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Abstract

We will study some possible tests of CP-violations in D* and B* boson decays.
Especially, possible inequivalence of Dalitz plot for 3 or 4 body decay mode of D* or B*
with the corresponding one of its anti-particle D~ or B~ may be used to test the CP. Also,
4-body decay modes such as D* — 7*7ZxF K% (or FO) can be used to separately detect

possibly large P and C violations, even though the CP may be conserved.

*Paper dedicated to Memorial Volume for Professor Robert Marshak.



1. Introduction

Weak interaction physics had been one of the most favorite subjects of the late Pro-
fessor R. E. Marshak during his long illustrious career. The discovery of the weak V-A
theory!) in collaboration with E. C. G. Sudarshan in 1957 was the starting point of the
now canonical unified electro-weak theory of Glashow, Salam, and Weinberg, where the

Lagrangian responsible for non-leptonic decays is given?) by

u d
Lw=g|c|70+v)V]|s | W'+ hermitian conjugate . (1.1)
1 b

Here, W* stands for the intermediate vector boson, and the 3 x 3 matrix V is the Cabibbo-

Kobayashi-Maskawa mixing matrix:
"‘7u d- V'u s5 l'fu b
V=1 Vo Veso Ve

"the .Vtss ‘/tb
(1.2)
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where we adopted the parametrization of the C-K-S matrix given by the Particle-Data

Group®'. In Eq. (1.2), s,; and c¢;; stand for
si; =sinb;; , c¢ij = cos 0;; (1.3)

with experimental values®) of
s12 = 0.218 ~ 0.224

593 = 0.032 ~ 0.054 (1.4)

s13 = 0.002 ~ 0.007
while the value of the CP-violating phase factor §;3 is not accurately known.
The purpose of the present paper which is dedicated to the memory of Prof. Marshak
is to study some aspects of the CP-violation processes in the weak decays of B* and D=

boson decays.



First, we note the following known facts:
(i) The TCP invariance alone guarantees the equivalence?) ") of the total decay rates of

a particle and its anti-particle. For example, we will have
(Kt — all) =T (K~ — all) . (1.5)

(i1) Individual partial decay rate of a particle will differ*)~7) in general from that of the
corresponding anti-particle, if both C and CP are violated in the process. An example

will be
I(KT - a*tr"n ) # T (K~ w7 n"n%) . (1.6)

(iii) The Dalitz plot of any three body (or more generally multi-body) decay mode (such
as K* — 777777 ) will be different® from that of its anti-particle (such as K~ —
n-m~ 7" ), unless C or CP is conserved in the process.

(iv) The decay asymmetry parameters of a particle with non-zero spin (such as L) will
be different®)®) from that of its anti-particle (such as §+) under the same condition
of C and CP non-invariances.

All these facts are more or less well-known perhaps except for the non-equivalence of

the Dalitz plots as in the third statement. To show it explicitly, it is convenient to consider

an effective weak Hamiltonian Hyw and write
M(: — f) = < f(out)|Hwli(in) > (1.7a)
M(i — f) = < f(out)|Hwli(in) > (1.7b)

for the decay matrix elements of a particle : and its anti-particle 7 into states f and
f, respectively. Here, the symbol “out” and “in” refer to outgoing and incoming wave
conditions, respectively. However, we will delete them for simplicity in what follows.

Suppose now that Hw has a form of

N
Hw =" (g,H, + g;H}) (1.8)
j=1
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where g;’s are some complex coupling constants, and H,’s transform covariantly under CP

according to

CP: H; -~ H! (j=1,2,...,N) . (1.9)

Moreover, if H; is responsible to a decay i — f, then its anti-particle decay 1 — f will
proceed via HJT For example, consider decays D¥ — 7*n*x¥F where H; and g; may be

given as in Egs. (2.4) and (2.5) in the V-A form of

1
1= —= G VaV 1.106
9= d ( )
with
G =3 ¢/ (mw)? . (1.11)

We can rewrite Egs. (1.7) then as

N

M(i— f)=) g, < flH;li > (1.12a)
n

ME—-1)=> g <fIH/i> . (1.128)
j=1

Choosing f and 7 be CP-conjugates of f and s, respectively, i.e.
f>=CPlf> , [i>=CPli> |, (1.13)

Egs. (1.12b) and (1.9) lead to

N
M@GE—f)= Z < flH;li > (1.14)
so that we calculate
N
(M@= F)P + MG - £ 2 e(g:g5)Re(< fIH;li >< f{Hrli >*) (1.150)
) N
MG — F)? = [M(G — f)? Z m(g:9;)Im(< f|H;|i >< f|Hli >*) (1.15b)
J k=1



from Eqs. (1.12a) and (1.14), where Re A and Im A designate real and imaginary parts,

respectively, of A. Therefore, we find the formula

Az DO D-TE=f) S lmlogh) - (< SIBS i >< AUl >
= f)+T( = f)  TT._.Re(g;9])- Re(< f|H,li >< f|Hpli >*) '
so that we will have in general
TG—f)# TG —f) , (1.17)

proving the assertion made in the statements (i) and (iii) given in the beginning. Note

that A can be non-zero only if N > 2. Contrarily, we will have
Ii—f)=T@G > ) (1.18)

for N = 1, corresponding to the case that Hy is effectively CP-conserving. From Eq.
(1.16), it is also clear that the CP-violation will be found only if we have Im(g;g;) # O
and Im(< f H,li >< fiHiii >*) # 0. In general, the decay matrix element < fiH, it >
can acquire its complex phase via strong final-state interactions. Indeed, the time-reversal
invaniance of H;’s which is a consequence of Eq. (1.9) and of the TCP theorem will lead

to the validity of

< fiH;li> =) S(f—n)<nHi> . (1.19)

Here, l]; > =T|f >and i > = Tji > refer to the time-reversed states of f and 1,
respectively, and S(f — n) stands for the S-matrix element for the strong final-state
transition f — n. Hence, if more decay channels exist, then the larger will be complex
phases of the decay matrix elements.

In order to estimate the magnitude of the CP-violation, suppose for simplicity that

g1 H; is dominant, i.e.

Igl<f|H1|i>|>>|gj<f|Hj‘i>‘ (j=2a3a-'°aN) . (120)
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Eq. (1.16) will then reduce to a simple formula
S < fIH, i >
A~2 Im (—J) - Im (——J——> . 1.21
JZ:; 91 < flHili > ( )

However, in reality, it is very difficult to compute the imaginary part of the ratios of the

decay matrix elements.

We will now demonstrate the equivalence of total decay rates of a particle and its

anti-particle. We first note

I'(i — all) = NOZ | < flHw!i > |*6(E; — Ey) (1.22q)
f

T(i — all)= No > | < flHwli > 26(E; — Ey) (1.22b)
f

for a normalization constant Ng. Then, Eq. (1.15b) leads to
N
D(i — al) = T(i — all) = 2No Y Tm(g;g;) Im (< i|H[6(E: ~ Ho) Hli >) (1.23)
k=1
where Hy stands for the strong QCD Hamiltonian. Now, the time-reversal invariance of
H;(j=1.2...,N) and H, implies the validity of
<i'H]6(E; — Ho)H,li >
= <i|H]8(E; — Ho)Hyli > (1.24)
= <i[HI§(E; — Ho)Hyili >
where we utilized the rotation-invariance of theory for the 2nd equation to replace the

time-reversed state | > by |i >. Then, from Egs. (1.23) and (1.24), we find
(i — all)=T(i — all) . (1.25)

Although we have derived this result on the basis of Eqs. (1.8) and (1.9), we can actually
dispense with the assumption. Its validity depends®®) only upon the CPT invariance of

Hy-. However, we will not go into detail.



In sections 2 and 3, we will study some consequences of CP-violations for D= and B=
decays. We note that some two-body CP-violations for B-decays have been studied?) 1%

by some authors.

2. CP-Violations in D* Decays

Let S be the strangeness quantum number of the s-quark, and write for simplicity

(6192)(T394) = : (G17u(1 +75)a2) (@7 (1 + ¥5)94) : (2.1)

for the effective V-A 4-fermi interaction with the maximal C and P violations satisfying

the condition Eq. (1.9). Then, Hw is given by

Hw = Hw(AS =0) + Hw(AS = 1) + Hw(AS = -1) (2.2)
where we have

Hw(AS=1)= % G Vi, Vi(as)(de) + h.c. (2.3q)

Hw(AS=-1)= % G Vi,V (wd)(3¢) + h.c. (2.3b)

for AS = =1 with N = 1. Especially, these processes are essentially CP-conserving. The
effective decay Hamiltonian for AS = 0 1s written as

3

Hw(A§=0)= Y (9:H; + g; H D+ (W + B + hec.) (2.4)

j=1

where we have set

Z =56 {VuaVig(@d)(de) + Vu, Vi (Us)(Se) + VsV (b)(be)}  (2:5)

while H%,s) and Hg) are self-energy and Penguinn diagram®® terms, respectively, which
correspond to Fig. 1 and 2. Contrarily, Eq. (2.5) is the result of the familiar W -exchange

diagram Fig. 3.



AU q‘\ A d.S.b+ u
\‘ g L\‘
dsbAAw W\..jw I
o w
(I q Ac cA d.s,b
Fig. 1 Fig. 2 Fig. 3

In Fig. 2, the wavy line g stands for the gluon propagator and g can be any of u, d, and s-
quarks. Then, H{f) is non-local with quark structure of (gv,q) - {@(a + bys)v*c}.
With respect to H{f:), we must first subtract all divergences inherent in the Fig. 1.

The remaining finite term will lead then to a form of
(s - — .
Hy' =(gs + g47s) e+ U(gs + 9575)i7 B,

+ 8, (g + ighns)B¥c (26)

Actually, there exist some ambiguities for exact values of these coupling parameters, de-
pending upon how much we should subtract finite terms. We could for instance subtract
all kinematical and mass terms, so that we may set g, = 94 = 95 = gy = 0, if we wish.
Now, the Hamiltonian H; proportional to (ub)(bc) in Eq. (2.5) will give negligible
contribution for decays of D-mesons, because of the quark-line rule!?) since it will involve
the annihilation diagram of bb — dd, u%, or s3. Similarly, contributions from Has:) and

H{{f’ for D-decays appear to be small’® for the decay of D mesons. Then, we estimate

A~2 833 sin 613 R , (27(1)

_ Im(< flHili >< fiH, )i >*)

T < flHi[i > - < fiHa)i > 2 (2.75)
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for CP-violating AS = 0 reactions such as D* — K*+K' and D~ — K~ K° with H, =
(ud)(dc) and H, = (us)(3c). Noting s;5 ~ (2 ~ 7) x 10~*, and assuming the value of
Rsin é;s ~ 0.2, this would give A ~ 10~3 at most.

In spite of this likely small value for CP-violation, we will proceed now to some explicit

examples.

(i) Two Body Decays

We expect to have

(DY - n%2°) £ T(D~ — =~ x) (2.82)
I(D* - K*K')#T(D~ — K~K°) . (2.8b)
However, we will have
I'(D* - K°x*)=T(D~ — K% ") (2.9a)
I(D* =K »*)=T(D" - K°") (2.95)
since decay modes for AS = %1 are essentially CP-conserving. Note that the decay

D~ — K%z~ is one of the dominant Cabibbo allowed mode.

(1) Three-Body Decays

We will have
F(D* - a*x*n ) #T (D™ »a"n n%) . (2.10)

Moreover, the Dalitz plot for D* — #t#a*n~ will differ from that of D~ — 7~ 7 7%,

However, we must have
I(D* - K*n*tn ) =T (D™ = K n~n%) (2.11)

for the dominant Cabibbo-allowed decay with the identical Dalitz plots for decay modes

of both sides. We note that if the equalities in Eqs. (2.9) and (2.11) are experimentally
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found to be violated, then it would imply that the present minimum standard model must

be somehow modified.

(1i1) 4-Body Decay

Again, we expect
r(p* - Tt aTw%) #£T (D™ = 7~ n"ntx?) (2.12)

but

(Dt — Krtn*n™) =T (D_ — F%r'w”w'*) . (2.13)

One interesting fact about 4-body decays is that we can experimentally test separate C

and P invariances. To see it, let

.M(D* — 7r*7r"7r_7r°) = A+ B(k1 sz) ks (2.14q)

M(D™ — 7r'7r"7r+7r0) =4+ F(kl X _lgz) ks, (2.14b)

where k,. k,.and k, are momenta of 3 charged pions 7=, 7= and 77, respectively in
the rest frames of D=. Also, 4, A, B and B are some scalar functions of the products
k. -k, (1,7 = 1,2,3). Note that the Bose statistics requires that 4 and A are symmetric
for the exchange of k; — k,. while B and B must change their signs under the exchange.

Now. if the CP-invariance holds, then we must have

A=-4 , B=B (2.15)
while the C-invariance requires the validity of

A=4 , B=B . (2.16)

Further, the P-invariance demands

A=A4=0 . (2.17)



Note that (k; X k,) - k; plays the role of the spin-dependent term o - k in the £+ — pr®
decay®). Similarly, comparison of decays D* — nt#t7~K® and D~ — n~ 7~ n*K_ will

reveal possibly large P and C violations, even if CP is conserved.

3. CP-Violations in B* Decays

Let C and S be the charm and strangeness quantum numbers, respectively. Then,
the effective Hamiltonian for B-decays will be represented by any of H%) (j=1,2,...,6)
below:

(i) AS=AC =0

H%l.) = 7 G{‘ qub du)(ub) + Vchcb(dC)(Cb) (3 1)

+ VaVa(d)(is)} + B + HYY + hee.
where H;{?) and Héf) are again self-energy and Penguinn-diagram terms specified by Figs.

4 and 3, respectively, and g in Fig. 5 may assume any of u, d, s, and c.

Ad (or s) q4 Ad (or s)
“\\ g k\\|
uctpvw DDA
ADb qr Ab
Fig. 4 Fig. 5

Especially, va will have the same form as Eq. (2.6) by replacing ¢ — b and u — d.

(i) AS=1, AC=0

Hy = — G{t Su)(@b) + V7, Ves(3¢)(b)

Sl

(3.2)
+ ViV + Hy + HE + hee.

which has the same form as Hév) if we replace the symbol d there by s.
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(iii) AS =0, AC =1

H = G G V,;;Veo(du)(ed) + h.c. (3.3)

(iv) AS=0, AC = -1

HY = \/% G V. Vus(de)(ub) + h.c. (3.4)
(v) AS=-AC=1
HY = ;% G V., Vaub(3c)(b) + h.c. (3.5)
(vi) AS=AC=1
HyY = :1—,3 G V7 Ve (5u)(b) + hc. . (3.6)

We note that H{“],) and H{f-) are CP-violating while all other terms Hg,f,v), Hx,), H&S) and
H{' are essentially CP-conserving. Moreover, H{:,) is the dominant Cabibbo-allowed term
while all others are Cabibbo-suppressed.

In contrast to the case of the D-decay, the Penguinn term Hg) in both HE,‘],) and
H{f can be large,!? because of the large ¢-quark mass. However, since its matrix element
is difficult to estimate, we will consider only the first two terms in Egs. (3.1) and (3.2).
Then, the analysis of the degree of CP-violations for the present case proceeds as in the
previous D-case. Consider decay modes such as B* — D*ﬁo, Bt — D*D~ 7% and so

on. Then, the ratio
_ <l > _ < fi@) @) >
< flH:li > < f|(de)(eb)]i >

(3.7)

is expected to be small in view of the fact that the quark-diagram for < f|H, It > requires

to pick up c¢ pair from the vacuum sea. Therefore, interchanging the role of H; and H,,
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the formula Eq. (1.21) will lead now to

2
A=~21Im (g—1>- ImR~ "2 snbsImR~(2~7)x102sinbys- Im R (3.8)

gz S12

Assuming a tentative value of siné;3 - Im R ~ 1072, this will give
A~(02~0.7)x107% . (3.9)

Thus, a more promising prospect would be to include the contribution from the interfer-
ence of Penguinn diagram with H; and H,, which may be considerably more large,'? for
example, for B¥ — 7¥r*n¥ decays.

At any rate, possible CP-violations due to Hi,‘l,) will be found in

I'(B* — K'K')#T(B~ — K~ K° (3.10a)
[(BY = na"ntn )+ (B -»n n nt) (3.100)
I'(B* — D*D") # (B~ — D™ D) (3.10¢)

etc. with inequivalent Dalitz plots for three body decays, while Héf,) predicts

T'(B* — K°n%) #T(B~ - K n7) (3.11a)
I'(BY - K*¢/J) #T (B~ — K~ ¢/J) (3.11b)
(B — K07r+7r_) #T(B™ — Fow'w+) . (3.11¢)

All these decays are Cabibbo-suppressed. However, for the dominant Cabibbo-allowed

mode H{:,), we will have
(Bt - D*n*n")=T(B” ->D nn") . (3.12)

with identical Dalitz plots.
We can also study separate C and P violations for 4-body decays B¥ — D¥ntn~n®

just as in D*-decays.
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