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Abstract
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1 Introduction

At LHC energies, cc quark pairs are copiously produced in pp collisions. The subsequent
hadronisation process can introduce a charge asymmetry in the production of charm
hadrons. This asymmetry is influenced by the valence quarks of the colliding protons,
which results in a preference for the c quark to form a meson, e.g. a D− or D0 meson.
A c quark, on the other hand, can form charm baryons, e.g. a Λ+

c baryon, with the
proton’s valence quarks. This difference in hadronisation gives rise to different kinematic
distributions between charge-conjugated charm hadrons, and therefore results in a charge
asymmetry.

The D+
s meson does not contain any of the proton’s valence quarks, which means that

the aforementioned processes can contribute only indirectly to a production asymmetry.
The D+

s production asymmetry is defined as

AP(D+
s ) =

σ(D+
s )− σ(D−s )

σ(D+
s ) + σ(D−s )

, (1)

where σ(D±s ) is the inclusive prompt production cross-section. It is difficult to make
accurate predictions of the D+

s production asymmetry due to the nonpertubative nature
of the hadronisation process. Nonetheless, the Lund string fragmentation model [1],
implemented in Pythia [2], describes hadronisation that can give rise to production
asymmetries for heavy flavours [3–5]. This model predicts that production asymmetries can
be dependent on kinematics due to interactions with the beam remnants. A measurement
of the D+

s production asymmetry can be used to test nonperturbative QCD models and
is an essential input for measurements of direct CP violation in the decays of D+

s mesons
in LHCb.

This paper presents a measurement of the D+
s production asymmetry in pp collisions

using two data sets corresponding to integrated luminosities of 1.0 fb−1 and 2.0 fb−1,
recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV in 2011 and
2012, respectively. An inclusive sample of promptly produced D+

s mesons in the decay
mode D+

s → φπ+ is used, where φ→ K+K−. This sample includes excited states that
decay to D+

s mesons, such as D∗+s mesons which decay to D+
s γ or D+

s π
0. The inclusion of

charge-conjugate processes is implied throughout this paper, except in the definition of
the asymmetries.

The D+
s production asymmetries derived from Pythia are compared to the results

obtained in this paper. A previous measurement by the LHCb collaboration [6] with the
7 TeV data set indicated a small excess of D−s over D+

s mesons, resulting in a negative
value for the production asymmetry. This paper, with improvements in the detector
calibration, supersedes the previous measurement and includes the 8 TeV data set.

2 Detector and simulation

The LHCb detector [7,8] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
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detectors and straw drift tubes placed downstream of the magnet. The polarity of the
dipole magnet is reversed periodically throughout data taking and the corresponding data
sets (referred to as MagUp and MagDown) are approximately equal in size. The tracking
system provides a measurement of momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum
distance of a track to a primary vertex (PV), the impact parameter (IP), is measured
with a resolution of (15 + 29/pT)µm, where pT is the component of the momentum
transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov detectors. Photons, electrons and
hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers.
The online event selection is performed by a trigger [9], which consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction.

In the simulation, which is used for comparing the production asymmetry results,
pp collisions are generated using Pythia [2], which has implemented the Lund string
fragmentation model [1], with a specific LHCb configuration [10]. Decays of hadronic
particles are described by EvtGen [11], in which final-state radiation is generated using
Photos [12]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [13] as described in Ref. [14].

3 Data selection

Signal candidates are selected by the requirements made in the trigger and in the offline
selection. At the hardware trigger stage, events are required to have a muon with
high transverse momentum or a hadron, photon or electron with high transverse energy
deposited in the calorimeters. The software trigger requires at least one charged particle
that has pT > 1.7 GeV/c at 7 TeV or pT > 1.6 GeV/c at 8 TeV, and is inconsistent with
originating from any PV. Subsequently, three well reconstructed tracks are required to
originate from a common vertex with a significant displacement from any PV. Additional
requirements are made to select three-prong decays with an invariant mass close to that
of the D+

s meson. The reconstructed D+
s meson must have pT > 2.5 GeV/c.

In the offline selection, trigger decisions are associated with reconstructed tracks or
energy deposits. Requirements can therefore be made on whether the trigger decision was
due to the signal candidate, other particles in the event, or a combination of both. For the
hardware trigger stage, a positive trigger decision is required to be caused by a particle
that is distinct from any of the final-state particles that compose the D+

s candidate. This
requirement is independent of whether or not the signal candidate itself also caused a
positive trigger decision, and is therefore referred to as triggered independently of signal
(TIS) [9]. For the software trigger stage, the positive trigger decision is required to be
associated with the final-state particles of the D+

s candidate. This is called triggered on
signal (TOS) [9].

The three tracks from the final-state particles are required to not point back to any
PV. To reduce candidates from b-hadron decays, the D+

s candidate itself must point to a
PV. Its decay vertex is required to have a good quality and to be significantly displaced
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from any PV. To ensure a good overlap with the additional samples used for calibration
purposes, p > 5.0 (3.0) GeV/c and pT > 400 (300) MeV/c are required for the pions (kaons).
Background due to random combinations of tracks is suppressed by requiring the sum of
the pT of the final-state tracks to be larger than 2.8 GeV/c.

Kaon and pion mass assignments to the particle tracks are based on the particle
identification (PID) information obtained primarily from the Cherenkov detectors. The
invariant mass of the kaon pair is required to be within 20 MeV/c2 of the known φ mass [15].
The mass of the D+

s candidate is selected to be between 1900 and 2035 MeV/c2. Additional
PID and mass requirements are applied to suppress two particular sources of background.
The first comes from Λ+

c → pK−π+ decays, where the proton is misidentified as a kaon.
The second are D+→ K−π+π+ decays, where one of the pions is misidentified as a kaon.
Both of these are suppressed by applying tighter PID requirements in a small window of
invariant mass of the corresponding particle combination around the known Λ+

c and D+

masses.
After the full selection, 2.9× 106 and 9.1× 106 D+

s candidates are selected in the 7 TeV
and 8 TeV data sets, respectively, with a signal purity of 97%. The increase for the 8 TeV
data set is not only due to a higher integrated luminosity, but also to improvements in the
trigger. The fraction of events with more than one candidate, which are not removed in
this analysis, is only 2× 10−4, resulting in a negligible bias in the final asymmetry. The
two data sets with opposite magnetic fields are analysed separately.

4 Analysis method

The raw asymmetry is defined as the difference between the observed numbers, N(D±s ),
of D+

s and D−s mesons

Araw =
N(D+

s )−N(D−s )

N(D+
s ) +N(D−s )

. (2)

This asymmetry must be corrected for contributions from D+
s mesons originating from b-

hadron decays, and for detection asymmetries, AD. The production asymmetry, assuming
the CP asymmetry in Cabibbo-favoured D+

s decays to be negligible at the precision of
this measurement, is determined as

AP(D+
s ) =

1

1− fbkg
(Araw − AD − fbkgAP(B)) , (3)

where fbkg is the fraction of D+
s mesons that originate from b-hadron decays and AP(B)

the production asymmetry of these b hadrons.
Since the production asymmetry may depend on the kinematics of the D+

s meson, the
measurement is performed in two-dimensional bins of pT and rapidity, y. Four bins in pT
and three bins in y are chosen as follows

pT [GeV/c] : [2.5, 4.7] ; [4.7, 6.5] ; [6.5, 8.5] ; [8.5, 25.0] ,

y : [2.0, 3.0] ; [3.0, 3.5] ; [3.5, 4.5] ,

where the rapidity of the D+
s meson is defined as

y =
1

2
ln

(
E + pzc

E − pzc

)
. (4)
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Figure 1: Distribution of D+
s candidates for the

√
s = 7 and 8 TeV data sets as a function of

pT and y. The binning scheme used for the AP(D+
s ) measurement is overlaid.

Here, E is the energy of the D+
s meson and pz the component of its momentum along

the beam direction. This binning scheme is chosen such that the bins are roughly equally
populated and is the same as that used for the previous AP(D+

s ) measurement [6], except
that the lowest pT bin is now split into two. The two-dimensional distribution in pT and
y of D+

s candidates is shown in Fig. 1 along with the binning scheme.

4.1 Measurement of raw asymmetries

The signal yields and asymmetries are obtained from binned maximum-likelihood fits to
the D+

s mass distributions in the twelve kinematic bins, separately for the two data-taking
periods and the two magnet polarities. The signal component is modelled with a Hypatia
function with tails on both sides [16], and the combinatorial background, from random
combinations of tracks, with an exponential function. The parameters describing the tails
of the Hypatia function are determined by fits to the D+

s mass distributions that are
performed in each kinematic bin, in which the data sets from 7 and 8 TeV and both magnet
polarities are combined. These parameters are then kept fixed in the fits to obtain the raw
asymmetries. The raw asymmetries in each kinematic bin are obtained from simultaneous
fits to the D+

s and D−s mass distributions in which all parameters are shared, except for
the yields, the mean mass of the signal component, and the background parameters. The
mean mass can be different as the momentum reconstruction may have different biases
for positive and negative tracks. The variation of the background parameters is needed
to account for potential asymmetries in the background. Two example fits are shown in
Fig. 2.

A systematic uncertainty is assigned for the effect of fixing the tail parameters by
varying their values and reassessing the raw asymmetries. In addition, a possible bias
from the fit model is studied by generating invariant mass distributions with the signal
component described by a double Gaussian function with power-law tails on both sides,
which are subsequently fitted using the default Hypatia function. The differences in the
raw asymmetry for both studies are assigned as a systematic uncertainty. This is small
because the low amount of combinatorial background allows for little bias from the fit
model.
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Figure 2: Invariant mass distribution of the D+
s candidates in the kinematic range (left)

2.0 < y < 3.0 and 2.5 < pT < 4.7 GeV/c, and (right) 3.5 < y < 4.5 and 8.5 < pT < 25.0 GeV/c for
the
√
s = 8 TeV data set recorded with MagDown. Also shown is the result of the fit, indicating

the signal and combinatorial background.

4.2 Contribution from b-hadron decays

An estimate of the fraction of D+
s candidates from b-hadron (B+, B0, B0

s , Λ
0
b) decays is

performed using a combination of simulation, known cross-sections [17, 18] and known
branching fractions [15]. Simulation samples are used to determine the reconstruction
and selection efficiencies relative to those for the signal decay. The fraction of D+

s from
b-hadron decays is estimated to be fbkg = (4.12± 1.23)%, where the uncertainty includes
contributions from the experimental input and the simulation.

The production asymmetries for b hadrons are taken from measurements from the
LHCb collaboration [19–21]. The B0

s production asymmetry is diluted due to the fact
that, before it decays, a B0

s meson oscillates with high frequency to a B0
s, and vice versa.

Hence, its contribution is assumed to be zero. Wherever multiple LHCb measurements are
available using different decay channels, their results are combined in a weighted average.
The contribution of the background asymmetry to AP(D+

s ), as defined in Eq. 3, is found
to be

fbkgAP(B) = (0.3± 1.0)× 10−4 at 7 TeV,

fbkgAP(B) = (1.7± 0.8)× 10−4 at 8 TeV,

which is very small compared to the experimental precision of the measurement. The
dilution from fbkg in the denominator of Eq. 3 gives a small correction to Araw.

5 Detection asymmetries

Detection asymmetries are caused by the differences in reconstruction efficiencies between
D+
s and D−s mesons and originate from the various stages in the reconstruction process.

Since these asymmetries are small, they factorise and can be added up as

AD = Aπtrack + AKKtrack + APID + Asoftware
trigger + Ahardware

trigger . (5)

Here, Aπtrack and AKKtrack are the tracking asymmetries of the pion and the kaon pair
respectively. The asymmetry originating from the PID requirements in the selection
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Table 1: Raw and detection asymmetries in percent, for the 7 and 8 TeV data sets. The detection
asymmetries are determined on the data combined from all kinematic bins. The first uncertainty
is statistical, the second systematic.

source
√
s = 7 TeV

√
s = 8 TeV

Araw −0.431 ± 0.061 ± 0.006 −0.492 ± 0.034 ± 0.006

Aπtrack 0.093 ± 0.096 ± 0.048 −0.026 ± 0.068 ± 0.048

AKKtrack 0.000 ± 0.000 ± 0.030 0.000 ± 0.000 ± 0.030

APID −0.018 ± 0.008 ± 0.012 0.008 ± 0.005 ± 0.012

Ahardware
trigger 0.139 ± 0.229 ± 0.066 −0.060 ± 0.115 ± 0.066

Asoftware
trigger −0.005 ± 0.018 ± 0.033 0.026 ± 0.011 ± 0.033

AP(D+
s ) −0.671 ± 0.267 ± 0.095 −0.477 ± 0.145 ± 0.095

is denoted by APID. Lastly, asymmetries arising from the trigger are split between the
hardware and software components of the trigger as Ahardware

trigger and Asoftware
trigger . All detection

asymmetries are determined for each bin using data-driven methods described below, and
corrected by simulations wherever necessary. Values of the detection asymmetries for the
7 and 8 TeV data sets, determined on the data combined from all kinematic bins, are
listed in Table 1.

5.1 Tracking asymmetries

When the kaons originate from the φ resonance, there can be no detection asymmetry
from the kaon pair. Only the small fraction of kaons coming from the nonresonant
decays included in the selection can introduce a detection asymmetry, and only when the
kinematic distributions of the two oppositely charged kaons are different. In general, the
reconstruction efficiency of kaons suffers from a sizeable difference between the interaction
cross-sections of K+ and K− mesons with the detector material, which depends on the
kaon momentum. For the pair of kaons, however, these differences largely cancel, since the
momentum distributions of the positively and negatively charged kaons are very similar.
An upper limit of 3× 10−4 is set on their contribution, based on their kinematic overlap
and the maximum kaon detection asymmetry as measured with calibration data [22,23].

The pion tracking asymmetry is determined using two different methods, analogously
to Ref. [23]. The first uses muons from partially reconstructed J/ψ→ µ+µ− decays, as
described in Ref. [24]. The second method uses partially reconstructed D∗+→ D0π+

decays with D0→ K−π+π−π+, where one of the pions from the D0 decay does not need
to be reconstructed [6]. Both methods have limitations: the former because it does not
probe the full detector acceptance or the effect of the hadronic interaction of the pion
with the detector material, the latter because it is limited to pions with momenta below
100 GeV/c. The limitations on the J/ψ→ µ+µ− method are assessed and corrected using
simulation. After these corrections, the two methods are in good agreement and the final
value of Aπtrack is determined by the weighted average of the two methods. For pions with
p > 100 GeV/c, Aπtrack is determined solely using the J/ψ→ µ+µ− method combined with
the above-mentioned corrections.
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5.2 Particle identification asymmetries

The asymmetry induced by the PID requirements, APID, is determined using large samples
of D∗+→ D0π+ decays, with D0→ K−π+ [25]. The D∗+ charge identifies which of the
two particles is the kaon and which the pion in the D0 decay without the use of PID
requirements. These unbiased samples are then used to determine the PID efficiencies
and corresponding charge asymmetries.

5.3 Trigger asymmetries

The efficiencies of the hardware and software triggers are studied using the signal sample
of prompt D+

s → K+K−π+ decays. For the hardware trigger, the TIS asymmetry is
determined with respect to decays that are TOS as well as TIS. This is done by evaluating
the TIS asymmetry separately for candidates that are TOS, triggered by the K+ track, and
candidates that are TOS, triggered by the K− track, and then averaging the asymmetry.
Due to possible correlations between the signal decay and the rest of the event, this
method is biased. As a result of the coarse transverse segmentation of the hadronic
calorimeter, the energy deposited by other particles in the event can increase the energy
that is measured and associated to the signal tracks of TOS events. This further increases
the bias of the measured TIS asymmetry. To assess the systematic uncertainty from this
method, a much larger sample of D+→ K−π+π+ decays is studied. In this sample the
TIS asymmetries are determined using candidates that are TOS, triggered by one, two or
all three of the final-state particles. The difference in the asymmetry resulting from these
variations is assigned as the systematic uncertainty.

The asymmetry due to the software trigger is assessed by the TOS efficiency of a
single track from the K+K−π+ final state in events that have been triggered by one of the
other tracks. The individual efficiencies are determined in bins of transverse momentum
and pseudorapidity, and are then combined to obtain the overall asymmetry introduced
by the software trigger selection. The systematic uncertainty is determined by studying
the effect of the difference between the online and offline determination of the transverse
momentum, and by determining the effect of the binning scheme.

6 Results and systematic uncertainties

The values of the D+
s production asymmetry obtained using the MagUp and MagDown

data sets separately are compatible with each other in each kinematic bin within two
standard deviations, as illustrated in Fig. 4 in the Appendix. The two magnet polarities
are combined using the arithmetic mean to ensure that any residual magnet-polarity-
dependent detection asymmetry cancels. Due to the small difference in centre-of-mass
energy and since the observed production asymmetries are statistically compatible, the
7 TeV and 8 TeV data sets are combined in a weighted average, maximising the statistical
precision. The resulting production asymmetries in each kinematic bin are presented in
Table 2. The results for both centre-of-mass energies separately are provided in Tables 3
and 4 in the Appendix.

Since no kinematic dependence is observed, the data from all kinematic bins are
combined and the full procedure is repeated to obtain values equivalent to a weighted
average based on the signal yields, taking into account the correlations from the calibration
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samples between the kinematic bins. These are shown for the 7 and 8 TeV data sets
separately in Table 1. Taking the weighted average of these two results with the systematic
uncertainties as fully correlated, the combined value is

AP(D+
s ) = (−0.52± 0.13 (stat)± 0.10 (syst))% ,

corresponding to a deviation of 3.3 σ from the hypothesis of no production asymmetry.
The results presented here are in agreement with the previous measurement of the

D+
s production asymmetry [6], obtained using only the 7 TeV data set. A cross-check is

performed by measuring AP(D+
s ) in two other disjoint regions in the D+

s → K+K−π+

Dalitz plot, analogous to those defined in Ref. [23]. These are the region including the
K∗(892)0 resonance, and the remaining nonresonant region. The AP(D+

s ) measurements
in the three regions are in good agreement in all kinematic bins. However, these regions
are not included in the measurement of AP(D+

s ), since it was found that including them
slightly increases the uncertainty on the measurement due to the larger systematic effects
from the detection asymmetries.

6.1 Systematic uncertainties

Systematic uncertainties arising from detection asymmetries have been discussed in Sect. 5.
In addition, all detection asymmetries are determined in bins of kinematic variables of
final-state particles, for example pT, η. The limitations of the binning schemes are
evaluated by changing to different binning schemes, e.g. p, η. The systematic uncertainties
are fully correlated between the 7 TeV and 8 TeV data sets. An overview of the systematic
and statistical uncertainties for both data sets from the various sources of detection
asymmetries is shown in Table 1.

6.2 Comparison with PYTHIA predictions

The Pythia event generator includes models for mechanisms that cause production
asymmetries [3–5]. The results obtained in this paper are compared with production

Table 2: Values of the D+
s production asymmetry in percent, including, respectively, the statist-

ical and systematic uncertainties for each of the D+
s kinematic bins using the combined

√
s = 7

and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding
contributions from the detection asymmetries, and are therefore correlated between the bins.

y

pT [ GeV/c ] 2.0− 3.0 3.0− 3.5 3.5− 4.5

2.5− 4.7 −0.63 ± 0.34 ± 0.32 −0.66 ± 0.31 ± 0.13 −0.65 ± 0.33 ± 0.14

4.7− 6.5 −0.68 ± 0.25 ± 0.27 −0.06 ± 0.26 ± 0.10 −0.72 ± 0.26 ± 0.13

6.5− 8.5 −0.55 ± 0.22 ± 0.06 −0.57 ± 0.26 ± 0.10 −0.48 ± 0.30 ± 0.17

8.5− 25.0 −0.40 ± 0.15 ± 0.08 −0.24 ± 0.22 ± 0.10 −0.86 ± 0.33 ± 0.09
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Figure 3: Results of the LHCb measurement of the D+
s production asymmetry as a function

of pT for three different bins of rapidity, compared to the results from Pythia. Both are for
the combined

√
s = 7 and 8 TeV data sets. The uncertainties on the Pythia predictions are

statistical only.

asymmetries obtained from Pythia 8.1 [2] with the CT09MCS set of parton density
functions [26]. In this configuration, events containing a D+

s meson are extracted from
generated minimum bias interactions as described in Ref. [10]. The results of this
comparison are shown in Fig. 3 as a function of pT in the different y bins for the
combined 7 and 8 TeV data sets, and separately for 7 and 8 TeV in Fig. 5 in the Appendix.
The Pythia simulation shows a strong dependence on both pT and y, whereas the
measurements presented here do not.

7 Summary and conclusions

A measurement of the D+
s production asymmetry is performed in pp collisions at centre-

of-mass energies of 7 and 8 TeV. The measurement is carried out in bins of transverse
momentum and rapidity, covering the range 2.5 < pT < 25.0 GeV/c and 2.0 < y < 4.5,
using D+

s → K+K−π+ decays, where the kaon pair is created via the φ resonance. The
production asymmetry measured in bins of pT and y for is shown in Fig. 3. No kinematic
dependence is observed, contrary to expectations from simulations with the Pythia event
generator.

The results are in agreement with the previous result from the LHCb collaboration [6],
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which was performed on the data recorded at 7 TeV only. This updated measurement,
with improvements in the detector calibration, supersedes the previous result and provides
evidence for a nonzero value for the production asymmetry with a significance of 3.3
standard deviations. The results presented in this paper can be used as input to tune the
parameters of production models in different event generators.
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Appendix

Table 3: Values of the D+
s production asymmetry in percent, including, respectively, the

statistical and systematic uncertainty for each of the D+
s kinematic bins using the

√
s = 7 TeV

data set.

y

pT [ GeV/c ] 2.0− 3.0 3.0− 3.5 3.5− 4.5

2.5− 4.7 −0.74 ± 0.62 ± 0.32 −1.34 ± 0.55 ± 0.13 −1.15 ± 0.60 ± 0.14

4.7− 6.5 −0.54 ± 0.51 ± 0.27 0.16 ± 0.49 ± 0.10 −0.70 ± 0.48 ± 0.13

6.5− 8.5 −1.05 ± 0.40 ± 0.06 −0.76 ± 0.47 ± 0.10 −0.68 ± 0.56 ± 0.17

8.5− 25.0 −0.14 ± 0.32 ± 0.08 −0.00 ± 0.43 ± 0.10 −1.18 ± 0.63 ± 0.09

Table 4: Values of the D+
s production asymmetry in percent, including, respectively, the

statistical and systematic uncertainty for each of the D+
s kinematic bins using the

√
s = 8 TeV

data set.

y

pT [ GeV/c ] 2.0− 3.0 3.0− 3.5 3.5− 4.5

2.5− 4.7 −0.59 ± 0.40 ± 0.32 −0.34 ± 0.37 ± 0.13 −0.45 ± 0.39 ± 0.14

4.7− 6.5 −0.73 ± 0.29 ± 0.27 −0.15 ± 0.31 ± 0.10 −0.73 ± 0.30 ± 0.13

6.5− 8.5 −0.32 ± 0.27 ± 0.06 −0.49 ± 0.31 ± 0.10 −0.40 ± 0.36 ± 0.17

8.5− 25.0 −0.48 ± 0.17 ± 0.08 −0.32 ± 0.26 ± 0.10 −0.74 ± 0.39 ± 0.09
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Figure 4: Results of the LHCb measurement of the D+
s production asymmetry as a function of

pT for three different bins of rapidity for the (left)
√
s = 7 TeV and (right) 8 TeV data sets, split

between the magnet polarities MagUp and MagDown.

12



5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5

 [
%

]
)

+ s
D(

P
A

 8.1YTHIAP

LHCb

 = 7 TeVs  < 3.0y2.0 < 

5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5

 [
%

]
)

+ s
D(

P
A

 8.1YTHIAP

LHCb

 = 8 TeVs  < 3.0y2.0 < 

5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5

 [
%

]
)

+ s
D(

P
A

 8.1YTHIAP

LHCb

 = 7 TeVs  < 3.5y3.0 < 

5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5
 [

%
]

)
+ s

D(
P

A

 8.1YTHIAP

LHCb

 = 8 TeVs  < 3.5y3.0 < 

5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5

 [
%

]
)

+ s
D(

P
A

 8.1YTHIAP

LHCb

 = 7 TeVs  < 4.5y3.5 < 

5 10 15 20 25
]c [GeV/Tp

2.5−
2−

1.5−
1−

0.5−
0

0.5

1

1.5

2

2.5

 [
%

]
)

+ s
D(

P
A

 8.1YTHIAP

LHCb

 = 8 TeVs  < 4.5y3.5 < 

Figure 5: Results of the LHCb measurement of the D+
s production asymmetry as a function

of pT for three different bins of rapidity for the (left)
√
s = 7 TeV and (right) 8 TeV data sets,

compared to the results from Pythia. The uncertainties of the Pythia prediction are statistical
only.
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aUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
bLaboratoire Leprince-Ringuet, Palaiseau, France
cP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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