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We study the phase diagram of non compact QEDj using the MFA method and present evidence for a
continuous phase transition line at small Ny. We also analyze the chiral structure of the vacuum by means of the
computation of the probability distribution function of the order parameter in the exact chiral limit.

1. Introduction

Quantum Field Theory in 2 + 1 dimensions is
being extensively studied in recent times. The
main motivation is that it is a laboratory to ex-
plore some qualitative features of QFT's in 3+1
dimensions; moreover, the strong coupling limit
of these models could be relevant for the high
T. superconductivity phenomenon. In this spirit,
we have done recently an analysis of noncompact
QED in 2+1 dimensions and we report here some
of the most interesting results obtained.

The numerical approach used in almost all
of our computer simulations with dynamical
fermions is the Microcanonical Fermionic Average
Method (MFA) extensively described elsewhere
[1). For the computation of the probability dis-
tribution function of the chiral condensate, de-
fined in Section 3, however, a different algorithm
[2] was used. The MFA method has been success-
fully tested in the compact model in 4 dimensions
and also applied to the study of the compact and
noncompact abelian modecls in 2, 3 and 4 dimen-
sions [1]. The crucial idea behind the MFA ap-
proach is the computation of a fermionic effective
action,

=S5 mNLE) = (det A ) g, (1)
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computed over gauge field configurations at fixed
pure gauge energy E.

2. Phase Diagram from the Effective Ac-
tion

As described in [1], the analytical behaviour of
the Effective Action allows to draw informations
about the phase structure of the theory. In non-
compact QED;3 in the quenched limit we have
found evidence for a continuous phase transition
at finite coupling [3].

This phase transition, which is also present
when dynamical flavours are switched on (at least
for small Ny), reveals itself as a nonanalyticity of
the fermionic effective action as a function of the
pure gauge energy E. In fact .m.w.t shows two dif-
ferent regimes: at small energies it is is a linear
function of the pure gauge energy, whereas for
E > 0.68(1) it exhibits a non linear behaviour.

Since in the quenched limit E = g, we can
immediately evaluate the v.e.v. of the fermionic
action (logdet A)g.

The quantity

QB) = .——v (logdet A), — 0.145 + %wa. (2)
where the last two terms are a fit to the linear
(in E) part of the effective action, is reported in
Fig. 1. It can be seen that 2(3) behaves like a
true order parameter i.e. it is zero in the weak
coupling phase and non zero in the strong coupled
phase.
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Figure 1. Order parameter in the quenched limit

This behaviour, differently with that observed
in the Schwinger model [5), is qualitatively the
same as that found in the noncompact abelian
model in 3 + 1 dimensions.

This is indeed quite surprising since there are
strong qualitative differences between the non-
compact model in three and four dimensions re-
spectively. Noncompact QED in 3+1 dimensions
has a chiral transition at finite coupling whereas
no such a phase transition appeats in the three-
dimensional model, at least for small flavour num-
ber.

On the other hand it has been shown that
the phase transition, which appears in the four-
dimensional model as a consequence of the
anomalous behaviour of the fermionic effective
action, takes place at the same critical coupling
of the monopole percolation transition in the
quenched limit [4], suggesting that both phase
transitions are governed by the same dynamics.
However in three dimensions, the phase transition
we observe takes place at a critical coupling which
is too small to induce percolation of topological
objects such as static monopoles or vortices.

3. The Chiral Structure of the Vacuum

Another interesting feature in the dynamics of
this model is what is the vacuum realization of
chiral symmetry (CS). In the quenched limit and
also for small flavour number, there is little doubt
that CS is spontaneously broken. Indeed there

are strong theoretical prejudices suggesting that
a theory which confines static charges, like non-
compact QE D3, breaks spontaneously CS.

Recently we have developed a new technique
for the analysis of the vacuum chiral properties
[6], which is based on the computation of the
probability distribution function of the chiral or-
der parameter ¥¥. The main advantage of this
method, when compared with other standard ap-
proaches, is that we can work directly in the chi-
ral limit and therefore no mass extrapolations are
needed. The underlying idea, which is very sim-
ple, is based on the well known fact that in a
spin system we do not need to put an external
magnetic field in order to see if the system has
spontaneous magnetization. The main difference
between a spin system and a gauge theory with
dynamical fermions is that the fermionic Grass-
mann variables can not be directly simulated in
a computer. The path integral over the fermionic
degrees of freedom must be done analytically and
therefore no magnetization can be observed in the
chiral limit since we are integrating out over all
possible vacuum states.

In order to construct the probability distribu-
tion function (p.d.f.) P(c) of the chiral order pa-
rameter c, let us characterize each vacuum state
a by the corresponding vacuum expectation value
¢q of the order parameter

1 &
ta =3 Ae..emvn (3)
i=l
The p.d.f. of the chiral order parameter ¢ will be
given then by

P(c)=Y  wad(c— ¢a) (4)

where w, is the probability that choosing ran-
domly a vacuum state, we get the o state. If
the vacuum state is unique, P(c) will be a single
§-function. Otherwise, P(c) will be a more com-
plicated function, sum of 8-functions if we have a
discrete number of ground states or a continuum
function in the case we are interested in.
The function P{c) can be written as

P(e) = .xw Y- ) (5)
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