �eld theory containing only those

�elds which correspond to particles with masses m below this scale. As we increase the energy at

6 Though clearly some complicated remnant of the symmetry must remain.
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which the physics is probed, we need more parameters to maintain the same precision. If we were to

make no assumptions about the nature of the theory at �M , all of these new parameters would be

constrained only by naturalness. However, if there were a new particle at �M , the new parameters

would be more tightly constrained by the requirement that at �M the light particle theory matched

to the new theory containing the extra particle. The higher the new naturalness scale, �0, the

tighter these constraints would be, and the easier it would be to guess the existence of the heavy

particle from the accurate examination of light particle processes below its threshold; if �0 were

too low, it would be di�cult to disentangle the e�ects at low energy of the heavy particle from

those of the physics at �0. Of course the new couplings will be easier to measure accurately if they

break some global symmetry (as for example the Z2 symmetry considered above); the observation

of parity violating weak interactions, through both weak and neutral current interactions, was seen

as good evidence for the existence of intermediate vector bosons, and likewise new insights are

expected from the study of CP violation (although here there is as yet no compelling candidate

for an underlying theory).

If the new heavy particle really existed, then as we reached the threshold for heavy particle

production, our e�ective theory containing just the light particle would necessarily breakdown,

since by construction it does not contain the threshold singularity. Although by using enough

parameters, the light particle e�ective theory can mimic a more fundamental theory to any order

in the Taylor expansion of its light particle amplitudes, when there is a genuine new particle of

mass M in the more fundamental theory this Taylor expansion has radius of convergence M . The

light particle theory would then have to be discarded, at least for processes at and above threshold.

However it could in principle turn out, despite previous circumstantial evidence, that when

the scale �M is reached there is no new particle at all, and the light particle theory can still be

used there (albeit with limited predictivity) 7; it is only possible, given the fact that all the low

energy experimental data are in practice limited both in accuracy and quantity, to be certain of

the existence of a new particle by actually producing it. Seeing is believing.

Note Added.

Recently two preprints have appeared [11] which also attempt to prove the decoupling theorem

using the exact renormalization group. Both these authors work implicitly in the local limit

�0 !1, however, and unfortunately set arti�cial renormalization conditions on the heavy particle

vertices at zero momentum, which renders the proof of decoupling relatively trivial, at the expense

of substantially reducing its content.

7 It could be, for example, that the light particles are composite, as is the case is chiral perturbation

theory. In this case too it would, at least in principle, be possible to compute the in�nite number of coupling

constants in the light particle e�ective theory in terms of those of some new theory of the constituents.
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