Searches for Squarks and Gluinos with ATLAS

Samuel Jones on behalf of the ATLAS Collaboration

University of Sussex

samuel.david.jones@cern.ch

Mass2018, Odense, Denmark 28th May - 1st June

Outline

Introduction - ATLAS and SUSY

- Status of ATLAS and SUSY in 2018
- Motivation for squark and gluino searches at ATLAS

Squark and gluino searches at ATLAS

- The anatomy of a typical SUSY search
- Some recent searches and results
 - Long-lived particles
 - Leptonic final states

Summary and Outlook

• Current limits and potential sensitivity at the end of Run 2 and beyond

イロト イヨト イヨト イヨト

Introduction - ATLAS and SUSY

イロト イヨト イヨト イヨ

Introduction

The LHC and ATLAS - where are we now?

- SUSY searches are a key part of the ATLAS physics program
- Huge variety of ATLAS searches with 2015+2016 and $\sqrt{s} = 13$ TeV data completed
- SPOILER ALERT no sign of SUSY, yet ;)
- Analysis ongoing for 2017 data
- 2018 data taking under way with higher than ever instantaneous luminosity

Squarks and Gluinos

SUPERSYMMETRY

SUSY particles

Standard particles

Why squarks and gluinos?

- Natural SUSY spectrum without fine tuning requires light stop and gluino masses
- Should be accessible to the LHC
- Squarks and gluinos \rightarrow higher cross sections

Why SUSY?

- Cancel quadratic divergences to Higgs mass calculation
- Unification of gauge interactions
- LSP excellent candidate for dark matter

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ SUSY/FeynmanGraphs/CrossSections/CrossSections/ Ecm_13TeV/xsec_plot.png

SUSY Models

Gauge eigenstates			Mass eigenstates		
bino, wino, higgsinos wino, higgsinos	10, wino, higgsinos $\tilde{B}, \tilde{W}^0, \tilde{H}^0_u, \tilde{H}^0_d$ wino, higgsinos \tilde{W}^+, \tilde{H}^+		$ ilde{\chi}^{0}_{1}, ilde{\chi}^{0}_{2}, ilde{\chi}^{0}_{3}, ilde{\chi}^{0}_{4}$ $ ilde{\chi}^{+}_{1}, ilde{\chi}^{+}_{2}$	neutralinos charginos	
	$\tilde{W}^-, \tilde{H}_d^-$	$\frac{1}{2}$	$\tilde{\chi}_1^+, \tilde{\chi}_2^-$	5	
gluinos	ĝ	$\frac{1}{2}$	no mixing		
selectron, smuon, stau sneutrinos	$\begin{array}{l} \tilde{e}_{L,R}, \tilde{\mu}_{L,R}, \tilde{\tau}_{L,R} \\ \tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau \end{array}$	0 0	$\begin{array}{c} \tilde{e}_{L,R}, \tilde{\mu}_{L,R}, \tilde{\tau}_1, \tilde{\tau}_2 \\ \tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau \end{array}$	sleptons sleptons or sneutrinos	
sup, scharm, stop sdown, sstrange, sbottom	$ \begin{array}{l} \tilde{u}_{L,R}, \tilde{c}_{L,R}, \tilde{t}_{L,R} \\ \tilde{d}_{L,R}, \tilde{s}_{L,R}, \tilde{b}_{L,R} \end{array} $	0 0	$ \begin{array}{l} \tilde{u}_{L,R}, \tilde{c}_{L,R}, \tilde{t}_1, \tilde{t}_2 \\ \tilde{d}_{L,R}, \tilde{s}_{L,R}, \tilde{b}_1, \tilde{b}_2 \end{array} $	squarks	

arXiv:1609.01686v1 [hep-ex]

Rich phenomenology

- MSSM has $> 100 \text{ parameters} \rightarrow \text{cannot}$ scan all of parameter space
- Simplified models sparticle masses not involved in signature of interest set to high values

Typical signal topologies

- R-parity conserving (RPC)
 - Pair produced
 - Decaying to LSP
 - Large $E_{\rm T}^{\rm miss}$
- R-parity violating (RPV)
 - Decay to SM
 - Lifetime depends on λ coupling

・ロト ・日下・ ・ ヨト・

Squark and gluino searches at ATLAS

• • • • • • • • • • • • •

Typical search strategy

Design kinematic selections for background rejection and estimation

- Signal regions rich in signal events
- Control regions rich in specific background process
- Validation regions lie somewhere between SRs and CRs

Background estimation

- Reducible backgrounds determine from data
- Irreducible backgrounds
 - Dominant normalise in CR
 - Subdominant MC estimation

Simultaneous fit

 Combined fit of all regions including experimental and theoretical uncertainties

イロト イヨト イヨト イヨト

observable 1

SR2

SR3

arXiv:1410.1280v1 [hep-ex] 6 Oct 2014

Long-lived searches

イロト イヨト イヨト イヨ

Disappearing track

SUSY scenario with $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^0$

- Almost pure wino \rightarrow nearly mass degenerate
- $\tilde{\chi}_1^{\pm}$ long-lived $\mathcal{O}(\mathsf{ns})$
- Soft $\pi^+ \rightarrow \textit{disappearing track}$
- Run 2 improvement reconstruct shorter tracklets

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-06/fig_01.png

PAPERS/SUSY-2016-06/fig_04.png

イロト イヨト イヨト イヨト

Samuel Jones (University of Sussex)

Searches for Squarks and Gluinos with ATLAS

Mass2018 10 / 21

Disappearing track

Exclusion limits

- Limits depend on the lifetime of the chargino
- Disappearing track analysis sensitive when the chargino decays in the inner detector

Displaced vertex

Split SUSY models

- Large squark masses \rightarrow gluino long-lived
- Hadronise into R-hadron leading to displaced vertex (DV)
- Reconstruct displaced vertex using large radius tracking
- Hadronic interactions in material rich detector regions - map-based veto

PAPERS/SUSY-2016-08/fig_07a.png

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-08/fig_03a.png < <p>I > < </p>

Gluino mass limit vs. lifetime

- Reinterpretation of existing ATLAS analyses in the context of R-hadrons from split SUSY
- RPC 0L + jets strong limits until decay of R-hadron reaches calorimeters
- Displaced vertex most powerful analysis for intermediate lifetimes
- Pixel dE/dx sensitivity when R-hadron track can be reconstructed before decay

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/ SUSY/ATLAS_SUSY_LLP/ATLAS_SUSY_LLP.png

Reinterpret existing ATLAS searches in the context of RPV SUSY

• SUSY model - light gluinos and LSP

$$\mathcal{W}_{\mathsf{RPV}} = rac{\lambda_{ijk}}{2} L_i L_j ar{E}_k + \lambda_{ijk}' L_i Q_j ar{D}_k + rac{\lambda_{ijk}''}{2} ar{U}_i ar{D}_j ar{D}_k + \kappa_i L_i H_u$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Non-zero $\lambda_{323}^{\prime\prime},$ all other RPV couplings set to zero

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/fig_05.png

Leptonic final states

・ロン ・回 と ・ ヨン・

Stop pair production with taus

Gauge-mediated SUSY breaking

- G is the LSP
- Ditau final state semileptonic and fully hadronic SRs
- lep-had region single lepton trigger
- had-had region E^{miss}trigger
- Dominant background misidentified taus
 - lep-had Fake factor
 - had-had Control Region

https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/PAPERS/SUSY-2016-19/fig_01.png

イロト イヨト イヨト イヨ

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-19/fig_05d.png

1200 1300

m(t̃,) [GeV]

Same sign or three leptons

Same sign / three leptons present in many SUSY scenarios

- Low SM background
- Reducible background: charge-flip electrons - reject with BDT
- Extract charge-flip probability from $Z \rightarrow ee$ electrons

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-14/figaux_08.png

PAPERS/SUSY-2016-14/fig_03a.png

<ロト < 回 > < 回 > < 回 > < 回 >

Same sign or three leptons

Exclusion limits

Improved sensitivity for compressed scenarios

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-14/ATLAS_SUSY_Gtt.png

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-14/ATLAS_SUSY_Strong_2step.png

< ロ > < 同 > < 三 > < 三

Same sign or three leptons

• Sensitivity to direct sbottom pair production via $\tilde{\chi}_1^{\pm}$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-14/fig_01e.png

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2016-14/fig_04d.png

• • • • • • • • • • • •

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫£ dt[fb	¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$
Inclusive Searches	$\begin{array}{l} \overline{q}\partial_{i}, \overline{q} \rightarrow q \xi_{i}^{0} \\ \overline{q}\partial_{i}, \overline{q}\partial_{i$	0 mono-jet 0 ee, μμ 3 e, μ 0 1-2 τ + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 36.1 20.3	4 710 GeV 8 710 GeV 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 TeV 2.05 TeV	$\begin{split} n(\xi_1^0) &\sim 200 \text{GeV}, \ n([1^m] \text{gen. 4}) - m(2^m) \xi_2^{(m)} = 0 \\ m(\xi_1^0) - m(\xi_1^0) - 5 \text{GeV} \\ m(\xi_1^0) - 200 \text{GeV}, \ m(\xi_1^0) - 0.5 (m(\xi_1^0) + m(\xi_2)) \\ m(\xi_1^0) - 200 \text{GeV}, \ m(\xi_1^0) - 0.0 \text{GeV} \\ m(\xi_1^0) - 400 \text{GeV} \\ m(\xi_1^0) - 400 \text{GeV} \\ m(\xi_1^0) - 100 \text{GeV}, \ m(\xi_1^0$
3 rd gen. <u>§</u> med.	$\bar{g}\bar{g}, \bar{g} \rightarrow b\bar{b}\bar{\chi}_{1}^{0}$ $\bar{g}\bar{g}, \bar{g} \rightarrow t\bar{t}\bar{\chi}_{1}^{0}$	0 0-1 e,µ	3 b 3 b	Yes Yes	36.1 36.1	ğ ğ	1.92 TeV 1.97 TeV	m(k̂ ⁰ ₁)<600 GeV m(k̂ ⁰ ₁)<200 GeV
3rd gen. squarks direct production	$ \begin{split} \bar{b}_1 \bar{b}_1 , \bar{b}_1 \to b \bar{k}_1^{0} \\ \bar{b}_1 \bar{b}_1 , \bar{b}_1 \to b \bar{k}_1^{-1} \\ \bar{b}_1 \bar{b}_1 , \bar{b}_1 \to b \bar{k}_1^{-1} \\ \bar{t}_1 \bar{t}_1 , \bar{t}_1 \to b \bar{k}_1^{-1} \\ \bar{t}_1 \bar{t}_1 , \bar{t}_1 \to b \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1 , \bar{t}_1 \to c \bar{k}_1^{0} \\ \bar{t}_1 \bar{t}_1 , \bar{t}_1 \to c \bar{k}_1^{0} \\ \bar{t}_2 \bar{t}_2 , \bar{t}_2 \to \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2 , \bar{t}_2 \to \bar{t}_1 + A \end{split} $	0 2 e, μ (SS) 0 $\cdot 2 e, \mu$ 0 $\cdot 2 e, \mu$ 0 2 e, μ (Z) 3 e, μ (Z) 1 $\cdot 2 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 10.3/36.1 36.1 20.3 36.1 36.1 36.1	5r. 950 GeV 117-170 GeV 275-700 GeV 4, 91196 GeV 0.185-10 TeV 7, 90-190 GeV 0.185-10 TeV 7, 90-190 GeV 0.185-10 TeV 7, 90-190 GeV 0.195-10 TeV 7, 90-190 GeV 0.195-00 GeV 7, 90-790 GeV 100-900 GeV 7, 90-790 GeV 100-900 GeV 7, 90-790 GeV 100-900 GeV		$\begin{split} m(\tilde{c}_{1}^{2}) &< 420 \text{GeV} \\ m(\tilde{c}_{1}^{2}) &< 200 \text{GeV}, m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{1}^{2}) + 100 \text{GeV} \\ m(\tilde{c}_{1}^{2}) &= 2m(\tilde{c}_{1}^{2}), m(\tilde{c}_{1}^{2}) = 55 \text{GeV} \\ m(\tilde{c}_{1}) - m(\tilde{c}_{1}^{2}) &= 56 \text{GeV} \\ m(\tilde{c}_{1}^{2}) - 150 \text{GeV} \\ m(\tilde{c}_{1}^{2}) &= 0 \text{GeV} \\ m(\tilde{c}_{1}^{2}) &= 0 \text{GeV} \end{split}$
Long-lived particles	$ \begin{array}{l} \mbox{Stable}, \mbox{stopped} \ \Bar{g} \ \R-hadron \\ \mbox{Stable} \ \Bar{g} \ \R-hadron \\ \mbox{Metastable} \ \R-hadron \\ \R-hadron \ \R-hadron \\ \R-hadron \ \R-hadron \\ \R-hadron \ \R-hadron \ \R-hadron \\ \R-hadron \ \ \R-hadron \ \ $	0 trk dE/dx trk displ. vtx 1-2 μ 2 γ displ. ee/eμ/μμ	1-5 jets - - - - - μ -	Yes - Yes - Yes -	27.9 3.2 32.8 19.1 20.3 20.3	홍 850 GeV 홍 홍 홍 홍 우 537 GeV 옥 같 440 GeV 옷	1.58 TeV 1.57 TeV 2.37 T	$\begin{split} m(\tilde{k}_{1}^{0}) &= 100 \; GeV, \; 10 \; \mu s \! < \! \tau(\tilde{g}) \! < \! 1000 \; s \\ m(\tilde{k}_{1}^{0}) &= 100 \; GeV, \; \tau \! > \! 10 \; ns \\ \hline GV_{1}^{0}(\tilde{g}) \! = \! 0.17 \; ns, \; m(\tilde{k}_{1}^{0}) \! = 100 \; GeV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \! < \! tangk \! - \! SV \\ 10 \!$
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \bar{v}_r + X_r \bar{v}_r {\rightarrow} ept/ert/\mu\tau \\ Bilnear RPV CMSSM \\ \bar{X}_1^r, \bar{X}_1^r \rightarrow MS_1^{r} \tilde{\mathcal{M}}_1^{r} {\rightarrow} exer, epr, \mu\mu\nu \\ \bar{X}_1^r, \bar{X}_1^r \rightarrow MS_1^{r} \tilde{\mathcal{M}}_1^{r} {\rightarrow} erre, \\ \bar{B}_1, \bar{X}_1^r \rightarrow MS_1^{r} \tilde{\mathcal{M}}_1^{r} {\rightarrow} eqq \\ \bar{B}_2, \bar{B}_2, \bar{B}_1, \bar{B}_1, \bar{D} {\rightarrow} S_1 \\ \bar{B}_1, \bar{A}_1 {\rightarrow} DS \\ \bar{I}_1\bar{I}_1, \bar{I}_1 {\rightarrow} DS \\ \bar{I}_1\bar{I}_1, \bar{I}_1 {\rightarrow} DS \end{array} $	$e\mu,e\tau,\mu\tau$ $2 e,\mu$ (SS) $4 e,\mu$ $3 e,\mu + \tau$ $0 4-1 e,\mu$ 8- $1 e,\mu$ 8- $0 2 e,\mu$	- 0-3 b - 5 large-R jo -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes ts - b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	5, 4 P 41 430 GeV 8 8 8 8 7, 100-470 GeV 480-610 GeV 7, 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,	1.9 TeV 1.45 TeV 1.875 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} \lambda_{311}^{\prime} = & 0.11, \lambda_{112}(_{131})_{233} = 0.07 \\ m(\beta) = m(\beta), \ e_{T,S} = c + 1 \\ m(\beta)^{\prime} = & 0.026, \ e_{T,S} = c + 1, 2 \\ m(\beta^{\prime}) = & 0.226, \ m(\beta^{\prime}) = $
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		m(\$\vec{k}_1^0)<200 GeV
Only a pheno simpl	a selection of the available mas omena is shown. Many of the l ified models, c.f. refs. for the a	s limits on r imits are bas ssumptions	new state sed on made.	s or	10) ⁻¹ 1		Mass scale [TeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/ATLAS_SUSY_Summary/ATLAS_SUSY_Summary.png

0

・ロト ・回ト ・ヨト ・ヨト

Conclusions

Rich and varied program of searches for squarks and gluinos at ATLAS

- No sign of SUSY yet in 2015 + 2016 data
- Stop limits approaching the 1 TeV level
- Gluino limits approaching the 2 TeV level
- SUSY is running out of places to hide...

R&D under way for 2017 + 2018 data

- By the end of the year the total integrated luminosity will be $> 100 \text{ fb}^{-1}$
- High luminosity LHC much much more!
- Watch this space...

PUBNOTES/ATL-PHYS-PUB-2014-010/