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Beam Tests of a Multilayer LumiCal Prototype
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LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of in-
tegrated luminosity in electron positron linear collider experiments. The present report contains
a description and results of the first beam test of a multilayer LumiCal prototype with four sili-
con detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study
the performance of the LumiCal prototype. Presented results are mainly focused on the trans-
verse structure of the observed electromagnetic shower and the Molière radius measurement. A
comparison with MC simulation is also discussed.

Talk presented at the International Workshop on Future Linear Colliders (LCWS2016),
Morioka, Japan,
5-9 December 2016.
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1. Introduction

Many important open questions of elementary particle physics can be addressed in future e+e−

colliders [1, 2]. At present, two such colliders, distinguished by their acceleration techniques and
energy reach, are being studied, the International Linear Collider (ILC) [3], based on superconduct-
ing cavities, and the Compact Linear Collider (CLIC) [4, 5] with the two-beam accelerating con-
cept. Two types of detectors are under design for the ILC, the International Large Detector (ILD)
and the Silicon Detector (SiD) [6]. Similar concepts were developed for CLIC, though a recent
study is focused on a single detector model optimized for a 3 TeV centre-of-mass beam energy.
Forward regions of the ILC and CLIC detectors are equipped with compact calorimeters designed
for the accurate instant and integrated luminosity measurements and for extending the capabilities
of the experiments for physics study in the high rapidity region. The layout of one arm of the

Figure 1: The very forward region of the ILD
detector. LumiCal, BeamCal and LHCAL are
carried by the support tube for the final focus-
ing quadrupole QD0 and the beam-pipe. TPC,
ECAL and HCAL are barrel detectors.

forward region of the ILD experiment is presented in Fig. 1. LumiCal in ILD design is an elec-
tromagnetic sampling calorimeter with 30 layers of 3.5 mm (1X0) thick tungsten absorbers and
silicon sensors placed in one millimeter gap between absorber plates. In case of CLIC it has a
similar design, but the number of layers is increased up to 40 because of higher beam energy. The
LumiCal aims on a precise measurement of the integrated luminosity using Bhabha scattering as
a gauge process. Its design was developed and optimized in MC simulation studies [7]. Several
beam tests were carried out in the past to study and verify the performance of a single LumiCal
detector module [8]. It allowed to develop the procedure of the signal processing thus achieving a
signal to noise ratio in the range of 19-23 after the common mode correction.

As the next step in calorimeter development, the same detector modules are assembled in a
stack as sensitive layers between tungsten absorbers. The beam test of such assembly can demon-
strate the performance of the detector modules in multilayer configuration. Specifically it aims to
measure the signal to noise ratio, the level of common mode noise and to test the electromagnetic
shower development. Of particular importance is an investigation of the position reconstruction
which corresponds to the polar angle measurement in the LumiCal as a luminosity detector in
e+e− colliders. The detailed description of the test beam setup and some results were presented
earlier [9, 10]. This work presents the recent results of the data analysis and MC simulations of the
first multilayer LumiCal prototype tested with 5 GeV electron beam.
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2. LumiCal sensor and test beam setup

The test beam was performed at the PS east area test beam facility T9 which provides a sec-
ondary beam of muons, pions, hadrons and electrons with momenta in the range of 1-15 GeV/c. A
narrow band of particle momenta centered at 5 GeV is selected using a dipole magnetic field and
a set of collimators. The Cherenkov counters are used to provide a trigger for the electrons or/and
muons. The schematic diagram of the instrumentation geometry is shown in Fig. 2. Four planes of
pixel detectors, so-called telescope, are set upstream of the calorimeter to enable position recon-
struction of incoming beam particles. Each pixel detector contains one MIMOSA-26 chip [11] with
active an area of 21.2×10.6 mm2. The position resolution achieved with the telescope is around
9 µm for each coordinate.

Three scintillation counters are used to provide a trigger for particles traversing the active part
of the telescope sensors and the active region of the calorimeter. Two 5×5 cm2 scintillator tiles are
placed upstream and downstream of the telescope (marked in blue in Fig. 2) and one (marked in
red), with a 9 mm diameter circular hole, is placed just before the last telescope plane. In order to
ensure that triggers are only generated by beam particles in the sensitive area of the telescope, the
signal from the hole scintillator is set in anti-coincidence. The trigger signal is combined with the
Cherenkov counters response to create the trigger for electrons and/or muons.

-1120 -920 -720 -520 0

Z axis, position [mm]

Beam
direction

Cherenkov
counters

Scintillators

Hole
scintillator

Telescope planes

DUT
LumiCal

~ -30000

Figure 2: Test beam area instrumentation geometry. Not in scale.

Four LumiCal electronic modules were assembled for this test beam. Each module consists
of one LumiCal silicon sensor glued to the supporting PCB and front-end electronics assembled
on a separate PCB. The silicon sensor is made of a 320 µm thick high resistivity n-type silicon
wafer. It has a shape of a circular sector with a central angle of 30◦, with inner and outer radii
of the sensitive area of 80 mm and 195.2 mm, respectively (see Fig. 3). 256 pads made as p-type
implants are arranged in four sectors with 64 pads of 1.8 mm pitch in each sector. In total, 32 pads
were connected to the readout electronics: 14 in sector L1 and 18 in sector R1 as shown in Fig. 3.
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Figure 3: A LumiCal silicon pad sensor.
Highlighted area in the top part of sectors L1
and R1 marks the pads which are connected
to read-out electronics.

In order to study the development of the electromagnetic shower, three configurations of ab-
sorbers and sensitive layers are used. It allows to sample the electromagnetic shower at 1X0 and
then from 3X0 to 9X0 with a step of 1X0, assuming that each tungsten plate corresponds to one
radiation length (1X0) which is approximately correct.

3. Position reconstruction

Different methods were elaborated for the electron position reconstruction in electromagnetic
calorimeters [12, 13, 14]. Most of them assume that lateral shower development has single or
double exponential profiles. A rather simple and efficient method was described in [14]. It suggests
to use a center of gravity formula, but instead of weights which are linear in the deposited energy,
the weights to be used are given by the following expression ("logarithmic weighting"):

wn = max

0;W0 + ln
En

∑
n

En

 , (3.1)

where En is the energy deposited in pad n and W0 is a free dimensionless parameter. Its value can
be optimized for a given calorimeter to provide the best position resolution. It was shown [13] that
particle position reconstruction in electromagnetic calorimeter from the fit to the lateral shower
profile gives good resolution and has a relatively small bias depending on the particle position
withing the sensor segmentation unit. It has the advantage that it can be used without apriori
knowledge of shower characteristics. It was also demonstrated that the core of the shower has
dominant contribution to the chi-squared of the fitting method. In this way the method counteracts
the event-by-event fluctuations in the lateral shower development.

The design of the LumiCal sensor is optimized for the polar angle measurement in collider
experiment. It has a fine pitch in the radial direction which corresponds to y direction in Fig. 3 and
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a relatively large pad size in the azimuthal direction. That is why it is mainly interesting to study
position reconstruction with respect to the radial direction of the sensor.

Let denote by εnkl the energy deposited in the sensor pad for the layer l, sector number k and
radial pad index n, then the one dimensional lateral deposited energy distribution for one event is
constructed using the following sum:

En = ∑
k,l

εnkl , (3.2)

where the layer index l runs over all sensitive planes in the stack from 1 to 4 and the sector index k
for two sectors according to the part of the sensors connected to readout electronics. An example
of the En distribution for a single event is presented in Fig 4.
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Figure 4: Deposited energy in a single event ob-
served in the LumiCal prototype. The red line is
a Gaussian fit to determine the shower y position
(one unit of pad is equivalent to 1.8 mm).
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Figure 5: Distribution of residuals be-
tween reconstructed shower y position and
the one projected from the telescope. Red
line is Gaussian fit, estimated resolution is
0.5 mm.

To test the position reconstruction in the LumiCal prototype, the fitting method was used.
It requires a choice of the trial function, which will be discussed in details in section 4. The
important note is that position reconstruction is mainly defined by the shower core. It also follows
from the logarithmic weighting method, where the value of W0 impose the minimum threshold on
the energy deposited in the sensor pads which are considered in position calculation. Fig. 4 shows
the lateral profile of the shower in a single event observed in the LumiCal prototype fitted with a
Gaussian function. The resolution estimated from the distribution of residuals between the position
reconstructed in the calorimeter and the one projected from the telescope (Fig. 5) is about 0.5 mm.

4. Electromagnetic shower in LumiCal prototype

The recent analysis of the test-beam data is devoted to the study of the transverse structure of
the electromagnetic shower and Molière radius measurement. The average distribution of the de-
posited energy in the transverse plane is symmetric with respect to the longitudinal shower axis and
does not depend on the azimuthal angle. Its radial dependence is characterized by a narrow core,
and a broadening tail. Several approaches were used to approximate this distribution: weighted
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sum of two exponential functions [12, 15], two Gaussians [16]. Another function was used by
Grindhammer and Peters [17]. A function similar to the last one is used for the tail description in
the present study while the core is approximated by a Gaussian:

F(r) = (AC)e
−( r

RC
)2
+(AT )

2rR2
T

(r2 +R2
T )

2 . (4.1)

Here RC (RT ) is the median of the core (tail) component and AC, AT are their weights. On average,
only 10% of the deposited energy lies outside a cylinder with a radius RM . This property can be
used in order to estimate the size of the electromagnetic shower in the lateral direction. Assuming
the function (4.1) is normalized to unity, the value of RM can be found from the following equation:

0.9 =
∫ 2π

0
dϕ

∫ RM

0
F(r)rdr , (4.2)

The function F(r) can be reconstructed using the test-beam data or the MC simulation.
The design of the LumiCal sensor with fine granularity in one direction (y) allows detailed

sampling of the transverse structure of the shower only in this y direction. The measured distribu-
tion En expressed by the formula 3.2 corresponds to F(r) integrated over the area of the pads with
the same radial position in the LumiCal sensor. Since the area of the LumiCal sensor connected to
the read-out electronics corresponds to the big radii, it is a good approximation to treat the pads as
straight strips. In this approach the lateral distribution En can be approximated by integrating F(r)
along the Cartesian coordinate x:

G(y) =
∫ Xmax

Xmin

F(
√

x2 + y2)dx . (4.3)

Here, the polar coordinate r =
√

x2 + y2 is substituted with Cartesian (x,y), the range (Xmin,Xmax)

is defined by the sensor geometry which corresponds to two sectors. Depending on the form of the
trial function F(r), the integration can be performed either analytically or numerically. By fitting
G(y) to the shower average lateral profile En ( 3.2), and finding its parameters, the original F(r)
can be recovered and then used to calculate the Molière radius RM from the equation (4.2).

An additional MC simulation with slightly modified geometry of the calorimeter is used in
order to estimate the possible affect of the above mentioned approximation. For this study the sen-
sitive detector of the sampling calorimeter is implemented with a fine granularity of 0.5×0.5 mm2

and the transverse size of the calorimeter is extended up to 40×40 cm2. Twenty thousand electrons
with 5 GeV/c momenta are simulated. The average deposited energy in the transverse plane is
presented in Fig. 6 as a contour plot. The lateral one dimensional distribution En is obtained by
integrating the deposited energy over the sensor pads presented in the figure as grids. The beam
spot can be taken into account in this approach by changing the position of the sensor with respect
to the 2D distribution. The black grid represents the geometry of the LumiCal sensor, while the
magenta one corresponds to the strip-like pads of a trapezoidal shape. The comparison between the
one dimensional lateral profile for these two sensor pad geometries is shown in Fig. 7. The lowest
four pads of sector R1 are not considered. One can see that the effect becomes noticeable at a level
of 2% for the pads distant from the shower core. The difference in the integration area for one of
the pads for different geometries is highlighted by the shadowed triangles. The integrand function,
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Figure 6: Two dimensional average distribution of
the deposited energy in the calorimeter. The black
grid represents the sector-like pads of the LumiCal
sensor, magenta — strip-like pads.
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Figure 7: Comparison of 1D lateral profiles of the
deposited energy in the calorimeters for different
geometries of the sensor pad. Averaging within the
beam spot area is performed, (one unit of pad is
equivalent to 1.8 mm).

represented by the 2D distribution of deposited energy, is four orders of magnitude smaller in this
area than in its maximum and it changes relatively weakly with the distance. It explains the fact
that the difference of the integrals is small. There is also a systematic increase in the fraction of
deposited energy collected by the LumiCal sensor pad compared to the trapezoid one. It can be
seen that the LumiCal pads are bent closer to the center when they are "above" the maximum of
the shower and it corresponds to slightly higher values of the integrand. In the same time, if they
are "below" the center they are bent away from the shower maximum and collect less energy than
straight strips. For a rather wide range of pads close to the shower core the difference is vanishing.

After considering different functions used to describe the transverse shower profile, we found
that using a Gaussian distribution for the shower core and a rational function similar to [17] for
the shower tail, as shown in equation (4.1), gives the best representation to the data and the MC
simulation. The fit and the solution of the algebraic equation (4.2) are made numerically using
ROOT package.

The following selection criteria to the events are applied to produce the one dimensional lateral
distribution of the deposited energy:

• events with only one track, based on telescope reconstruction;

• only tracks whose incident position in calorimeter is within 600 µm of the central band along
the pad of the LumiCal sensor.

The last requirement allows cleaner events folding without taking into account the dependence
of deposited charge distribution between pads on the particle position inside the pad. It reduces
statistics, but eliminates the contribution of charge sharing to the final systematic uncertainty.

The average lateral profile of the deposited energy for the data and MC simulation for one of
the configurations of the beam test setup together with fit functions are shown in Fig. 8. In this
configuration four detector modules are placed after 3, 5, 7 and 9 tungsten absorbers (it roughly
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Figure 8: Shower average lateral profile of test-beam data and MC simulation for one of the setup configu-
rations. The line represents the fit of G(y) to the data (red) and the MC (blue).

corresponds to shower sampling at 3X0, 5X0, 7X0 and 9X0). A similar distribution can be con-
structed combining the results of different beam test setup configurations where some layers are
identical and others are complementary. The Molière radius for such combination can be calcu-
lated following the same procedure. The data analisis is currently in progress and more studies are
required for better understanding of systematic uncertainty of the Molière radius measurement.

5. Summary

Recent results of the beam test of the first multi-plane prototype of the electromagnetic calo-
rimeter LumiCal have been presented. They are mainly devoted to the study of electromagnetic
shower development in the transverse plane using collected data and MC simulation. The method
of measuring the Molière radius adapted to specific segmentation of the LumiCal sensor has been
described. The data analisis is in progress focused on the systematic uncertainty evaluation of the
Molière radius measurement.
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