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Abstract

This paper explores the physics reach of the High-Luminosity Large Hadron Collider (HL-LHC)

for searches of new particles decaying to two jets. We discuss inclusive searches in dijets and b-

jets, as well as searches in semi-inclusive events by requiring an additional lepton that increases

sensitivity to different aspects of the underlying processes. We discuss the expected exclusion

limits for generic models predicting new massive particles that result in resonant structures in

the dijet mass. Prospects of the Higher-Energy LHC (HE-LHC) collider are also discussed. The

study is based on the Pythia8 Monte Carlo generator using representative event statistics for the

HL-LHC and HE-LHC running conditions. The event samples were created using supercomputers

at NERSC.
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I. INTRODUCTION

Heavy particles decaying to two jets are a generic consequence of many Beyond-the-

Standard Model (BSM) theories. Recently, searches in dijet mass distributions at the LHC

have been performed by both ATLAS and CMS collaborations [1–6] using run I and run II

LHC data. An extension of such studies at the High-Luminosity LHC (HL-LHC) and the

Higher-Energy LHC (HE-LHC) colliders will be an important goal of the energy frontier.

In the past, searches in dijets at the LHC were mainly focused on the high-mass tail of

dijet distributions, rather than on the bulk of data (below 1 TeV). This is related to the

fact that the collection of inclusive dijet events with dijet masses of the order of hundreds

of GeV is reduced (or “pre-scaled”) at the trigger level in order to cope with a large rate of

multijet QCD events. Focusing on the tail of dijet-mass distributions (Mjj), rather than on

the data in the region close to the electroweak (EWK) scale, < 1 TeV, limits the potential

of searches in inclusive dijet masses below 1 TeV.

Requiring a lepton, photon and or other identified objects with relatively low transverse

momentum (pT < 0.1 TeV), allows searches for new particles through associated production

in dijet masses using the main fraction of collected data. This can lead to detailed studies of

dijets at relatively low masses (0.1 < Mjj < 1 TeV), while reducing contributions from QCD

multijet events, which represent the main background for inclusive dijet mass searches. The

multijet QCD background can further be reduced for dijets where one or two jets are tagged

as b−jet. High-precision searches focusing on the medium range of invariant masses in semi-

inclusive final states was discussed in [7] in the context of a broad class of Hidden Valleys

models [8], in which new particles can be as light as the Standard Model (SM) particles, i.e.

with masses below 1 TeV.

The studies of dijets involve many technical challenges for future experiments. The HL-

LHC will deliver about 3 ab−1 of integrated luminosity, more than a factor 10 of the data that

will be collected by the end of the LHC project. This amount of data opens a new chapter

in BSM searches focusing on extraction of features in Mjj distributions where the relative

statistical uncertainty (i.e. statistical uncertainty expressed as a fraction of data point value)

can be as small as 10−4 – 10−3 near Mjj = 0.1 TeV as shown in this paper. As a first step

to such studies, we will use Monte Carlo (MC) event generation with a representative event

statistics to explore sensitivity to new states decaying to two jets, without simulations of
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detector effects and pile-up contributions.

The goal of this paper is to understand the physics potential of the proposed HL-LHC

and HE-LHC experiments with respect to searches for new states decaying to dijets for in-

clusive and semi-inclusive event selections, as well as to explore different methods designed

for gaining more sensitivity to new physics. In the searched mass region from ∼ 0.1 to

10 (20) TeV at the HL-LHC (HE-LHC), event rates fall by more than 14 orders of magni-

tude. Modeling mis-identification rates of leptons and b−jets in this large range of invariant

masses is challenging since it requires certain experiment-motivated assumptions that can

numerically be implemented in MC simulations, as well as an analysis of large event samples

from MC generators that include parton showers and hadronization. We will discuss this

topic using realistic MC event samples, creation of which has become possible with the use

of high-performance computing. In addition, we will calculate the exclusion limits for BSM

models predicting heavy particles decaying to two jets at the HL-LHC and HE-LHC. The

limits will be calculated using MC simulations of inclusive dijets, b-jets and dijets associated

with a lepton.

II. MONTE CARLO EVENT SIMULATIONS

The analysis presented in this paper was performed using the Pythia8 [9] MC generator

with the default parameter settings and the ATLAS A14 tune [10] for minimum-bias events.

The center-of-mass collision energy of pp collisions was set to 14 TeV and 27 TeV for the HL-

LHC and HE-LHC respectively. The NNPDF 2.3 LO [11] parton density function, interfaced

with Pythia8 via the LHAPDF library [12], was used. A minimum value of transverse

momentum for the matrix elements for 2 → 2 processes was 40 GeV. The simulations

were created for three categories of SM processes implemented in leading-order (LO) matrix

elements, with the parton shower (PS) followed by hadronization:

• Light-flavor QCD dijets. This category of events includes ten 2 → 2 quark and gluon

processes, including b-quark pair production, but excluding tt̄ production from hard in-

teractions, which is considered as separate below. We apply a phase-space re-weighting

to increase the statistics in the tail of the Mjj distribution as discussed in [9].

• Vector and scalar boson production that includes the W Z, H0-boson processes avail-
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able in Pythia8. This category of events has 23 processes at the 2 → 1 and 2 → 2

level. Due to the presence of the 2 → 1 processes, no phase space re-weighting was

used.

• tt̄ and single top quark production which includes six 2 → 2 processes. No phase-space

re-weighting was applied.

Currently, we do not use simulations at next-to-leading-order (NLO) accuracy, or at

tree-level LO matrix elements included in Alpgen [13] or Blackhat [14], which typically

lead to larger cross sections. Even with the use of supercomputers, the large data samples

required for the statistical precision of this study preclude using these more computationally

intensive programs.

The simulation tools, small portions of event samples and Pythia8 settings used in this

study are available from the HepSim public event repository [15]. The studies presented

in this paper, however, require significant statistics, thus keeping events on a disk is im-

practical. A faster and less storage-demanding solution based on generating parton-level

events does not provide the required information, since the studies presented in this paper

are based on distributions sensitive to mis-identification of light jets as leptons or b-jets. An

analysis of large event samples from the complete simulation of the parton shower followed

by hadronization is essential. A simple scaling of low-statistics distributions to a luminosity

of the order of several ab−1 leads to significant fluctuations in Mjj bins, even after the phase

space re-weighting used in this paper.

In view of the above difficulties, we chose to perform the generation and analysis in series

on a supercomputer. To achieve this, a Docker/Singularity container image of the Hep-

Sim software was created and deployed on the Cori supercomputer (Phase 2, Intel Knights

Landing cores) of the National Energy Research Scientific Computing Center (NERSC).

The software image includes the Pythia8 MC generator and the complete HepSim soft-

ware stack for jet reconstruction and the final analysis. The maximum value of the Pythia8

seed (9 · 108) is not very high for massively parallel jobs, therefore, special care was taken

to avoid creation of duplicate events. The calculations took about 10 million core-hours

over a ten day period. The analysis used about 100 billion MC events for the three process

categories discussed above at the centre-of-mass energies of 14 TeV and 27 TeV.

The simulated number of background events for Mjj < 1 TeV is several orders of mag-
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nitude smaller than what is needed for the analysis of Mjj distributions from the HL-LHC.

For example, the cross section for multijet events with the 40 GeV cut on the LO matrix

elements for 2 → 2 processes in pp collisions at 14 TeV is 7.3 · 1010 fb. The problem of

low statistics is partially mitigated using the adopted phase-space re-weighting technique

discussed above. As for any counting experiment the statistical uncertainty for each Mjj

bin was defined as the square root of the bin height.

For the simulation of the signal events, we use a model with an extra gauge boson, Z ′,

that arises in many extensions [16] of the electroweak symmetry of the Standard Model.

The signal events were generated using the Pythia8 generator with the default settings,

ignoring interference with SM processes, with a width of about 15% of the Z ′ mass. This

width is usually considered as the maximum width of a resonance in ATLAS searches [1, 3].

We consider two cases for Z ′ decays, one in which Z ′ decays to light-flavor quarks, and one

with only b-quark decays.

As discussed in the introduction, pile-up events were not included in the simulation.

Mixing billions of generated events with 140-200 low-pT “minimum bias” events is beyond

the technical capability of the computational resources used for this work. We should note,

however, that pile-up events are not expected to change our conclusions related to high-pT

physics above the TeV scale. In addition, the LHC experiments have developed successful

techniques to mitigate pile-up effects. Such techniques should be considered in conjunc-

tion with detector-level objects (such as calorimeter clusters, or tracks associated with the

primary interaction vertex), all of which are beyond the scope of this paper.

III. EVENT RECONSTRUCTION

Hadronic jets were reconstructed from stable particles, which are defined as having a

lifetime more than 3 · 10−10 seconds. Neutrinos were excluded from consideration. The

jets were reconstructed using the anti-kT algorithm [17] as implemented in the FastJet

package [18]. The jet algorithm used a distance parameter of R = 0.4. The minimum

transverse momenta of jets was 40 GeV, and the pseudorapidity of jets was |η| < 2.4.

The minimum transverse momentum of the leptons used in this analysis was set to

60 GeV. To reduce the mis-identification rates, the leptons are required to be isolated.

A cone of the size 0.2 in the azimuthal angle and pseudo-rapidity is defined around the true

5



direction of the lepton. Then, all energies of particles inside this cone are summed. A lepton

is considered to be isolated of it carries more than 90% of the cone energy.

As full simulation is not within the scope of this study, we estimate the rate of misiden-

tification of muons (the muon fake rate) as a fraction, 0.1%, of the jet rate similar to the

ATLAS study [19]. This is implemented by assigning the probability of 10−3 for a jet to be

identified as a muon using a random number generator. We do not use electrons since their

fake rate is a factor of ten larger than for muons.

Dijet invariant masses, Mjj , were reconstructed by combining the two leading jets having

the highest pT (jet). The minimum value of Mjj was chosen to be 125 GeV, which is large

enough to avoid biases arising from the jet selection and contributions from the W/Z decays.

At the same time, this value well represents the bulk of the anticipated HL-LHC data where

the Mjj distribution smoothly decreases with increase of Mjj. This feature is important for

our discussion in Sect. VII.

A reproduction of the experimental mis-tag rate of b-jets is difficult for the generator-level

MC studies. Generally, the mis-tag rate depends on many factors, including a dependence

on pT (jet) [20]. For the studies involving b-jets, we assume a constant 10% mis-tag rate.

This value is sufficiently realistic [20] for large pT (jet) considered in this paper and, at the

same time, can easily be reproduced or modified in future studies. This mis-tag rate was

implemented by using the probability of 0.1 for a light jet to be identified as a b-jet. The

b-jets are additionally selected by requiring: (1) the ∆R between the b-quark and jet to be

less than 0.4; (2) the b-quark pT is at least 50% of the jet pT .

This paper, being based on the generator-level Monte Carlo samples, does not include

simulations of detector efficiencies for reconstruction of jets, leptons and b−tagging. The

inclusion of efficiencies may change the exclusion limits shown in this paper, but they are

unlikely to change comparisons between the HL-LHC and HE-LHC scenarios.

IV. DIJETS IN INCLUSIVE EVENTS

Figure 1 shows the Mjj distribution in Pythia8 for two different integrated luminosities,

100 fb−1 and 3 ab−1. The bin size used in this figure gradually increases from 13 GeV for the

lowest considered value of Mjj to 190 GeV near Mjj = 10 TeV. Such variable-size bins were

previously used in [1–3] in order to minimize jet resolution effects, and to reduce statistical
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FIG. 1. Expectations for the dijet invariant mass distribution for 100 fb−1 (3 ab−1) for the LHC

(HL-LHC) using the Pythia8 generator. Contributions from W/Z/H0 -boson processes and top-

quark processes are shown separately (without stacking the histograms). The bottom plot shows

the relative statistical uncertainty for each bin, together with the line indicating the mass point at

which the uncertainty is 100%.

fluctuations in the tail of the Mjj distribution.

Figure 1 shows the sum of the three contributions discussed in Sect. II, together with the

two contributions from W/Z/H0-boson processes combined and top-quark processes from

the hard interactions (shown separately). The rate of the latter two processes combined

near Mjj = 0.5 TeV is 0.1% of the total SM prediction. At the same time, the contribution

from the tt̄ production is only 0.02% of the total event rate. The lower panel shows the

relative statistical uncertainty on the data points, i.e. ∆di/di, where di is the number of the

events in the bins, and ∆di its statistical uncertainty (which is
√
di in the case of counting

statistics).

For a quantitative characterization of the dijet mass reach, we choose to define the Mjj

point at which the relative statistical uncertainty in a bin is 100% (or ∆di/di = 1), as

indicated in the lower panel of Fig. 1 with the dash line. In the case of counting statistics,

this corresponds to one entry per bin. In this study, the point at ∆di/di = 1 is determined

from many weighted events created by the Pythia8 event generator.
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FIG. 2. The 95% C.L. upper limits obtained from the Mjj distribution on fiducial cross-section

times the branching ratio to two jets for a hypothetical BSM signal approximated by a Gaussian

contribution to the dijet mass spectrum. The limits are obtained (a) without and (b) with y∗ cut.

Figure 2 shows the 95% credibility-level (C.L.) upper limit on fiducial cross-section times

the branching ratio for a generic Gaussian signal with the width (σG) being 10% of the

Gaussian peak position. The 95% quantile of the posterior is taken as the upper limit on

the possible number of signal events in data corresponding to that mass point. This value,

divided by the corresponding luminosity, provides the upper limit on the production cross

section of a new particle times the branching ratio (Br) to two jets. In addition to the

inclusive jet case, we also calculate the upper limits after applying the rapidity difference

requirement |y∗| < 0.6 between two jets [21] in order to enhance the sensitivity to heavy

BSM particles decaying to jets.

In order to calculate the expected upper limits for realistic shapes of the dijet mass

distribution from heavy exotic particles, such as Z ′, we have performed a simulation of Z ′

decays to jets, assuming the width of 15% of the Z ′ mass. The comparison of the Gaussian

shape with the signal shape from the Z ′ decays in Pythia8 is shown in Fig. 3. The

generated masses of the Z ′ particles are given by the Breit-Wigner distribution, but the Mjj

distributions are asymmetric, which are typical for reconstructed dijet masses using realistic

jet algorithms (note the logarithmic scale used for this figure).
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FIG. 3. The shapes of the Mjj distributions for a hypothetical BSM signal approximated by a

Gaussian contribution (red dash lines) and for the Z ′ → jets used for the calculation of the 95%

C.L. upper limits (black solid line).

Alternatively, exclusion limits were calculated using the CLs method with a binned profile

likelihood ratio as the test statistic using the HistFitter framework [22]. The expected

limits on the signal model are calculated by using an asymptotic approximation [23]. Figure 4

shows the 95% C.L. upper limits. The green and yellow bands represent the 1σ and 2σ

probability intervals around the expected limit. The obtained limits are found to be rather

similar to the Gaussian limits (without the requirement |y∗| < 0.6) obtained above, despite

the difference in the signal shape. Unlike the Gaussian limits, the HistFitter limits were

calculated starting fromMjj > 1 TeV. Below this value, theHistFitter technique produces

an unstable result caused by fluctuations in the Mjj distribution after the extrapolation of

the low-statistics histogram to the required luminosity (see Sect. II).

The limits shown in Fig. 4 can be used for exclusion of models predicting peaks in the

Mjj distributions. Several BSM benchmark models, such as models of quantum black holes,

excited quarks, W ′ and Z ′, have been excluded by CMS and ATLAS using LHC run I and

run II data [1–6]. Therefore, we do not show the cross sections for such BSM models in

Fig. 2 and 4.

The Pythia8 expectations for the Mjj distribution for the HE-LHC are shown in Fig. 5.

The dijet mass distribution uses bin sizes that gradually increase from 13 GeV for the lowest
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FIG. 4. The 95% C.L. upper limits obtained from the Mjj distribution on cross section times the

branching ratio to two jets for a Z ′ particle decaying to two jets.

value of Mjj to 280 GeV near Mjj = 10 TeV. The lower panel shows the relative statistical

uncertainties together with the line indicating the mass at which the relative statistical

uncertainty on the data point is 100%. Figure 6 shows the mass reach as a function of

integrated luminosity for the HL-LHC and HE-LHC, defined by the point at which the

relative statistical uncertainty is 100%. The Mjj mass reach at the centre-of-mass of 27 TeV

is close to 17 TeV, even for the modest luminosity of 100 fb−1. This is a factor of two larger

than the dijet mass reach for the luminosity expected at the HL-LHC.

Figure 7 shows the 95% C.L. upper limits on the product of the cross section and the

branching ratio for a signal approximated by a Gaussian whose width is 10% of the mass

of the searched resonance. The expected limit for 3 ab−1 is a factor of ten better than for

100 fb−1.

V. DIJETS IN EVENTS WITH ASSOCIATED MUONS

The previous studies of inclusive dijets represent a hypothetical scenario that may never

be realized in practice due to difficulties [24] in analyzing data with trigger prescales applied

to jets at medium pT . However, measurements of unbiased Mjj distributions (below 1 TeV)
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FIG. 5. The distribution of the dijet invariant masses for 100 fb−1 and 3 ab−1 at the HE-LHC,

together with the relative statistical uncertainty shown in bottom panel.

can be made possible by using an independent object to trigger on. For example, to reduce

the impact of the very high rate of multi-jet background, at the price of requiring associated

production, one can require an isolated muon, electron or other particle.

Figure 8(a) shows the dijet invariant masses with associated leptons with pT (l) > 60 GeV

using the isolation requirements as described in Sect. III. This figure corresponds to the ideal

case when the lepton mis-identification rate is set to zero. The fraction of the combined

W/Z/H0 and top events to the total predicted event rate is 96%. This shows that any

new physics that leads to resonances with the production rates compatible with W/Z/H0

processes can easily be detected, unlike the case with fully inclusive jets discussed in the

previous section.

To illustrate a scenario with lepton mis-identifications, let us now turn to the case with

muons. Figure 8(b) shows the Mjj distribution with isolated muons, including contributions

from jets which are mis-identified as muons. The mi-identification rate is set to 0.1% as

discussed in Sect. III. According to Fig. 8(b), the fraction of W/Z/H0/top processes is 1.2%

to the total event rate, which is a factor of ten larger than for the inclusive dijets shown

in Fig. 1. Figure 8(a) and (b) shows that the contribution from EWK and top processes

to the total event rate strongly depends on the mis-identification rates for leptons. For
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FIG. 6. Dijet mass reach for the HL-LHC and HE-LHC experiments. The uncertainties on the

data points, derived from the bin width used for the simulated Mjj distributions, are compatible
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FIG. 7. The 95% C.L. upper limits obtained from the Mjj distribution on the cross section times

the branching ratio to two jets for a hypothetical signal approximated by a Gaussian contribution

to the expected dijet mass. The HE-LHC expectations were obtained using the Pythia8 generator.
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FIG. 8. Dijet invariant masses with associated leptons for 3 ab−1 of the HL-LHC experiment. The

distributions are shown for (a) dijets with muons and electrons without mis-identification and (b)

for muons assuming 0.1% mis-identification rate.

realistic scenarios, exact fractions of EWK and top contributions should be calculated using

full detector simulations.

As for the previous sections, our goal is to give expectations for exclusion limits at the

HL-LHC and HE-LHC using assumed muon fake rates, without discussing the cross sections

for particular exotic models predicting enhancements in dijet masses. The 95% credibility-

level upper limits for a signal for the muon-associated dijet production, assuming 0.1%

mis-identification rate, are shown in Fig. 9. The signal was approximated by a Gaussian

distribution whose width is 10% of the mass of the searched resonance. The figure shows

the expectations for the HL-LHC and HE-LHC. Figure 10 shows the 95% credibility-level

upper limits for a Z ′ signal comparing 100 fb−1 from the LHC with the HL-LHC luminosity

scenario.

VI. STUDIES OF b-JETS AT THE HL-LHC AND HE-LHC

Now we consider the case with b−jets selected as described in Sec. III. Figure 11 shows

the Mjj predictions for the sum of the three contributions (QCD dijets, vector/scalar boson
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FIG. 9. The 95% C.L. upper limits obtained from the Mjj distribution on cross-section times the

branching ratio to two jets with isolated muons for a hypothetical BSM signal approximated by a

Gaussian contribution to the expected dijet mass. The limits were calculated for the HL-LHC and

HE-LHC.

and top production) discussed in Sect. II, together with the two contributions from W/Z/H0

-boson processes and top-quark processes from the hard interactions. The total event rate is

about 2% of the inclusive dijet after b-tagging. The rate of the W/Z/H0 and top processes

combined near Mjj = 0.5 TeV is about 0.2% of the total event rate. The contribution from

the tt̄ production is larger than that from the W/Z/H0-boson processes.

Figure 12 shows the 95% C.L. upper limit for the cross section times the branching ratio

for a signal approximated by a Gaussian whose width is 10% of the mass of the searched

resonance. In addition to the dijet masses, we also calculate the upper limits after applying

the rapidity difference requirement |y∗| < 0.6 between the two jets [2, 21].

In order to calculate the expected upper limits for observation of particles such as Z ′,

we have performed a simulation of Z ′ decays to b-jets, assuming that its width is 15%.

Exclusion limits were also calculated using the CLs method with a binned profile likelihood

ratio as the test statistic using the HistFitter framework. Figure 12 shows the 95% C.L.

upper for the realistic signal shapes.

Several BSM models, such as b∗ and leptophobic Z ′, predict peaks in theMjj distribution,

14



 [TeV]jjM
1 2 3 4 5 6 7 8 9 10

 B
R

 [f
b]

× σ

3−10

2−10

1−10

1

10

210

310

410
Expected 95% CL

σ 1 ±

σ 2 ±

-1
 L dt =  100 fb∫

=14 TeVspp 

 Jets → Z’ 
  ±µDijets + 

(a)100 fb−1

 [TeV]jjM
1 2 3 4 5 6 7 8 9 10

 B
R

 [f
b]

× σ

3−10

2−10

1−10

1

10

210

310

410
Expected 95% CL

σ 1 ±

σ 2 ±

-1
 L dt =  3 ab∫

=14 TeVspp 

 Jets → Z’ 
  ±µDijets + 

(b)3 ab−1

FIG. 10. The 95% C.L. upper limits obtained from the Mjj distribution on the cross-section

times branching ratio for a hypothetical BSM process producing a resonance in the dijet mass

distribution and is produced in association with an isolated muon, approximating the width of the
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where one or two jets are identified as b-jet. Some models have already been excluded by

ATLAS [2].
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FIG. 11. The Mjj distributions for jets identified as b-jets, for 100 fb−1 and 3 ab−1, together with

the relative statistical uncertainty shown in bottom panel.
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FIG. 12. The 95% C.L. upper limits obtained from the Mjj distribution on cross section times

the branching ratio to two jets (identified as b-jets) for a hypothetical signal approximated by a

Gaussian whose width is 10% of the mass of the searched resonance. The limits are shown (a)

without and (b) with y∗ cut.
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The Pythia8 expectations for the Mjj distribution with jets identified as b jets at the

HE-LHC collider are shown in Fig. 14. The line on the lower panel indicates the mass at

which the relative statistical uncertainty is 100% on the data point. As before, this point is

chosen to define the dijet mass reach to be accessible for the given luminosity. This point

may depend on the assumption used for the fake rate and the efficiency discussed in Sect. III,

but the difference between different luminosity scenarios should not depend much on these

assumptions. Figure 15 shows the mass reach for the HL-LHC and HE-LHC. For the modest

luminosity of 100 fb−1, the mass reach at the HE-LHC is above 13 TeV, which is a factor of

two larger than for the HL-LHC, assuming that the reconstructed efficiencies and fake rates

for b-jets are similar for the HE-LHC and HL-LHC.
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FIG. 14. Dijet mass distributions for jets identified as b-jets, for 100 fb−1 and 3 ab−1 at the

HE-LHC.

Figures 16 shows 95% C.L. upper limits for the cross section times the branching ratio

for a signal approximated by a Gaussian with σG = 0.1 ·MG.

Now we will consider events with b-jets measured in events with an additional identified

lepton. Figure 17(a)(b) shows the dijet invariant masses with isolated muons having pT >

60 GeV. The total event rate is reduced to 2% of the b-tagged dijet. It can also be noted

that the contribution from W/Z/H0 is at the level of 1.2% while the t-quark processes are

at the level of 3%, which is a factor of ten larger than the contribution shown in Fig. 11 of
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FIG. 15. Dijet mass reach for the HL-LHC and HE-LHC experiments for dijets identified as b-

jets. The uncertainties on the data points, derived from the bin width used for the simulated Mjj

distributions, are compatible with the size of the symbols.

Sect. VI.

For a completeness, Fig. 17(c)(d) show the 95% C.L. upper limits for the cross section

times the branching ratio for a generic Gaussian signal, assuming the muon-associated dijet

production. Figure 17(e)-(f) show the 95% C.L. upper limits for a Z ′ → bb̄ signal. Generally,

the exclusion limits at a fixed mass obtained using 3 ab−1 are improved by a factor 10

compared to the 100 fb−1 case.

VII. SIGNAL EXTRACTION

The use of an associated lepton in the event selection allows a uniform exploration of the

dijet mass distribution which spans 14 orders of magnitude in rate. The natural question

arises how to extract features that may correspond to signal events from BSM physics.

To illustrate the difficulties arising in a data-driven signal extraction, we will consider an

analytic fit of dijet mass spectra with the monotonically decreasing function:

f(x) = p1(1− x)p2xp3+p4 lnx, (1)
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FIG. 16. The 95% C.L. upper limits obtained from the Mjj distribution on cross section times

the branching ratio to two jets (identified as b-jets) for a hypothetical signal approximated by a

Gaussian contribution to the expected dijet mass. The results are shown for the HE-LHC (without

and with y∗ cut).

were x = Mjj/
√
s and pi are fit parameters. This function was used for inclusive dijet

searches [2, 3, 6] by both ATLAS and CMS collaborations.

Figure 18 shows the mass of two jets together with the fit of Eq. 1. The distribution

for jets associated with isolated muons is shown in Fig. 18(b). The bottom plot shows

the significance of deviations of the function from simulated data in terms of the variable

Si = (di − fi)/∆di, where di is the simulated data point in a bin i, fi is the value of the

function after the χ2 minimization, and ∆di is the statistical uncertainty on the value of di.

We consider the fit scenario when the function Eq. 1 is applied to the dijet mass spectrum

below 1 TeV, and above 1 TeV, separately.

The fit function reasonably describes the mass distribution above 1 TeV. A similar good

agreement between data and the fit function was shown in the previous studies [2, 3, 6]

that used smaller integrated luminosities. When using the same integrated luminosity as in

Ref. [2, 3, 6], no statistical deviations from the fit function were found. The quality of the

fit was given by χ2/ndf = 0.9.

Figure 19 shows the mass of two jets associated with isolated muons together with the fit
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of Eq. 1 for the HL-LHC case. In addition to the high-mass region, the figure shows the fit

results for 0.125 < Mjj < 1 TeV. This scenario is relevant for semi-inclusive searches using an

additional trigger requirement on leptons, and other triggered particles. The function does

describe the low-mass and high-mass regions in Pythia8, even when the fit was performed

separately in these two mass windows. This can be seen from the quoted χ2/ndf value, and

by observing oscillations of Si.

As a test, we have performed a χ2 minimization with Eq. 1 using the Mjj distribution

for inclusive dijets in different Mjj regions. To make sure that the observed feature does

not come from the phase-space re-weighting (see Sect. II), the simulation was performed

without the re-weighting, but using a smaller sample of events. Similar oscillating values of

Si were found. It was found that the fit cannot describe the entire mass spectra, 0.125 <

Mjj < 1 TeV, where it significantly underestimates the tail of the distribution. The fit also

fails for the HE-LHC energies (not shown). A similar behavior in the fit was observed after

multiplying the fit function by the additional term xp5 ln
2 x.

Additional studies have been conducted by taking numerical derivatives of the function

Eq. 1. It was found that the first derivatives of the function and data are monotonically

increasing, while the second derivatives are always positive and do not cross the value zero.

Therefore, the oscillatory behavior of Si after the χ
2 minimization is a reflection of differences

between the shape of theMjj distribution in Pythia8 and the analytic function, rather than

a consequence of the presence of oscillations in the simulated data.

Our results show that there are many challenges at the HL-LHC and HE-LHC in data

driven methods to extract signals in the bulk of Mjj distribution, where the relative statis-

tical uncertainties in Mjj bins reach 0.01%. The analytic approach based on Eq. 1 cannot

describe the Mjj observed in Pythia8. Therefore, small features in the form of peaks from

BSM physics can be masked by the oscillatory behavior of the fit residuals shown in Fig. 19.

In addition to the fit function technique, numerical techniques for data-driven signal ex-

traction may also be used, assuming they can reliably describe the shape for multijet QCD

background and, at the same time, are sensitive to the presence of small peaks in dijet mass

distributions. In the past, a number of peak-identification and data smoothing algorithms

were proposed for counting-type observables [25]. An approach based on a sliding-window

fitting technique was used by ATLAS [3] to overcome the complexity of Mjj distributions.
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VIII. SUMMARY

This paper discusses the potential of precision searches in dijet invariant masses at the

HL-LHC and HE-LHC. It was illustrated that the HE-LHC provides a significantly higher

reach for dijet searches than the HL-LHC, even for rather modest 100 fb−1 luminosity. We

provide the relevant 95% C.L. upper limits obtained from the Mjj distribution on cross-

section times the branching ratio for BSM models predicting heavy particles decaying to

two jets, including jets identified as b-jets. The limits at particle level were obtained for

signals approximated with Gaussian distributions, as well as for Z ′ signal shapes created

using Pythia8 MC.

The dijet masses in semi-inclusive events with associated leptons provides particularly

interesting data for searches, since they can be well measured in a large range of dijet

masses without biases from triggers, and are less affected by the large rate of inclusive jet

events. We have illustrated that a data-driven determination of the shape background at the

HL-LHC and HE-LHC should be performed with the relative statistical precision of 0.01%

per data point for Mjj < 1 TeV. It was shown that a requirement to observe an isolated

muon increases sensitivity to vector-boson and top-quark production. With the expected

statistical precision for the Mjj measurements, the HL-LHC and HE-LHC experiments will

be sensitive to the shape of the Mjj distribution of these processes.

Pythia8MC simulations were used for testing the data-driven approach used at the LHC

for the extraction of BSM signals. When the fit function is applied to the Mjj distribution

that matches the projected HL-LHC luminosity, we observe biases that limit detection of

peaks in the Mjj distributions. Such biases are due to more complex shapes of the Mjj

distributions in Pythia8, reflecting the underlying partonic kinematics, compared to the

analytic function used at the LHC in the past.
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FIG. 17. (a)-(b) show the distribution of dijet invariant masses with jets identified as b-jets, in

events with associated muons for 100 fb−1 and 3 ab−1. (c)-(d) 95% C.L. upper limits obtained from

the on cross section times the branching ratio to two jets for a hypothetical signal approximated by

a Gaussian contribution to the expected dijet mass. The limits are obtained for events with isolated

muons. (e)-(f) 95% C.L. upper limits for a Z ′ particle decaying to two jets for the centre-of-mass

energy of 14 TeV.
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FIG. 18. Dijet invariant masses shown together with the analytic fit function Eq. 1 after the χ2

minimization. The simulations were performed for (a) inclusive dijet events and (b) for dijet events

with associated muon. The results are obtained using 100 fb−1.
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FIG. 19. Dijet invariant masses in events with muons with pT > 60 GeV fitted with the analytic

function Eq. 1 for different mass ranges. The simulations are shown for the HL-LHC collider.
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