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1 Introduction

Searches for diboson resonances provide an essential test of theories of electroweak symmetry breaking
beyond the Standard Model (BSM). Vector resonances are predicted in various BSM scenarios, such
as in extended gauge models [1, 2], Little Higgs models [3], Composite Higgs models and walking
technicolor [4–6], unitarized Electroweak Chiral Lagrangian models [7], as well as in theories with extra
dimensions [8–10]. In addition, new scalar diboson resonances result from models with an extended
Higgs sector [11, 12]. This Letter reports on a search for a W Z resonance in the fully leptonic decay
channel `ν `` (` = e or µ), produced either by quark–antiquark (qq̄) fusion or by vector-boson fusion
(VBF). The proton–proton collision data were collected by the ATLAS detector [13] at the Large Hadron
Collider (LHC) at a centre-of-mass energy

√
s = 13 TeV.

Parameterized Lagrangians [14–16] incorporating a heavy vector triplet (HVT) permit the interpretation
of searches for vector resonances in a generic way. Here, the simplified phenomenological Lagrangian
of Ref. [15] is used. The coupling of the new heavy vector resonance, V , to the Higgs boson and the
Standard Model (SM) gauge bosons is parameterized by gV cH and to the fermions via the combination
(g2/gV )cF , where g is the SM SU(2) gauge coupling. The parameter gV represents the typical strength
of the vector-boson interaction, while the parameters cH and cF are expected to be of the order of unity
in most models. The vector-boson scattering process, pp→ V j j → W Z j j, is only sensitive to the gauge
boson coupling and, in this case, the benchmark model used to interpret the results assumes no coupling
of the heavy vector resonance to fermions.

The Georgi–Machacek model (GM) [17, 18] is used as a benchmark for a singly charged scalar resonance.
The model extends the Higgs sector by including one real and one complex triplet, while preserving
custodial symmetry, ensuring that the parameter ρ = M2

W/(M2
Z cos2 θW ) = 1 at tree level. It is less

experimentally constrained [19, 20] than other models with higher isospin representations, such as Little
Higgs models or Left–Right symmetric models [21]. A parameter sin θH , representing the mixing of
the vacuum expectation values, determines the contribution of the triplets to the masses of the W and
Z bosons. The ten physical scalar states are organized into different custodial multiplets: a fiveplet
(H++5 ,H+5 ,H

0
5,H

−
5 ,H

−−
5 ) which is fermiophobic but couples to W Z , a triplet, and two singlets, one of

which is identified as the 125 GeV SM Higgs boson. Assuming that the triplet states are heavier than
the fiveplet scalars, H5 can only be produced by vector-boson fusion and the cross section is proportional
to sin2 θH . The singly charged members of this fiveplet are the object of the present search in the VBF
channel. For both models the intrinsic width of the resonance is below 4%, which is lower than the
experimental resolution in nearly all the parameter space explored in the present analysis.

The VBF process (pp → W Z j j) is characterized by the presence of two jets with a large rapidity gap
resulting from quarks from which a vector boson has been radiated. The absence of this topology is
interpreted as qq̄ production, collectively referred to here as qq̄. The spectrum of the reconstructed
invariant mass of the W Z resonance candidates is examined for localized excesses over the expected SM
background. Results are provided for the VBF and qq̄ categories separately, neglecting possible signal
leakage between them.

Early results from the Tevatron [22, 23] have put limits on the mass of a W ′ boson of an extended
gauge model [2] in the W Z channel between 180 GeV and 690 GeV. The present analysis extends the
search for resonant W Z production beyond that in Run 1 pp collision data at

√
s = 8 TeV performed

by the ATLAS [24] and CMS [25] collaborations. Each collaboration has combined results [26–28]
from searches for heavy VV and VH resonances (V = W or Z) based on Run 1 data and on partial

2



Run 2 data at
√

s = 13 TeV in the fully hadronic (qqqq), semileptonic (`νqq, ``qq, ννqq), and fully
leptonic (````, `ν``, ``νν) final states. More recent results from VV and VH resonance searches with
data at

√
s = 13 TeV have been reported in Refs. [29–38]. The various decay channels generally differ

in sensitivity in different mass regions. The fully leptonic channel, in spite of a lower branching ratio,
is expected to be particularly sensitive to low-mass resonances as it has lower backgrounds. A recent
search [39] by the CMS Collaboration for a charged Higgs boson produced by vector-boson fusion and
decaying intoW Z in the fully leptonic mode, using 15.2 fb−1 of data collected at

√
s = 13 TeV, has yielded

limits on the coupling parameter of the GM model, as a function of mass. Limits on the GM model have
also been set, based on analyses of same-charge WW production by CMS [40] and opposite-charge WW
production by ATLAS [41], using data at

√
s = 13 TeV with an integrated luminosity of 36.1 fb−1.

2 ATLAS detector

The ATLAS detector at the LHC has a cylindrical geometry with a near 4π coverage in solid angle.1
The inner detector (ID), consisting of silicon pixel, silicon microstrip and transition radiation detectors,
is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. It allows precise
reconstruction of tracks from charged particles and measurement of their momenta up to a pseudorapidity
of |η | = 2.5. High-granularity lead/liquid-argon (LAr) sampling electromagnetic and steel/scintillator-tile
hadron calorimeters, at larger radius, provide energy measurements in the central pseudorapidity range
|η | < 1.7. In the endcap and forward regions, LAr calorimeters for both the EM and hadronic energy
measurements extend the region of angular acceptance up to |η | = 4.9. Outside the calorimeters, the muon
spectrometer incorporates multiple layers of trigger and tracking chambers in a magnetic field produced
by a system of superconducting toroid magnets, enabling an independent precise measurement of muon
track momenta for |η | < 2.7. The ATLAS trigger system consists of a hardware-based level-1 trigger
followed by a software-based high-level trigger [42].

3 Data and Monte Carlo samples

The data used in this analysis were collected during 2015 and 2016 with the ATLAS detector in pp
collisions at a centre-of-mass energy of 13 TeV at the LHC. The minimum bunch crossing interval is
25 ns, with a mean number of 23 additional interactions per bunch crossing. The events are required
to have passed combinations of single-electron or single-muon triggers. The transverse momentum
threshold of the leptons in 2015 is 24 GeV for electrons and 20 GeV for muons satisfying a loose isolation
requirement based only on ID track information. Due to the higher instantaneous luminosity in 2016 the
trigger threshold was increased to 26 GeV for both electrons and muons and tighter isolation requirements
were applied. Additional electron and muon triggers that do not include any isolation requirements with
transverse momentum thresholds of pT = 60 GeV and 50 GeV, and a single-electron trigger requiring pT
> 120 GeV with less restrictive electron identification criteria are used to increase the selection efficiency
which reaches close to 100%. Events are accepted only if quality criteria for detector and data conditions

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.
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are satisfied. With these conditions, the available datasets correspond to an integrated luminosity of
36.1 fb−1.

Samples of simulated data were produced by Monte Carlo (MC) generators with the detector response
obtained from the Geant4 toolkit [43, 44]. For some samples, the calorimeter response is obtained from
a fast parameterized simulation [45], instead of Geant4. Additional simulated inelastic pp collisions,
generated with Pythia 8.186 [46] with the A2 set of tuned parameters [47] and the MSTW2008LO [48]
parton distribution function (PDF), were overlaid in order to model both the in- and out-of-time effects
from additional pp collisions (pile-up) in the same and neighbouring bunch crossings. The mean number
of pile-up events in the MC samples was set to reflect the conditions in the data.

For the HVT interpretation, W ′ → W Z samples were generated. Two benchmark models, provided in
Ref. [15], are used. In Model A, weakly coupled vector resonances arise from an extension of the SM
gauge group [49] with an additional SU(2) symmetry group and the branching fractions to fermions and
gauge bosons are comparable. In Model B, the heavy vector triplet is produced in a strongly coupled
scenario, as in a Composite Higgs model [50] and fermionic couplings are suppressed. The parameter gV
was set to 1 for Model A and to 3 for Model B. For both models, the parameter cF is assumed to be the
same for all types of fermions. Simulated signal samples for the HVT benchmarkModel A were generated
for masses of vector resonances ranging from 250 GeV to 3 TeVwith MadGraph_aMC@NLO 2.2.2 [51],
using the model file provided by the authors in Ref. [52] with the NNPDF23LO [53] PDF set. They are
hadronized with Pythia 8.186. For interpretation in terms of Model B, the Model A cross sections are
simply scaled. This is justified since the width remains well below the experimental resolution and the
angular distributions are the same for both models.

For the VBF production channel, HVT samples were generated with gV = 1 for masses ranging from
250 GeV to 2 TeV. The coupling parameter cH was set to 1 and all other couplings of the heavy triplet,
including cF , were set to 0 in order to maximize the VBF contribution. A dijet invariant mass of at least
150 GeV was required during event generation.

For the GM signal samples, pp→ H±5 j j → W±Z j j were produced with MadGraph_aMC@NLO 2.2.2
for the mass range 200 to 900 GeV in the H5-plane defined in [54], compatible with present limits [20,
55], using GMCALC [56] and with sin θH = 0.5. They were produced at leading order, but normalized to
next-to-leading order according to Ref. [11], where the cross sections and widths, which scale as sin2 θH ,
are also given. For these samples, a minimum pT of 15 GeV (10 GeV) for the jets (leptons) was required
during event generation and the pseudorapidity must be in the range |η | < 5 for jets and |η | < 2.7 for
leptons.

The background sources in this analysis include processes with two or more electroweak gauge bosons,
namelyVV andVVV as well as processes with top quarks, such as tt̄, tt̄V , single top and tZ , and processes
with gauge bosons produced in association with jets or photons (Z + j and Zγ ). MC simulation is used to
estimate the contribution from background processes with three or more prompt leptons while data-driven
techniques are used for the case of background processes with at least one misidentified or non-prompt
lepton. Simulated events are used for cross checks and to assess the systematic uncertainties in these
backgrounds.

The dominant W Z SM background process of order (α2α2
s ) involving color-exchange diagrams, here

referred to as QCD W Z , was modelled using Sherpa 2.2.2 [57] at next-to-leading order (NLO), and
includes hard-scattering, parton shower, hadronization and the underlying events. Up to three additional
partons generated at tree level were merged with the parton shower. In order to estimate an uncertainty due
to the parton shower modelling, two alternative W Z samples were produced using Powheg-Box v2 [58]
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interfaced with Pythia 8.186 and Herwig++ [59] respectively. A sample of the purely electroweak
process W Z j j → `ν `` j j (labelled W Z j j) with a matrix-element b-quark veto (at zero order in αs)
was generated separately with Sherpa 2.2.2. Contributions from W Z jb→ `ν `` bj (labelled W Zbj) are
included in the tZ sample described below. To estimate an uncertainty due to the parton shower modelling
an alternative Madgraph+Pythia 8 sample was produced. This Madgraph sample includes b-quarks in
the initial state and was split to provide a sample without (with) a b-quark in the final state to model the
W Z j j (tZ +W Zbj) background.

Samples of qq̄ → Z Z → 4` or qq̄ → Z Z → `` νν were generated by Powheg-Box v2 at NLO,
interfaced to Pythia 8.186 and normalized to NNLO by K-factors evaluated in Ref. [60]. The gg → Z Z
and tribosons were generated with Sherpa 2.1.1. The tt̄V and tZ processes were generated at LO using
Madgraph_aMC@NLO, interfaced with Pythia 8.186 (tt̄V) and Pythia 6.428 (tZ). The tt̄V samples
were normalized to NLO predictions [11].

Finally samples of SM backgrounds with at least one misidentified or non-prompt lepton, including
Zγ, Wγ, Drell–Yan Z → ``, W → `ν as well as top-pair and single-top were generated to assist in the
fake/non-prompt lepton background estimate. Eventswith Zγ andWγ in the final statewere generatedwith
Sherpa 2.1.1. Drell–Yan Z → ``, W → `ν as well as top-pair and single-top production channels were
generated with Powheg-Box v2 and hadronized with Pythia. To avoid double counting the Zγ events,
Z events produced by the Drell–Yan process with a photon from final-state radiation with pT > 10 GeV
were removed. The parton shower for processes with top quarks was modelled with Pythia 6.428.
Madgraph_aMC@NLO and Pythia 8.186 were used for background processes involving a pair of top
quarks accompanied by a W boson or by a pair of charged leptons. The Z and single-top cross sections
were normalized to NNLO by K-factors evaluated in Ref. [60, 61].

SMbackgroundswithHiggs bosons (H, tt̄H,VH) contribute less than 0.1%of the total background because
of the low cross section and the requirement of a well reconstructed Z boson decaying leptonically. These
backgrounds are neglected.

4 Reconstructed objects

Events are required to have at least one primary vertex with at least two associated tracks, each with
transverse momentum pT > 0.4 GeV. If there is more than one vertex reconstructed in the event, the one
with the largest track

∑
p2
T is chosen as the hard-scatter primary vertex and is subsequently used for the

reconstruction of electrons, muons, jets and missing transverse momentum.

Electron candidates are reconstructed from energy deposits in the EM calorimeter which are matched to
a well-reconstructed ID track originating from the primary vertex. The electron identification is based on
a likelihood evaluated from a multivariate discriminant. They are categorized as satisfying the medium
or the tight reconstruction quality requirements, as defined in Ref. [62]. Only electrons with transverse
energy ET > 25 GeV in the pseudorapidity range |η | < 2.47 are considered in this analysis. The candidate
electrons are required to pass an isolation condition: an upper value of the scalar sum of the transverse
momentum of the tracks with pT > 0.4 GeV in a cone of size ∆R = min(0.2, 10 GeV/ET) around the
electron, excluding the track of the electron itself, is chosen such that the efficiency is constant at 99% for
electrons in Z → ee events. For tight electrons, an isolation requirement is imposed, based on calorimeter
as well as track variables, which varies as a function of transverse energy and yields an efficiency between
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95% and 99% for electrons with pT in the range 25–60 GeV. For a pair of electrons sharing the same
ID-track, the electron with higher cluster ET is kept.

Muons are reconstructed by combining tracks from the inner detector with tracks from the muon spectro-
meter. They are required to satisfy medium or tight quality requirements, as defined in Ref. [63]. Only
muons with pT > 25 GeV and |η | < 2.7 are considered in this analysis. Isolation requirements are also
applied to all muons, based on the ratio pvarconeT /pµT, where pvarconeT is the scalar sum of the transverse
momenta of the tracks with pT > 1 GeV in a cone of size ∆R = min(10 GeV/pµT, 0.3) around the muon,
excluding the muon track itself. This isolation gives 99% efficiency, independently of η or pµT, in Z → µµ

samples.

Electron and muon candidates are required to originate from the primary vertex. Thus, the significance
of the track’s transverse impact parameter calculated relative to the beam line, |d0/σd0 |, must be less than
three for muons and less than five for electrons, and the longitudinal impact parameter, z0 (the difference
between the value of z of the point on the track at which d0 is defined and the longitudinal position of the
primary vertex), is required to satisfy |z0 · sin(θ)| < 0.5 mm.

Jets are reconstructed from clusters of energy deposition in the calorimeter [64] using the anti-kt al-
gorithm [65] with a radius parameter R = 0.4. Events with jets arising from detector noise or other
non-collision sources are discarded [66]. This search considers jets with pT > 30 GeV in the range
|η | < 4.5. Furthermore, to mitigate the pile-up contamination, a jet vertex tagger [67], based on in-
formation about tracks associated with the primary vertex and pile-up vertices, is applied to jets with
pT < 60 GeV and |η | < 2.4. The selected working point provides at least 92% efficiency. The energy of
each jet is calibrated and corrected for detector effects using a combination of simulated events and in situ
methods in 13 TeV data [68].

As lepton and jet candidates can be reconstructed from the same detector information, a procedure to
resolve overlap ambiguities is applied. If an electron and a muon share the same ID track, the muon
is selected. Reconstructed jets which overlap with electrons or muons in a cone of size ∆R = 0.2 are
removed.

Jets containing b-hadrons are identified as b-jets by the MV2c10 b-tagging algorithm [69], which uses
information such as track impact-parameter significances and positions of explicitly reconstructed sec-
ondary decay vertices. A working point corresponding to 85% b-tagging efficiency on a sample of tt̄
events is chosen [70], with a light-flavour jet rejection factor of about 34 and a c-jet rejection of about 3.
Correction factors are applied to the simulated event samples to compensate for differences between data
and simulation in the b-tagging efficiency for b-jets, c-jets and light-flavour jets.

The missing transverse momentum, ®pmiss
T , and its magnitude Emiss

T , are calculated from the imbalance in
the sum of visible transverse momenta of reconstructed physics objects: electrons, muons and jets, as well
as a “soft” term reconstructed from tracks compatible with the primary vertex and not associated with any
of those objects [71, 72].

5 Event selection

Preselection criteria are first applied to all the event samples. The presence of three prompt leptons
is required, two of which will be associated with the Z boson, and are required to satisfy the medium
quality requirement (Section 4). The Z boson candidate is reconstructed from the two leptons of same
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flavour and opposite charge, whose invariant mass is closest to the on-shell mass mZ , and in the range
|m`` − mZ | < 20 GeV. The third lepton, associated with the W boson decay, is required to satisfy the
tight quality criteria to enhance the background rejection. To ensure that the trigger efficiency is well
determined, at least one of the candidate leptons is required to have pT > 27 GeV.

To suppress background processes with at least four prompt leptons, events with a fourth lepton candidate
satisfying looser selection criteria are rejected. For this looser selection, the requirement on the minimum
pT of the leptons is lowered to pT > 7 GeV and medium identification requirements are used for both the
electrons and muons.

Since there is a neutrino in the signal events, Emiss
T > 25 GeV is also required. The third lepton and the

missing transversemomentum are assumed to result from theW boson decay. The longitudinal momentum
pνz of the neutrino is calculated by requiring that the invariant mass of the lepton–neutrino system be equal
to the W mass. The solution results in a quadratic equation which leads to two possible solutions. If they
are real, the one with the smaller |pνz | is chosen since it was found to provide a better agreement with
the truth. Otherwise, the real part is chosen. The invariant mass, mWZ , of the W Z resonance candidate
is then reconstructed using the chosen solution for pνz along with the four-momenta of the three charged
leptons.

(a) (b)

Figure 1: The signal selection acceptance times efficiency (A×ε), defined as the ratio of the number of MC signal
events in the VBF category to the number of generated signal events, is presented as a function of the resonance
mass. Figure 1(a) corresponds to the GM Model H±5 while Figure 1(b) corresponds to the HVT models. The A×ε
is shown for each decay channel and the sum of all lepton flavour combinations (inclusive). The error bars shown
in each figure represent the total statistical and systematic uncertainties.

The selected events are then separated into two categories targeting different production mechanisms:
VBF and qq̄. The VBF category contains events with two or more jets with pT > 30 GeV which fail
the b-tagging requirements described in Section 4. The dijet pair defined by the two highest-pT jets in
the event must also have large η separation (|∆ηj j | > 3.5) and an invariant mj j above 500 GeV. If more
than two jets are found in an event, the two highest-pT jets are considered. By imposing a b-jet veto,
backgrounds containing one or more top quarks, including tt̄, tt̄ +W/Z , and tZ are suppressed.

The net acceptance times efficiency (A×ε) of the selection, relative to signal events generated for H±5 and
HVT models in the VBF category is shown in Figure 1. The generation of the GM Model H±5 events had
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the following requirements: pT (jets) > 15 GeV, pT (leptons) > 10 GeV, |η |(jets) < 5 and |η |(leptons) < 2.7.
Decays of W bosons into all lepton flavours, and of Z bosons into e+e− and µ+µ−, were simulated. The
Z → τ+τ− decays give a negligible contribution and were not included in the simulation, but the A×ε
shown was scaled to include all decays. For the HVT VBF samples, mj j > 150 GeV was required at
generator level. Decays of W and Z bosons into all flavours of leptons were included. For HVT and H±5
the A×ε falls in the range 2–8% and 3–12% respectively for resonance masses ranging between 200 and
900 GeV, the difference being due, with approximately equal importance, to the generator level selection
and to the different angular distributions of the final products.

The remaining events are assigned to the qq̄ category signal region. For this category, theW and Z bosons
from a resonance produced in the s-channel with mWZ larger than 250 GeV are expected to have transverse
momenta close to 50% of its mass. The requirements pWT /mWZ > 0.35 and pZ

T /mWZ > 0.35 enhance the
sensitivity to the signal. The overall selection efficiency relative to generated event increases from about
15% to 25% for resonances masses ranging from 500 GeV to 3 TeV as illustrated in Figure 2. Decays of
W and Z bosons into all flavours of leptons are included at event generation. The A×ε values decrease for
resonance masses above approximately 2 TeV due to the collinearity of electrons from the Z → ee decays
which spoils the isolation.

Figure 2: The signal selection acceptance times efficiency (A×ε), defined as the ratio of the number of MC signal
events in the qq̄ category to the number of generated signal events, as a function of the HVT resonance mass. The
error bars represent the total statistical and systematic uncertainties.

6 Background estimation

The dominant background in the resonance search is the SM production of W Z . Its normalization and
shape are estimated from MC and validated in dedicated validation regions by comparing the data and
MC distributions. Events in the validation regions are selected in exactly the same way as those in their
corresponding signal categories except for the following requirements. The VBF W Z validation region is
defined by inverting the requirements on the dijet variables: 100 < mj j < 500 GeV and |∆ηj j | < 3.5. The
W Z qq̄ validation region requires the events to have pZT/mWZ < 0.35 or pWT /mWZ < 0.35. These validation
regions are dominated by the W Z contribution, with a purity higher than 80%. For the benchmark models
with parameters given in Section 3, the signal contamination in the qq̄ (VBF) validation region is below
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5% (1%). The reconstructed mWZ mass in the validation regions is shown in Figure 3, where good
agreement of data with the background prediction is observed.
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Figure 3: Observed and expected distributions of the W Z invariant mass in (a) the qq̄ validation region and (b) the
VBF validation region. The points correspond to the data and the histograms to the expectations for the different
SM processes. The uncertainty in the total background prediction, shown as bands, combines statistical, theory and
systematic contributions.The bin sizes were chosen to reflect the resolution of a reconstructed signal, and the width
of the previous to last bin is used to scale the bin contents. The last bin contains the overflow.

Events from Z+jets, Zγ, Wγ, tt̄, single top or WW where jets or photons were misidentified as leptons
(here called fake/non-prompt leptons), can also satisfy the selection criteria. The distribution shapes
and number of fake/non-prompt lepton events are estimated for both the qq̄ and VBF categories by a
data-driven method using a global matrix which exploits differences in object characteristics between real
and fake/non-prompt leptons on a statistical basis. Details of the method, here referred to as “Matrix
Method”, can be found in Ref. [73].

Other backgrounds include tt̄V , Z Z , tZ , W Zbj and triple boson production. They are estimated by Monte
Carlo simulation (Section 3). The tZ , W Zbj and VVV backgrounds are added as a single contribution,
here called tZ+VVV .

7 Systematic uncertainties

Systematic uncertainties result from the theoretical modelling of backgrounds and from object and event
reconstruction.

The uncertainty in the normalization of the Sherpa samples of SMW Z background is evaluated by taking
into account the variations obtained with different PDF sets [74]. The nominal set NNPDF30nloas0118
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is compared with other samples generated with the CT14nnlo and MMHT2014nlo68cl PDF sets and the
uncertainty is evaluated from the maximum differences. It is estimated to be below 6% in all mass bins
for both the VBF and qq̄ categories. The uncertainty associated with the choice of renormalization and
factorization scales, µR and µF, is taken as the maximum downward and upward variation when the scales
are varied independently by factors of 1/2 and 2. While these uncertainties can in principle affect the shape
of the mWZ distribution, in practice the shape differences do not have a strong impact on the sensitivity
of the search. The uncertainties are therefore treated as normalization uncertainties, taken to be 20%
and 40% respectively. Shape systematic uncertainties associated with showering and hadronization of the
QCD W Z are evaluated by comparing the Powheg-Box v2 samples interfaced with Pythia 8.186 and
Herwig. For the electroweak W Z process the Sherpa 2.2.2 and Madgraph+Pythia 8 predictions are
compared. This uncertainty band ranges from 10% to 30% for both categories.

The uncertainties assigned to the cross sections of the other background sources consist of a contribution
from PDF uncertainties and from QCD scale uncertainties. They are estimated to be 10% for Z Z , 13%
for ttV , 20% for VVV and 15% for tZ .

The theoretical uncertainties in the cross section and acceptance of the simulated signal samples are
evaluated in a similar way to the background. The PDF errors are taken from the NNPDF LO PDF
error set, and the NNPDF set is also compared with the CTEQ6L1 and MSTW2008lo68cl sets. The
different predictions from these PDF sets are taken as an extra contribution to the overall uncertainty. For
both the qq̄ and VBF categories, the uncertainties are typically below 5%. This procedure was followed
for each mass point and a generator-level event selection was chosen to closely mimic the one used in
the reconstruction-level analysis. Scale and PDF uncertainties are not correlated between signal and
background.

An uncertainty due to the reconstruction efficiency, momentum scales and resolution of electrons and
muons is evaluated by varying correction factors applied to the MC samples [63, 75] within appropriate
limits.

The jet energy scale and resolution uncertainties [66] are also taken into account as they affect the shape and
normalization of the background distributions. The uncertainty due to b-tagging [76] is also included.

Missing transverse momentum is calculated using the preselected leptons, jets and other reconstructed
objects. The uncertainties in the reconstruction of those objects are then used to evaluate the uncertainty
in Emiss

T reconstruction. Those due to the pT scale and resolution of the soft term are also considered [71,
72].

An uncertainty in the prediction of the fake/non-prompt background is also taken into account as it affects
the shape and normalization of the background distributions. The total uncertainty is about 20% (27%)
for the qq̄ (VBF) category. It is slightly larger for the VBF category because of the higher statistical
uncertainty derived from the Matrix Method (Section 6).

The uncertainty in the integrated luminosity is 2.1%. It is derived, following a methodology similar to
the one detailed in Ref. [77], from a calibration of the luminosity scale using x–y beam-separation scans
performed in August 2015 and May 2016.
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Source ∆µ/µ [%]
qq̄ Category VBF Category

m(W ′) = 800 GeV m(H±5 ) = 450 GeV
W Z background modelling : Scale, PDF 5 11
W Z background modelling : Parton Shower 10 6
MC statistical uncertainty 7 8
Electron identification 4 2
Muon identification 3 3
Jet uncertainty 1 8
Missing transverse momentum 2 1
Fake/non-prompt 1 5
Total systematic uncertainty 17 21
Statistical uncertainty 53 52

Table 1: Impact of the dominant sources of relative uncertainties on the 95% CL upper limits of the signal-strength
parameter (µ) for a hypothetical HVT signal of mass m(W ′) = 800 GeV in the qq̄ category and a GM signal of
mass m(H±5 ) = 450 GeV in the VBF category. The effect of the statistical uncertainty on the signal and background
samples is also shown. Sources of systematic uncertainty with an impact of less than 2% in both categories are not
shown.

8 Results

The W Z invariant mass distribution, mWZ , obtained as the sum of all four lepton-flavor permutations, is
used as the discriminating variable, with bin widths comparable to the expected resolution of a narrow
resonant signal. A binned likelihood function, constructed from the Poisson probability of the sum, in
each bin, of the contributions of the background and of a hypothetical signal of strength µ relative to the
benchmark model, is used to set limits on the presence of a signal. The fit is performed in the signal region
for the qq̄ and VBF categories separately. The systematic uncertainties described above (Section 7) enter
as nuisance parameters with Gaussian or log-normal prior distributions, in convolution with the nominal
background distribution.

The effects of systematic uncertainties are studied for hypothesized signals using the signal-strength
parameter µ. The list of leading sources of uncertainty in the 95% confidence level (CL) upper limit on
the µ value is given in Table 1 together with their relative importance (∆µ/µ). The values are quoted
separately for a hypothetical HVT signal of mass m(W ′) = 800 GeV in the qq̄ category and a GM signal
of mass m(H±5 ) = 450 GeV in the VBF category. Apart from the statistical uncertainties in the data, the
uncertainty with the largest impact on the sensitivity of the searches is related to the W Z background
modelling.

The numbers of background events are extracted through a background-only fit of the data in each category.
Background contributions from prompt leptons, including their shapes, are taken from MC simulations.
In the case of non-prompt leptons the background shapes are taken from the Matrix Method. In the
fit, the normalisation of all backgrounds are allowed to vary within their uncertainties. The post-fit
background yields are summarized in Table 2 for the qq̄ and VBF categories. The fit constrains the SM
W Z background estimate to the observed data, which reduces the total background uncertainty, pulling the
modeling uncertainties by less than one standard deviation from their pre-fit values. None of the nuisance
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parameters are significantly pulled or constrained relative to their pre-fit values in the background-only
fit.

Figure 4 shows the post-fit mWZ distribution for the qq̄ and VBF categories. The largest difference
between the observed data and the SM background prediction is in the VBF category. A local excess of
events at a resonance mass of around 450 GeV can be seen in Figure 4(b). The local significances for
signals of H±5 and of a heavy vector W ′ are 2.9 and 3.1 standard deviations, respectively. The respective
global significances calculated using the Look Elsewhere method as in Ref. [78] and evaluated up to a
mass of 900 GeV, are 1.6 and 1.9 standard deviations. In the qq̄ category the largest difference between
the observed data and the SM background prediction is located around a mass of 700 GeV with a local
significance of 1.2 standard deviations.

Upper limits are set on the product of the production cross section of new resonances and their decay
branching ratio into W Z . Exclusion intervals are derived using the CLs method [79] in the asymptotic
approximation [80]. For masses higher than 900 (700) GeV in qq̄ (VBF) category, the small number
of expected events makes the asymptotic approximation imprecise and the limits are calculated using
pseudo-experiments. The limit set on the signal strength µ is then translated into a limit on the signal
cross section times branching ratio, σ × B(W ′→ W Z), using the theoretical cross section and branching
ratio for the given signal model.

qq̄ Signal Region VBF Signal Region
W Z 521 ± 29 87 ± 12
Fake/non-prompt 64 ± 13 15 ± 4
tt̄V 29 ± 4 4.9 ± 0.8
Z Z 18.9 ± 2.0 4.4 ± 1.0
tZ + VVV 14.1 ± 2.9 8.1 ± 1.8
Total Background 647 ± 25 120 ± 11
Observed 650 114

Table 2: Expected and observed yields in the qq̄ and VBF signal regions. Yields and uncertainties are evaluated
after a background-only fit to the data in the qq̄ or VBF signal regions after applying all selection criteria. The
uncertainty in the total background estimate is smaller than the sum in quadrature of the individual background
contributions due to anti-correlations between the estimates of different background sources.

Figure 5 presents the observed and expected limits on σ × B(W ′→ W Z) at 95% CL for the HVT model
in the qq̄ category. Masses below 2260 GeV can be excluded for Model A and 2460 GeV for Model B.
For resonance masses above 2 TeV the exclusion limits become worse due to the acceptance losses at high
mass. For the VBF process, the limit on σ × B(W ′→ W Z) is shown in Figure 6.

Observed and expected exclusion limits at 95% CL on σ × B(H±5 → W±Z) and on the mixing parameter
sin θH of the GM Model are shown in Figure 7 as a function of mH±5

. The intrinsic width of the scalar
resonance, for sin θH = 0.5, is narrower than the detector resolution in the mass region explored. The
shaded regions show the parameter space for which the H±5 width exceeds 5% and 10% of mH±5

.
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Figure 4: Observed and expected distributions of the W Z invariant mass (a) in the qq̄ and (b) in the VBF categories
after applying all selection criteria. Signal predictions are overlaid, normalized to the predicted cross sections. The
uncertainty in the total background prediction, shown as shaded bands, combines statistical, theory and systematic
contributions. The lower panel show the ratios of the observed data to the background predictions.
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9 Conclusion

A search is performed for resonant W Z production in fully leptonic final states (electrons and muons)
using 36.1 fb−1 of

√
s = 13 TeV pp data collected by the ATLAS experiment at the LHC during the 2015

and 2016 run periods. Two different production modes are considered using quark–antiquark annihilation
and vector-boson fusion.

The data in the qq̄ fusion category are found to be consistent with Standard Model predictions. The
results are used to derive upper limits at 95% CL on the cross section times branching ratio of the
phenomenological Heavy Vector Triplet benchmark Model A (Model B) with coupling constant gV = 1
(gV = 3) as a function of the resonance mass, with no evidence of heavy resonance production for masses
below 2260 (2460) GeV.

In the case of the VBF production processes, limits on the production cross section times branching ratio
are obtained as a function of the mass of a charged member of a heavy vector triplet or of the fiveplet
scalar in the Georgi–Machacek model. The results show a local excess of events over the Standard Model
expectations at a resonance mass of around 450 GeV. The local significances for signals of H±5 and of a
heavy vectorW ′ boson are 2.9 and 3.1 standard deviations respectively. The respective global significances
calculated considering the Look Elsewhere effect are 1.6 and 1.9 standard deviations respectively.
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