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For the case of a beam-loaded radio-frequency acceleration system, we have found the equation for coherent
oscillation by comparing the bunch centroid with the synchronous particle; and we have found the equation for
incoherent oscillation by comparing motion of an individual particle with the bunch centroid. For the case of single
particle motion, stability depends on the synchronous phase <Ps. Stability of coherent motion depends upon the
generator induced partial voltage, whereas stability of incoherent motion depends upon the total cavity voltage
including the beam induced voltage component. With beam loading, the stability of coherent motion depends upon
<Ps+1fr+<Pg, with tuning angle 1fr and generator current phase ¢g, and the coherent bucket is deformed. With beam
loading, the stability of incoherent motion depends upon <Ph+¢c, with beam current phase <Ph and perturbed cavity
phase <Pc. For the case that the centroid is coincident with the synchronous particle, the incoherent bucket is found
to be identical with the case of no beam loading.
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1 INTRODUCTION

The effect of the rf electric fields in a synchrotron is to accelerate the beam and to longi­
tudinally focus beam particles into bunches. Individual particles and also whole bunches
may perform non-linear oscillations; these motions are called synchrotron oscillations. The
rf accelerating cavities are driven both by the generator current and the beam current; and
the effect of the beam on the cavity gap voltage is known as 'beam loading' . As a result of
this beam loading, the coherent motion of a bunch taken as a whole may differ considerably
from the incoherent motion of an individual charged particle. The usual sinusoidal choice
of the rf waveform leads to a phase-space separatrix which bounds the oscillations, called
the bucket.

In this note, we shall find the incoherent bucket for individual particles within the
bunch, and the coherent bucket for rigid oscillations of the bunch centroid. The cavity
dynamical response shall be taken as quasi-static, corresponding to the case that the period
of synchrotron oscillations is much longer than the cavity filling time.

Linear stability analysis1,2 shows the frequency Q of small amplitude rigid dipole
oscillations to scale according to
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Q2 = Q;[l - Ib sin2l/!/2/0 cos¢s] ,

where Qs is the synchrotron frequency, Ib / 10 cos ¢s is the beamload ratio, and the other
quantities appearing will be defined below. This scaling suggests that the coherent bucket
shrinks to zero at some threshold beam current Ib, but begs the questions: "is the bucket
merely scaled in height, or is the shape distorted?" In the following non-linear analysis,
we shall find that the incoherent bucket is little affected by beam loading, but the coherent
bucket size and shape has a complicated dependence on cavity detuning.

2 COHERENT BUCKET

We shall suppose that the synchrotron period is much greater than the cavity time constant;
so that cavity dynamical effects can be ignored and the cavity response is virtually
instantaneous. This premise affords great simplicity but also implies that observations of a
real beam may differ somewhat from the idealization presented here. We shall take it for
granted that the cavity is detuned in the correct sense to avoid the dynamical Robinson
instability.

We shall represent currents and voltages by phasor quantities in the complex plane. The
energy increment received by a bunch is then the scalar product of the beam current Ib vector
and the cavity voltage Vc vector, that is the product of their magnitudes and the cosine of the
angle formed between the vectors. Let R[. .. ] indicate the real part of a complex quantity.
Consider the general case of phasors B = Bei4JB and A = Aei4JA ; their scalar product is

AB COS(¢B - ¢A) = R[AB*] = R[A*B] .

2.1 Coherent Bucket Stability Criterion

Throughout this paper we shall need to distinguish between steady state vector quantities, to
be indicated by a superscript zero, and perturbed vectors which shall carry no superscripts.

Let the cavity gap voltage be Vc = Vcej4Jc and the cavity complex impedance be
R cos l/!ej 1/1 where R is the shunt resistance and l/! is the detuning angle. We shall adopt the
phase convention used by Pedersen:3 that the steady state voltage phasor V~ is aligned with
the positive real axis, in which case ¢c becomes zero. Let the generator current driving the
cavity be a fixed vector I~ = Igej4Jg which is chosen, for given detuning and beam current,
to produce the correct cavity voltage in the steady state. Let the beam image current be
Ib = Ibe- j(n:/2+4Jb) where ¢b is the phase of the bunch centroid measured from the zero
crossing of the voltage waveform. The disposition of the phasors is sketched in Figure 1.

The absolute energy change l::,.E of the bunch per cavity crossing is the scalar product

l::,.E(¢b) = R[Vc Ib] = R[R cos 1/Je+j
1/J (I~ + Ib)Ib](Trev/n)

= R cos 1/J [cos l/! IIbl 2
- Iglb sin(1/J + ¢g + ¢b)] (Trev/n) .

Here Trev is the revolution period.
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FIGURE 1: Schematic of current and voltage phasors.

3

The energy change l:i.E(¢s) of a bunch which arrives at the synchronous phase ¢s is
obtained by putting ¢b = ¢s . The motion will be unstable if changes in bunch phase
produce no change in energy increment, that is if l:i.E(¢b) - l:i.E(¢s) = O. In the limit of
small oscillations, this implies the instability condition

Hence arises the condition

or l/J + ¢g + ¢s = rr: /2, 3rr:/2 , ... (1)

The physical interpretation of this condition is given immediately below.
The cavity voltage can be decomposed into parts due to the generator current and the

beam current, that is Vc =Vg + Vb where Vg =R cos l/Je j1jJ Igej¢g. The sum l/J +¢g is the
phase of that part of the cavity voltage which is due to the generator current. At the stability
limit, the generator induced voltage leads the cavity voltage by rr: /2 - ¢s. Now the steady
state beam current leads the cavity voltage by rr: /2 - ¢s. Consequently, at the instability
limit Equation (1) the generator induced voltage phasor and the steady state (¢b = 4Js)
beam current phasor are in phase. In this case, the bunch sits on the crest of the sinusoidal­
shaped generator-induced voltage waveform, and the power limited Robinson instability is
attributed to loss of phase-focusing for the coherent motion.
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One might well ask "why does not the instability depend on the total cavity voltage?" The
answer is subtle. The absolute energy increment the bunch receives depends on the total
cavity voltage Ve. However, if we compare the energy the bunch receives when arriving
at two different phases ¢b,l and ¢b,2, then the difference of absolute values depends on
the partial voltage Vg. Now, phase-focusing depends on the relative differences of energy
increment, and so depends only on Vg.

2.2 Equationfor Coherent Oscillation

For the single particle motion, it is the phase difference between the particle and the zero
crossing of V~ which is important. However, for the coherent motion, it is the phase
difference between the bunch centroid and the zero crossing of Vg which is important.
Furthermore, in the absence of any feedbacks, l/! and ¢g are constants; and so Ig or Vg can
serve as reference phasors. Accordingly, we define new variables

(2)

(3)

Angle ¢; for coherent motion plays an analogous role to the synchronous phase ¢s for
single particle motion; motion is unstable if either is equal to Jr12. Whereas Jr12 - ¢s is
the steady state phase difference between - Ib and Ve, Jr12 - ¢; is the steady state phase
difference between - Ib and Vg. Hence, if ¢s == Jr12 then - Ig and V~ are in phase, while
¢; == T{12 implies - Ig and V~ are in phase.

2.2.1 Steady state The cavity voltage is

V~ = R cos l/! e+j1f![I~ + Ig] . (4)

Let us define the steady state voltage phasor to be purely real, that is V~ = Vo (i.e. ¢e == 0
and Ve == Vo). The steady state bunch phase is ¢b == ¢s , so Ig =- j Ibe- j<ps • Comparing
real and imaginary parts of Equation (4) we find the equations

We may solve these simultaneous equations for Ib and Ig • Let 10 == Vol R be the generator
current if the cavity were operating on resonance and with no beam. The beam current
modulus is given by

Ib
- cos l/!
10

sinel/! + ¢g)

cos(¢s + ¢g)

sin(¢; - ¢s)

cos(l/! - ¢~)
(5)
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The generator current modulus is given by
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I g cOS(l/! - ¢s)
- cos l/! =
10 COS(¢s + ¢g)

The ratio of current moduli is given by

cos(l/! - ¢s)
=

cos(l/! - ¢~)
(6)

Ib sin(l/! + ¢ g) sin(¢~ - ¢s)
=

I g cos(l/!-¢s) cos(l/!-¢s)

It will be useful to define the factor U == (Igllo) cos l/!. For the normal mode of operation
with 0 :::; l/! < 1T12 and Ig > 0 the function U is always greater than zero, but is very small
for large tuning angles. Setting ¢~ = 1T12 we find U = cos(l/! - ¢s)I sin l/! at the instability
threshold beam current.

2.2.2 Non steady state Let the bunch contain Nb particles of charge q. For brevity, let
Eb = E(¢b) and Es = Es(¢s) be the bunch centroid energy and the synchronous energy,
respectively. The rate of relative energy change obeys the equation

Now the bunch current is Ib = Nbq Irrev and the synchrotron has n radio-frequency cavities.
Hence the acceleration rate is

(8)

We substitute the constant value of I g from Equation (6) and replace loR with Vo.
Suppose h is the harmonic number. In the absence of any frequency error, the rate of

change of phase is

d d 1 21Th (Eb - Es )

dt ¢b = -d¢b = - rJ E
t rrev s

where 17 = [ap - ~2] , (9)

and Es = Ys moc2 and ap is the momentum compaction factor. After combining Equations
(8) and (9), the equation for coherent oscillations is

d [Esrrev d ,] . 1 • 1 cos(l/! - ¢s)
rrev- ---¢b = -nqVoU[sln¢b - sln¢s] where U = . .

dt h rJ dt cos(1/1 - ¢~)

(10)
Apart from a prefactor U which alters the bucket height, this is just the equation for

synchrotron oscillations about a stable phase angle ¢; with respect to the zero crossing of
the Vg waveform. Immediately from Equation (10) we recognize that for given ¢s, curves
such that ¢;(1/1, Ibllg) = constant are curves of constant bucket length and (apart from a
height scale factor) constant shape.
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FIGURE 2: Coherent bucket shape versus beam loading parameter.

2.3 Coherent Stability Limits

In general, the beam-loaded coherent bucket behaves like a moving-bucket (4J; =j::. 0), even
when the beam is not accelerating (4Js = 0). Consequently, the phase and energy extent
of stable oscillations diminishes as the beam loading increases, and falls to zero as does
4J; ~ Jr/2. This variation of bucket sbape is sketched in Figure 2 for the special case that
generator current and steady state cavity voltage are in phase (i.e. 4Jg = 0).

2.3.1 Small oscillations It is interesting to consider the limit of stability of small amplitude
oscillations. We substitute 4J; = Jr/2 into the Equations (5) and (6) for beam and generator
current, to find

2 cos 4Js
sin(21fr)

and
I g = 2cos(1fr - 4Js)
10 sin(21fr)

(11)
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The threshold beam current value is, of course, identical with power-limited instability
threshold derived by Robinson. 1

2.3.2 Large oscillations The important consequence of the deformation of the coherent
bucket by beam loading is that a beam may be unstable for large amplitude coherent
synchrotron oscillations well before the Robinson limit is reached. The nature of the large
amplitude motion is determined by 4>;, but is modified by the scale factor v'fJ. These
quantities are plotted in Figures 3a through 3d as functions ofbeam load ratio Ibl (10 cos cPs)
and tuning angle 1/1 for a variety of synchronous phase angles <Ps = 0, 15°, 30°, 45°. As a
general trend, we see that for a given coherent stable phase <p;, there is a slight advantage
in using a larger tuning angle; because this allows a larger beam load ratio. However, this
will be at the cost of reduced coherent bucket height.

The curve U = 1has a special significance: below it, bucket height falls more rapidly than
we should guess from <p; alone; and above the curve, bucket height is boosted. The curve
U = 1 is given by the solutions of 1/1 - <Ps = ±(cPs + <Pg). The solution <Pg = -1fr implies
<p; = <Ps and generates the case of zero beam current (Ib = 0). The solution <Pg = 1fr - 2<ps
implies the curve of values

hi10 = 2 sin(1fr - 4Js) / cos 1fr . (12)

When this curve is plotted in the Ib / 10 versus 1fr plane, then combinations of Ib and 1/1
above the curve correspond to U > 1, while combinations below correspond to U < 1. It is
evident from the figures, that coherent bucket height is less reduced at small tuning angles.

2.4 Coherent Bucket Shape

The separatrix for coherent motion is called the coherent bucket and is the stability limit for
large amplitude motions. The bucket coordinates are the bunch energy with respect to the
synchronous energy (i.e. Eb - Es ) and the bunch centroid phase (<p~) with respect to the
zero crossing of V~. The centre ofphase motion is cP;, or <Ps with respect to the zero crossing

of the cavity waveform V~. The maximum extent of oscillations about <Ps is T{ - 2cP;. The
relation of these phases to the b.ucket extent is made clear in Figure 4.

It will be useful to consider the parameters Trev , Es and rJ to be slowly varying and to
introduce the synchrotron angular frequency Qs defined by:

n; = q n Vo h TJ / r?-ev Es .

Equation (10) is derivable from the function:

(13)

(¢~)2 - 2Q;U{cos<p~+cos<p; + sin<p;[<p~+<p;-T{]} = 0, (14)

whose condition also gives the bounding stable path in phase space, or bucket. The bucket
half-height is given by
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FIGURE 4: Relation of phases and buckets with respect to the voltage waves Vg and Vc .

where for given l/J and 4Js, the values of 4J~ and U are determined from Equations (5) and
(6) respectively.

Note, close to threshold, the coherent bucket given by Equation (14) will be correct
even if the terms of our initial assumption, that cavity time constant is small compared to
the synchrotron period, are not fulfilled; because the coherent oscillation frequency tends
toward zero at threshold irrespective of Os.

3 INCOHERENT BUCKET

We shall derive the bounding bucket for incoherent motions of individual particles with
respect to the bunch centroid. Our derivation does not assume that the bunch centroid is
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located at the synchronous phase angle. Instead, the derivation manifests the fact that under
conditions of beam loading the incoherent bucket moves with the bunch centroid.

3.1 Incoherent Bucket Stability Criterion

Let the phase of an individual particle with respect to the bunch centre be 4J such that the
phase with respect to the zero crossing of unperturbed voltage V~ is 4Jb +4J. We suppose the
individual particle charge to be so small, compared with that of the bunch, that its motion
does not affect the disposition of the beam image current phasor lb.

If the bunch phase is not equal to 4Js, then the cavity voltage will deviate from the steady
state value; let the new value be Vc = Vce j4Jc where the phase 4Jc depends on 4Jb. Let the
individual particle contribute a current phasor 6 I = - j qe- j (4Jb +4J) Trev where q is the charge.
Thus, the individual particle energy change at the accelerating cavity is the scalar product

= -q Vc sin(4Jb + 4Jc + 4J) .

The motion will be unstable if changes in particle phase produce no change in energy
increment, that is if ~E (4Jb + 4J) - ~E (4Jb) = O. In the limit of small oscillations, this
implies the instability condition

Hence arises the condition

or 4Jb + 4Jc = 1T/2, 31T/2 , ... (15)

The incoherent motion is unstable when the perturbed beam current - Ib and the perturbed
cavity voltage Vc are in phase. This corresponds to the case that the bunch sits on the crest
of the perturbed cavity voltage waveform. In fact, the condition 4Jb + 4Jc = 1T/2 is quite
hard to arrange, particularly at large beamload values. This is because as 4Jb increases, so
4Jc decreases.

The cavity phase 4Jc is a function of the beam phase 4Jb, and so one must find a self­
consistent solution of the instability condition. The perturbed cavity voltage is given by

Vcej4Jc = R cos 1/fe j1jJ [I~ + Ib] .

Now at the incoherent stability limit Equation (15) 4Jc = 1T/2 - 4Jb. We substitute this value,
multiply throughout by exp(+i4Jb) and compare real parts to obtain:
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Now, Ig and Ib are determined by the steady state equation

o = Ig sin(l/r + cPg) - Ib cos(l/r - cPs) .

Consequently, if unstable solutions cPb exist, then they must satisfy

sin l/r sinel/r + cPg)
-cos(l/r +cPg +cPb) = :s 1 .

cos(l/r - cPs)

Clearly rr12 < l/r + cPg + cPb <.3rr12 for instability to occur. Moreover, at sufficiently

large values of the detuning angle l/r ~ ~ no solutions cPb can be found which satisfy
cPb + cPc = rr12. The angle ~ is the solution of the equality

sin l/r sin(l/r + cPg) = cos(l/r - cPs) .

For detuning angles l/r ~ ~ the small amplitude incoherent motion is always stable. As an
example, Figure 5 sketches the dependence of the unstable cPb and IblIg as a function of
l/r for the special case of cPs = 0 and cPg = 0 ; for which case ~ = 51.83°. In general, the
solutions correspond to large values of cPb ; possibly outside the coherent bucket.

3.2 Equation for Incoherent Oscillation

For single particle motion, it is the phase difference between the particle and V~ which
counts. However, for incoherent motion, it is the phase difference between the individual
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particle and the perturbed cavity voltage Vc which matters. Accordingly, we define a new
variable

~s = cPb + cPc . (16)

Here 1!/2 - ~s is the phase difference between the perturbed beam current - Ib and the
perturbed cavity voltage Vc. If cPb = cPs, then ~s = cPs. Angle ~s for the incoherent motion
plays a similar role to cPs in single particle formulations of the phase motion; whenever
either is equal to 1!/2, the motion is unstable.

3.2.1 Non steady state The relative energy change of an individual particle with respect to
the bunch centroid is given by:

So the problem has been reduced to that of finding Vc and ~s. In fact, it is sufficient to find
Vc sin ~s and Vc cos ~s because the the energy change may be written

The perturbed cavity voltage is given by

The form we want is

Vcej;Ps = Vc ej</Jb = R cos Vrej1fr[I~ej</Jb - jIb] .

Comparing real and imaginary parts yields

Vccos ~s = R cos l/J[Igcos(l/J + cPg + cPb) + Ib sin l/J]

Vcsin~s = R cos l/J[Igsin(l/J + cPg + cPb) - Ib cos l/J] .

(17)

Now, if we set cPb = cPs we shall generate an almost identical pair of equations but with
Vc = Vo and ~s = ¢s. Eliminating Ib from these two sets of equations, and substituting
cP; = cPs + l/J + cPg and cP~ = cPb + l/J + cPg, we find the forms

Vcsin ~s = Vo {sin cPs + U [sincP~ - sin cP;]}

Vccos ~s = Vo {cos cPs + U [cos cP~ - cos cP;]} ,

where the function U (cP;) is equal to (Ig/ 10) cos 1fr .

(18)
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For brevity we shall write Eq = E (¢b +¢) to mean the energy of a particle with phase ¢
with respect to the bunch centre, and Es = E (¢s) to mean the energy of the particle which
always arrives at the synchronous phase. The equation for phase advance is

but
d
-¢b
dt

and so upon subtraction of these two equations we find

~ifJ = 2rrh 1J (Eq - Eb) .
dt i rev Es

Finally, after incrementing the energy through n cavities and replacing the tum derivative
with a time derivative, the equation for incoherent oscillations is

d[Es i rev d ] { / / }-irev - -h--¢ = nqVo sin¢ cos¢s + U[cos¢b - cos¢s]
dt 1] dt

+ nqVo(cos¢ - 1) {sin¢s + U[sin¢~ - sin¢;]}

= nqVc[sin(cPs + ¢) - sin cPs] ,

where cPs and Vc are obtained from Equation (18) as

- sin ¢s + U[sin ¢~ - sin ¢~]
tan¢s = ,

cos ¢s + U[cos ¢~ - cos ¢~]

and

(Vc/VO)2 =1 + 2U[sin¢s(sin¢~ - sin¢;) + cos¢s(cos¢~ - cos¢;)]

+ 2U2 [1 - cos(¢~ - ¢;)] .

Equation (19) is that for synchrotron oscillations about a stable phase angle cPs.

(19)

(20)

(21)

3.3 Quasi-Static Approximation for Incoherent Motion

In general Equation (19) is a complicated equation to solve; particularly as ¢b(t) is time
dependent and has the effect of forcing the motion in ¢. However, we note that when the
bunch centroid is coincident with the synchronous phase, and Vc = Yo, cPs = ¢s, then the
equation immediately reduces to the simple form

d [Esirev d ] .i rev - ---¢ = -nqVo[sln(¢s + ¢) - sin(¢s)] .
dt h1] dt

(22)
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Note, the complete absence of cP; from Equation (22) implies that the incoherent bucket and
the incoherent synchrotron frequency are completely unaffected by beam loading for the
case ¢b = ¢s. By continuity we should expect this to remain approximately true for small
excursions ¢b =1= ¢s. Now when ¢; ~ Jr/2, (Eb - Es) must be small if the coherent
motion remains within the coherent bucket, and so the slip rate d¢b/dt must also be
small. Consequently, motion of the bunch centroid will appear 'frozen' compared with
the individual particle motion, and the value of ¢b can be taken as approximately constant
during an oscillation of ¢.

Note, it is not sufficient to say that close to the condition ¢; = Jr/2, the coherent
synchrotron frequency approaches zero implies the motion is frozen, because the bunch
will drift at rate depending on Eb - Es when there is no longitudinal focusing.

3.3.1 Incoherent motion near to the Robinson stability limit By continuity, we should expect
incoherent motion in the vicinity of ¢; = Jr/2 to be similar to the special case ¢; == Jr/2
which is simpler to treat. After the substitutions ¢; = Jr/2 and ¢~ = Jr/2 + (¢b - cPs),
Equations (21) and (20) take the form

tan 4>s

and

sin¢s + UO[COS(cPb - ¢s) - 1]

cos ¢s - Uo sin(¢b - ¢s)

with Uo = cos( lfr - ¢s) / sin lfr.
For the case ¢b = ¢s we recover the previous limiting results that Vc = Vo and 4>s = ¢s.

Hence, even at the limit of stability for coherent motions, the beam stays bunched. For small
displacements Il/Jb -l/Js I « 1 we find that

Hence, the incoherent bucket height and shape are only slightly distorted when the bunch
moves away from the synchronous phase.

The dynamical behaviour at threshold is complicated but, ultimately, self stabilizing.
Suppose, initially, that l/J; = Jr/2, l/Jb = l/Js and Eb =1= Es. With zero coherent bucket,
the bunch starts to wander; but in doing so the incoherent bucket is slightly perturbed and
particles start to redistribute thus slightly deforming the bunch shape. Now the current
modulus Ib depends on the bunch shape, and so will decrease as the bunch deforms; but this
will bring the beam current below the coherent instability threshold and so a small coherent
bucket forms which captures the bunch centroid. The bunch centroid ceases to wander, and
further distortion of the incoherent bucket stops also. Consequently, the beam now becomes
stable with respect to both coherent and incoherent motions.

Far below threshold, we cannot say that ¢b and Eb are slowly changing compared with
l/J and Eq . However, with small beam current, the modulation of the cavity voltage induced
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by the coherent motion will be" small; and so one should expect little modification of the
incoherent bucket in this regime also.

3.4 Incoherent Bucket Shape

The separatrix for incoherent motion is the incoherent bucket. The bucket coordinates are
phase and energy with respect to the bunch centroid, that is l/J and (Eq - Eb). The stable
point of the motion (l/J = 0) is located at l/Jb (t) with respect to the zero crossing of the
unperturbed waveform V~, that is the incoherent motion is 'pinned' to the bunch central
phase. The incoherent bucket length and shape, however, depends on ~s. The maximum
extent of oscillations about l/Jb is ¢ = 77: - 2~s.

Eq. (19) is derivable from the function:

(4))2 - 2Q;(Vc!Vo) {COS(4Js + ¢) + cos4Js + sin4Js[¢ + 24Js - rr]} = 0, (23)

whose condition also gives the bounding stable path in phase space, or bucket. The bucket
half-height is given by

. / --. -- -- 1/2(l/J)lmax = Qsy2Vc/Vo[2cosl/Js -slnl/Js(77: -2l/Js)] .

4 CONCLUSION

For the case of a beam-loaded radio-frequency acceleration system, we have found the
coherent bucket by comparing motion of the bunch centroid with the synchronous particle.
In general, the bucket is distorted and large amplitude motions may be unstable well before
the Robinson limit is reached.

We have found the general incoherent oscillation equation by comparing motion of an
individual particle with the bunch centroid. For the case l/Jb = l/Js and Eb = Es, the
incoherent bucket is always identical with the case of no beam loading. For the case of
extreme beam loading l/J~ ~ 77:/2, and l/Jb ~ l/Js and Eb ~ Es, one may define a quasi-static
incoherent bucket; and this is found to be slightly distorted.

For the case of no beam loading, the stability of longitudinal motions depends on the
synchronous phase l/Js. With beam loading we have found that stability of coherent motion
depends upon the angle l/J~ = l/Js + 1/1 + l/Jg, and the stability of incoherent motion depends
upon the angle ~s = l/Jb + l/Jc. Stability of coherent motion depends upon the partial voltage
Vg, whereas stability of incoherent motion depends upon the total cavity voltage Vc.
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