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ABSTRACT

We investigate the dependence of holomorphicity of the gauge coupling constant
function on the mass matrix at one- and two-loop levels in supersymmetric theories. Gauge
invariance puts constraints on the mass matrix. These constraints ai one-loop level lead us to
three cases of mass matrix that require different ways of regulating the infrared contributions:
massive, pseudo massive and intrinsicaliy massless. The first two give rise to a holomorphic
gauge coupling constant function whereas the last one does not. Two-loop contributions
to super QED and super Yang-Mills theory are calculated using the super background field
method and their dependence on the mass matrix is found to fall under the same three
cases as at the one-loop level. Remarks concerning the general nature of this result to all
orders in perturbation theory are included. Making use of our two-loop results we also
verify the holomorphicity of the Wilson coupling based on general arguments of Shifman

and Vainshtein.

* Electronics address: lih@bogart.colorado.edu
t Electronics address: ktm@verb.colorado.edu

(to appear in Phys. Rev.D)

CERN LIBRARIES,

- ¢olo
Su) D410

cp T~
e HeP

. INTRODUCTION

Recently Dixon et al [1] have calculated one-loop threshold correction to 1/4%, g be-
ing the gauge coupling constant, in orbifold vacua of the heterotic string and in a particular
class of renormalizable N = 1 supersymmetric (SUSY) theories. They find that this correc-
tion is non-holomorphic in its field dependence. Shifman and Vainshtein [2] have discussed
case of super QED and show that non-holomorphicity of gauge couplings arises at two-loop
level. To make this more explicit and to show what entails for the definition of the effective
gauge vacuum angle, consider the action for N =1 supergravity coupled matter and gauge
fields (3]: |

A u\%&s E[®(S,5¢%) + x&%w@:

i (1.1)

+\3§ E :AM?:&::EJ.

Indices a and b, in general, indicate different group sectors. E is the superspace determinant.
R is the super curvature. S = ¢ + fx + 08z is the chiral superfield, where ¢ is the bosonic
component, x is the fermionic component and z is an auxiliary field. V is the super gauge
field of the group G and one of its bosonic components is the normal gauge field A, W =
A+ Fuo® 0 + DO is the the super field strength, where A is the gaugino field, F,, is the
normal gauge field strength and D is an auxiliary field. P(S) is the superpotential. @ is an
arbitrary real function. f,4(S) are the gauge coupling functions. Here the coupling functions
fa5(S) are chiral and hence are analytic ?:nﬁoz of S (but not 5). In other words, fas(S) are
holomorphic functions of S. As the fermionic part of the action is uniquely determined by

its bosonic part, we concentrate on the latter. The bosonic part of the Lagrangian density
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is given by

mlﬁﬁ@ =R+ A 1 vv Fa Nn.vt.\ + ~.®n;€q€v m,.\u_.\w;.t_\

4¢%(p,p)/ ab” " 32n2 (1.2)
+ wm&ﬁ@brs_ﬁ.m +V(p, ).

Here, I is the canonical gravitational curvature, e is the determinant of the space-time
metric, [ is the covariant derivative, G;;(y, @) is the metric for the scalar fields @', V(p, @)
is the potential for them, F is the gauge field strength and F is its dual. g4(p,®) are the
gauge coupling functions, which can be written as

(o)., = Refusli) (1.3)

9°(p,p)/ ab

Oas(p,¢) are the so-called gauge vacuum angles the derivatives of which give the couplings

of axions to gauge field; they are given by

a5, 8)
8n2

= Imfap(p). (1.4)

Considering the global super gauge theory (SGT) as a desivative of this local supergravity,
the couplings in the SGT should also be holomorphic functions of Aﬁmv, where AS..V stand for
the vacuum expectation values of scalar fields ¢*. When loop corrections are included, 0,

cannot be obtained directly from Feynman diagrams, because ﬁh.\m&:.\ is a total derivative.

But one can obtain O, from m%,w..s. We need the following integrability conditions

d (06,
50 ik

a (99,
A mﬁ..vraao.rn 3 (") Uapl v&wﬁ?n, (1.5)

at all loop levels to have well-defineded Q,p. These conditions are only true if holomorphicity
holds at all loop levels. Hence it is desirable to have holomorphic f(y) at all loops in order

to define the effective Og's.

We note that if the gauge coupling function 1/¢%(p, @) is the real part of a holomor-
phic function, then O(y, $)/87% is the imaginary part of the same holomorphic function, the

function being [ = m_q + &%q. So it is sufficient to study only the dependence of 1/¢% on

the mass matrix in order to determine the holomorphic property of the f-function. But it
is found in Ref. [1] that the one-loop threshold correction to 1/¢% in SUSY theories is not
the real part of a holomorphic function. They attribute this to the presence of the infrared
divergence. Motivated by this Derendinger et al. [4] have constructed a new supergravity
theory in which the coupling functions are non-holomorphic even at tree level; this theory is

non-local at tree level.

Our analysis shows that the holomorphicity of 1/¢? at one-loop and two-loop levels
depends on the structure of the mass matrix, M = M({p)), which in turn is representation
dependent. In Sec. 1, we study the holomorphic property at one-loop level and emphasize
the role of the representation of the mass matrix. Sec. IIT concentrates on the two-loop
holomorphicity for the super QED. We investigate the two-loop holomorphicity for the super
Yang-Mills theory in Sec.IV. In Sec. V we verify the holomorphicity of 1/¢%,, gw being the
Wilson coupling constant [2]. Sec. VI contains concluding remarks. A brief report of the

result is contained in Ref. [5] ard many details can be found in Ref. [6].

II. HOLOMORPHICITY AT THE ONE-LOOP LEVEL
AND THE MASS MATRIX

A. One-loop calculation

In this section we study the holomorphic property of the gauge coupling constant at
the one-loop level in a supersymmetric gauge theory (SGT) coupled to matter. To do this,
we need to have an explicit expression for the dependence of the gauge coupling constant
on the mass matrix. Previously, the one-loop correction to the gauge coupling constant has
been calculated in many places [7]. However, the purpose of all these calculations is to find

the B-function, and they are performed in the dimensional regularization scheme or in the



zero mass matrix case. For our holomorphicity study, the whole 8-function calculation is
not necessary; we need only the part that depends on the mass matrix. Furthermore, all
calculations have to be carried out in four dimensional space-time since holomorphicity is a
four dimensional property. (There is no definition of the O-angle in any other space-time
dimension.) Therefore, it is necessary for us to redo the one-loop calculation and demonstrate
how the holomorphic or non-holomorphic dependence arises.
Super Feynman propagators can be derived from action. Let us start with the
general action (7]
A=- mm Tr %H%%?ml«\bs«%\vb»?|<bnn<v_

(2.1)
+\%§§ eV ¢ +\%HE£ P(¢) + h.c).

Here the trace “Tt” is taken on the gauge group; 6 is the spinor coordinate, and d*6 is the
integration in the full spinor space while d%0 is in the chiral spinor space; V is the gauge
vector super field; ¢ is the matter chiral super field; P(¢) is the super potential; and Dq
and D, are covariant spinor derivatives. A renormalizable super potential can have up to
the fourth order in ¢, but since we are only concerned aboul the mass matrix dependence,
we focus on the second order term in P(¢) , the mass term Iw&f&ﬁ, where M is the mass
matrix and superscript “T” is the symbol for the “transpose” of a matrix. The mass matrix

cannot be arbitrary. A gauge invariant mass term in action (2.1) must satisfy the constraints
T°"M + MT° =0, (2.2)

where T are the generators of the gauge group. The consequences of these constraints are

given in the next subsection. The needed Faddeev-Popov ghost action [8] is

Aghost = .Ha\%n%im& —de+ w?. +&V,e+d+--

Here ghosts ¢ and ¢ are chiral (Dgc = Dgc' = 0), while ¢ and & are antichiral (Dqoc =

Do& =0). The gauge fixing term is

1 -
Ayt = —— Tr[d*zd*6D’V DV,
2ag

a being the gauge parameter. For simplicity, we choose the Feynman gauge, o = 1. The

quadratic part of the action in V is given by (see Appendix A)

Agy = |F~ Tr [ d*zd*0V SV,
49

from which the propagator for the gauge field follows (see Appendix B):

2
(Vemyve(2) = I%mzmaﬁ (2.3)

where we define §-function 812 = 84(6; — 62)8*(x1 — z2). The propagators for super matter

fields ¢ and @ are given by (see Appendix C):

(¢(1)$7(2)) H?ﬁg D36y
A&A:saﬁmvv HQE b_wm:

($()F () =zr—3757

(B1)6°(@)) =377

) (2.4)
DD,

D} D%é,.

The ghosts cannot contribute a dependence on the mass matrix as indicated later and hence
we do not need to write their propagators explicitly. Feynman rules for vertex operators can
be read off from the action (2.1) in a straightforward manner. We denote by Zy and Z; the
renormalization constants for V-wave function and monvmmcmo coupling g, respectively. As

shown in Ref. [7], Z, is obtained by the relation
2,23 = 1.

Therefore, it is sufficient to calculate Zy in order to get Z,.
There are cight diagrams that contribute to the self-energy of V at the one-loop

level, as shown in Fig. 1.
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FIG.1. Self-energy of the gauge field

The dashed line stands for the ghost propagator and we use symbol “ ssseana” to indicate that
it can be a super matter, super gauge or super ghost propagator. The tadpole contribution
from Fig. 1(d), can be shown to be zero, and the contributions from Figs. 1(e), }(f), 1(g)
and 1(h) do not concern us, since they do not have a dependence on the mass matrix. So
only Figs. 1(a), 1(b) and 1(c) need be ronsidered. In the calculation, we use the constraints
ToTM + MT® = 0. Then these three diagrams together giv

DS UW Dio
(¢ + MIM)[(g+ p)? + M M]

1 dtqdi0
aav = 3T [CE Vi poT? Ve

4 (2n )1
The trace here is taken on both the matrix of group generators and the mass matrix. How-
ever, we can decompose this trace into a product of two: the trace on the matrix of group
generators and the trace on the mass matrix. This is achieved by adopting the result given
in Appendix D:

Te(T°T*M'M - M'M) = m_| Te (T°T°) x Tr (MM --- M'M)
R

dg being the dimension of representation R. Now, the expression for AAy can be rewritten

as

u |
My = = T [B0VE (=TT DE DI DY)

d'q 1
) %q\Ami\_ (g2 + MIM)[(¢ + )+ MM

By comparing the coefficient of the V2 term in the above equation with the coefficient of the

V2 term in Eq.(2.1), we identify wave-function renormalization constant for V:

Zy =1 l.%@wﬁ\ dq !
2dp ) @) (¢ + MIM)[(q +p)* + MIM]'

where the trace Tr(T9T?) = Tré°? has been used. In this paper we take Tp = 2 {7]. Now
1
recalling the relation Z3Z, = 1, we obtain the one-loop correction to 1/4%, up to terms

independent of M,

D_ Tr T \ diq 1
— = —1—— 1T .
g 2dg ) @) (@8 + MIM){(g + p)* + M M]

For our holomorphic study, we can take external momentum p — 0 for simplicity.
To regularize the ultraviolet divergence, we need to have a regulator to deal with ultravio-
let divergences. Usually the dim.ensional regularization scheme is used to accomplish this.
However, since we are here studying the holomorphic property, which is a four dimensional
phenomenon, we have to limit ourselves to four dimensional space-time. Hence the dimen-
sional regularization scheme does not serve our purpose. In fact, the natural choice in this
situation is to use the Pauli-Villars [9] regularization scheme for matter fields. (The ultra-
violet regulator for other fields are not needed, since the regulator for matter fields curbs
all ultraviolet divergences as far as this study is concerned.) This regularization scheme is

performed by the propagator replacement

1 1 1
T MM\t MM~ K2+ ANA)’

(2.5)

where A is the matrix of ultraviolet momentum cutoff. Implementing this in Eq. (2.5), we

get
d'q (ATA)?
(2 (g2 + MTM)2(g? + ATA)

1 . Tr
A= =—i—T
7 sm&w T

(2.6)

This is an expression in Minkowski space. This integral is ultravioletly finite, but its infrared
property depends on the mass matrix M and also on the regulator A. The gauge invari-

ance gives constraints on both mass matrix and ultraviolet cutoff: ToTM + MT? =0 and



T°TA + AT = 0. We need to know the consequences of these constraints. For different
representations of the gauge group, we have different representations of the mass matrix.
We discuss the representations of the mass matrix in the next section before we integrate

Eq.(2.6) and study its holomorphic property.

B. The mass matrix

The holomorphicity of the gauge coupling is dependent on the representation of the
mass matrix. In the following discussion, we focus on non-Abelian groups. But as we see,
results for Abelian groups can be found trivially.

1t follows from Eq.(2.2) (see Appendix D) that if the representation R of the gauge
group is irreducible, then the mass matrix M is either trivially zero or all its modes are
massive (detM # 0). Thus, to have a general mass matrix containing both massive and
massless modes, we have to go to a reducible representation. In general, although a reducible
representation can contain real, pseudo-real and complex types of irreducible representations,
as shown in Appendix D, different types of representations are trivially decoupled. Therefore,
we can study each type of representation separately without Idss of generality.

A real or pseudo-real representation R of the gauge group can be simplified to have
the form (see Appendix D)

!

ltfl;
G(R) = diag{G, Gr, ..., Gr), (2.7)

where the submatrix G, is an irreducible n x n real or pseudo-real representation. We assume
that we have a total of I G,'s. The conditions (2.2) put constraints on the mass matrix, and

the solution to the constraints takes the following form

ay;] a2 ... ay
QNu QNN P QN~

M= . L : R.J
a)p ap ... ay

Here n x n dimensional matrix J is given by G, = JG}J~!, and a,;’s could be arbitrary

complex numbers. For the real representation, we have J = [, the unit matrix, and a;; = aj;,

so that the whole mass matrix is symmetric. For the pseudo-real representation, we have

J?2 = =1 and JT = —J. The matrix elements a;; = —aj; so that we have an overall

symmetric mass matrix.

A complex representation R of the gauge group can be transformed to have the form

I 1
G(R) = diag{G., Gy ..., Go, G, G-, ..., G, (2.8)

where G is an irreducible n x n complex representation and G is its complex conjugate. We
assume that we have a total of | G.’s and I G2’s, and we call I as the number of n-dimensional
families of chiral fields and [ as the number of #-dimensional antifamilies of chiral fields. !
and [ are not necessarily equal to each other. For this complex representation, the gauge

invariant constraints require the mass matrix taking the form

bugr o by
M= buvr - buyr o,
biyry oo biywm

by - by

where the matrix elements b;; are arbitrary complex numbers with b;; = bj;, and I is an
n X n unit matrix.

Massive case: For all the three cases of real, pseudo-real and complex representa-
tions, the mass matrix M may have zero eigenvalues, or massless modes. Depending on
whether the mass matrix has massless modes or not, the integral in Eq.(2.6) behaves differ-
ently. A mass matrix is called massive if all its eigenvalues are non-zero. For the massive
mass matrix, since M ™! exists, M naturally serves as an infrared regulator in the calculation
of the one-loop correction to 1/g%.

Pseudo massive and intrinsically massless cases: For a mass matrix with at least
one zero mode (MMWZ), we have to distinguish different cases. For a real or pseudo-real

representation, we may have a mass matrix with massless modes. But due to the arbitrariness

|
|
_
|
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of the matrix elements a;; (except for the symmetric conditions), im can always perturb them
(i.e., change them by infinitesimal amounts) so that all the modes in the perturbed matrix
M, are massive. Since we can manage to have the perturbed mass term gauge invariant,
this perturbed mass matrix can be used as the infrared regulator for the matter sector. We
call this type of mass matrix pseudo massive. For a complex representation, there are two
different types of MMWZ: (i) The type when the number I of G; in G(R) is equal to the
number I of G? in G(R), or in other words, the numbers of families and antifamilies are
balanced. We can easily see that this case is similar to the real case discussed above, and we
can perturb the mass matrix such that Mp is massive. This is, again, the so-called pseudo
massive case. (ii) The type when [ # I, i.e., the numbers of families and antifamilies are
unbalanced. In this case, we can see that the rank of the matrix (i.e., the number of non-zero
modes) is smaller than the dimension of the matrix, ({4 1)-n. Thus, we have some massless
modes no matter how we perturb the matrix elements b;;. Since in this case, the perturbed
mass matrix can never be massive, we call the mass matrix intrinsically massless. This
only happens for the complex representation. For the pseudo massive case, we can perturb
matrix elements a;; or bij, so that Mp has no zero modes and we can adopt it as the infrared
regulator. Since \Sm._ exists, we can pick the ultraviolet cutoff A so that A~! exists. On
the other hand, in the intrinsically massless case, Evl_ does not exist and cannot be used as
an infrared regulator; hence we have to deal with the infrared divergence with a momentum

cutoff.

C. Holomorphicity of 1/¢°

Now we perform the integration in Eq.(2.6). For a massive matrix M, M~! exists

and so does A~!. Rescale ¢* by

Eq.(2.6) becomes

1 Tr ¢%dg* 1
A = ——T .
7= ™ o T (29)
where we have moved into Euclidean space by replacing go with igq, and defined a = *
The integration gives
Bg==g A;iv In(a'a)
(2.10)

_ Te 1 MY\ Tg 1 M
=TS A;iv In Aﬂv ~2dp A_miv n AHV
where higher order terms in (a'a) and contributions independent of (a'a) have been ignored.

The r.h.s. of Eq.(2.10) is the real part of

which is holomorphic in M (= M{{¥))).
For the pseudo massive case, we add a perturbative matrix ¢ to M by defining
M, = M +¢, and adopt Mp, as the infrared regulator while keeping the perturbed mass term

gauge invariant. We get

*
= B (ke ()

This is, again, the real part of a holomorphic function as long as e # 0. Hence, the holo-
morphic dependence on the mass is still true for the pseudo massive case. Therefore, we
conclude that, al one-loop level, MMWZ does not necessarily mean non-holomorphicity for
1/g%; and holomorphicity holds for both the massive and pseudo massive cases.

Finally, we discuss the intrinsically massless mass matrix case. In this case, we
have a complex representation with I # I, in other words, the number of the families for
chiral fields, is not equal to the number of the antifamilies. We know that, because of the
unbalanced numbers of families and antifamilies, we cannot perturb the mass matrix M so

that it becomes massive while the mass term is still gauge invariant. This means that the
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perturbed mass matrix cannot be used as the infrared regulator. Therefore, to integrate Eq.

(2.6), we have to put in an infrared momentum cutoff, pg. This results in

1 Tp ,. ..
Dwm = lw&lxw_o_m_o :A

1
1672

vT: Awm+>\~*§v+no=mn._g (2.11)

where “const.” stands for terms that are independent of M. Since we cannot factorize
P+ MM, the above expression is not the real part of a holomorphic function. An example
of this is the SGT based on the Eg group with two 27-dimensional families of chiral fermions

and one 27-dimensional antifamily considered in ref. [1]. Here the mass matrix is

0 0 (p1)
0 0 {2 |- (2.12)
(p1) (p2) 0
The calculated one-loop correction to 1/¢% is given by {1]
1 6
DMM T T: [1 (¢") 12+ Aﬁmv 2 + OAP»L_ + no:m»._. (2.13)

Since this Dmuq cannot be expressed as the sum of a holomorphic function of Aﬁ_v and Aﬁwv
and its complex conjugate, one-loop correction is not holomorphic.

Thus the above analysis shows that the one-loop correction to 1/¢? is holomorphic
for the massive and pseudo massive mass matrix cases and it is non-holomorphic for the
intrinsically massless mass matrix case. The latter case arises for a complex group represen-

tatton with unbalanced numbers of families and antifamilies.

1. TWO-LOOP HOLOMORPHICITY IN SUPER QED

We first study the two-loop corrections to 1/g? for the simple Abelian case of super
QED with a reducible representation for ¢ having { = I = 1, and then consider a general
representation. This would facilitate the general discussion for a non-Abelian group given in

the next section. The use of the super background field method (SBFM) simplifies two-loop

calculations. We first briefly review SBFM.

A. Super background field method

In the background field method (BFM) each field is split into a background part
and a quantum part, and then all the quantum fields are functionally integrated out. The
background fields are kept untouched; and we obtain an effective action for the background
fields. The gauge field is split up in such a way that the action is both background and
quantum gauge invariant. The gauge fixing term is chosen to be background gauge invariant.
Therefore, the final effective action for the background fields is guaranteed to be background
gauge invariant. Furthermore, to maintain both the initial action and the final effective

action to be background gauge invariant, the following condition has to be satisfied [10]:

This means that in BFM, one only needs to calculate Zy in order to get the correction to
1/¢%. This makes things much simpler.

In the super background field method (SBFM) (8], we, again, split fields into back-
ground parts and quantum parts and then integrate out the quantum parts. The differ-
ence of SBFM from the regular BFM is that the former method is supersymmetric and its
background-quantum splitting is, as we will show, nonlinear. For convenience, we use sub-
script “t” for the “total” field, to distinguish it from the background and quantum fields.
We split the vector super field ¥ into the quantum part V and the background part ,

according to

This is the only way to maintain the action to be both background and quantum gauge

invariant [11]. Accordingly, the background covariant derivatives are given by

D = D%, DY = PR i
with the super background strengths defined as
1

1o . 2
W, = |M~@D<A\Umj©0:, ﬁ\—\mn = |M|~.—®Q4*@D~Un.-:.



The background chiral super field ¢ and antichiral super field $ are defined by

D=0 D°$=0,

respectively. They can be related with the original “total” fields by

=, d=c".
After the splittings, the action in Eq. (2.1) can be rewritten as (8]

A=— L T [d2d% (VDY) [DF, [ D, eV Dae” )]
»Qw 3
1 (3.1)
+\%§§ oTe¥ ¢ - 3 &z [d%0 ¢"M¢ 4 h.c],
in terms of background covariant derivatives and commuiators. This action has both quan-

tum and background gauge invariance. The background invariant gauge fixing term (in

Feynman gauge) is given by [§]
1 2 1752 v (P2
Agt = |§$ d'zd'o (V[D?, [P, V]] + V[D?, [D%, V]]).
This term is background gauge invariant, but not quantum gauge invariant. By taking the
background fields to be zero, we come back to the expressions for the regular action and

regular gauge fixing term, which have been given in the previous section. Now the Feynman

rules for the quantum fields V and ¢ follow.

B. Super QED in the simplest representation

Before we go to the general representation of the mass matrix in super QED, we first

discuss the simplest case where { = I = 1. This is the representation of super QED that has

16

been frequently used since it is simple and physical. The representation of the U(1) group

is of the form {8]:
e? 0

G(R) = 0 '8

Then the representation of the mass matrix has to take the form of

0 m
M= , (3.2)
m 0

in order to make the mass term gauge invariant. The matter field is denoted as

¢4
b

The super gauge field, Vg, has the form

The action can be easily simplified as
A=— VN\%&{ D*VD*DV
29
_ _ B R 1 - _
+\}§ [Bds + -6+ V(Bsds —d-6-) + V2 (Brds+9-6-) 4] (33)
- 3\%&:_ é+¢- +hc
The background invariant gauge fixing term is

Ay = - %ﬁ d'zd*0 (Va[D?, [D?, Va]] + Vi[D?, (D2, Vi)]).

The covariant derivative D can be written as D* —:['*| where I'” are the super connections.
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From the commuting property of the U(1) group we can easily prove that

1 I
A == 507 dzd'0V(D*D? + D’ D*)V.

Adding A and Ag together, we get

1
\A.*\Ah..”lmmNn R»H%Q«\Dc«\

- - - 1 ; _
R S A MICIALE S A
- 3\&&& $yd_ +h.c.
(3.4)
From the quadratic part of the action, we can construct the Feynman propagators

for matter fields ¢4 and @4, and gauge field V. The super matter propagators are (see

Appendix C)
(3:064(2) = G D Dio,
(6206 0)) = - Do (35)
(3+1)6-() = G D7
The super gauge propagator is
VOV @) = b (3.)

Oo
In the above equations
1.
—1
2
1
O_ =0 — 10, — mzmnﬂav - Wﬂaﬂa —

1.

5t
1.
=1
2

0, = 0o — iM®d, — =i(8°Ta) — W?? (D° W) — iW® Dy,

(D°Ws) — WDy,
where the super background connections I'* are defined by Dt = D® —iI'?, with a = aa.

The background field strengths in super QED are

u-.‘ , , ~ ; -
Wa = - (D", {Ds, Do}l = D*Ta, Ws = -5 Gs?:nbwﬁ..

For loop calculations in the SBFM, the first step is to find all possible vacuum

diagrams for quantum flelds, and then expand the quantum propagators for V and ¢ fields

18

around their external background fields. Any two-loop vacuum diagrams that do not have
a dependence on the mass matrix will not concern us. There are four relevant diagrams
as shown in Fig.2. We use the symbol * weee.” to indicate the propagator of a quantum
matter field, quantum gauge field or quantum ghost field. The wavy lines stand for the
propagators of the quantum gauge fields. The straight solid lines stand for the propagators

of the quantum matter fields.

. 0. [ $-
X 9. ¢ ¢

(a) (b)

9. 5, §

b, . &
©) @

FIG.2. Four two-loop vacuum Feynman diagrams
For each diagram, we write down quantum matter fields, ¢ and ¢, explicitly to indicate then
locations in the diagram. Each of the solid line in Fig.2 stands for a propagator proportiona
to either U+¢:...|:t or G.m|_|§ﬂ Since the external fields T, T, W and W are hidden in the
propagators Dﬂn_ﬂﬂ and D|||_ﬂ.|l.3., we need to expand the propagators to get the explici

dependence on the external fields. To do the expansion for D+|\~|5.|=t we need to use th

expression for [}
1 1 1
O = Do — i1"0, — 5i(8"Ta) = 5T*Ta — 5i(D"Wa) =W Do,

and its commutation with D¢
- 1 . ;
[Da, 4] = WO Dag + 3 DaaW* ~ {(DaWP)Dyg + Wsz\?

The expansion of 91|_|=.|=. is straightforward but tedious. By keeping terms up to secon

Plugging t}

-

What we n
(3.7) in the
Eq. (3.11)as

and the arr

PA

Many indiv
(3.11), but

The terms 1

or

By using tt
(3.9), we ca

vanishing c
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order in T, ', W and W, we have the following result
v
O, —m'm
- n_s.s - 1_3.37.?9 + WS._?:QW_S“I&
+m.ww_y_ WEQE.:Q |H3.s - |Hs.sw ay, . |~s,3
At L (W Dus + (DasW)
b (1100 + LT ) o [0+ ) e
+.Dﬂmﬂ..|,m?19 +1(@T)] mﬂu_ﬂﬂ,.w@gﬁvmo m—
+D|°W~s|.mm€..§vac (Hs.s [P0 + waﬁ_:mﬂ_lsﬂ (3.7)
+mﬂ_ﬂﬂw€aﬁvmﬂ%yw€§39 L = u_a.s%,,m_o D,
‘g us.s;i - |_3.3§_,.€3@.ww_n=ﬂ$
+m.ﬂwmﬂ?1@. + w.a:,._: S us.s%..mo b,
+‘Dﬂ.||~ﬂﬂNWAbn$\LDo I_S,Bs.sxm Oo IHS.Sbm
e |_s.a“.s:Do 1_3.5 [i7°8, + W.S._F:QW_M.NF
5 |Hs.s~.:: & u%s%%i&? us.sp.
‘5 :_3.323 & x_s.s%m_uo I_S.SEF,
where we have used the relation (D2W,) = —i(DgeW?). We can see that this expansion

only depends on W®, W¢ and I'*, and their derivatives, but not on T* and I'* [8] {notice that
re = ['¢ = ['2%). The expansion for _uuctl_an.": is similar, except that we need to replace D”

by D% and W by Wé. But as we will see, it is not necessary to write down the expansion

terms for 1.‘3
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We now argue that Figs.2(b) and 2(c) give zero contribution. For Fig.2(b), the form

of derivatives acting on é;2 can be one of the following three:

812D%612D1%61,
612010 D2612D1 2612,

812D10 D15 D2612D1 %612

Using the following properties for é-function and commutator of /) and D,

612DI D\ %612 = 612012 D26y = b1a, (3.8)
%_NU_SUM.&; =0, for n+m <4, Awwv
{Da, UmL = 1Dgg, (3.10)

we can see that there are not enough number of D’s and D’s (~there need to be eight) to
make Fig.2(b) non-zero. Similarly, for Fig. 2(c), the form of derivatives acting on 611 can be

one of the following three:

snDIDy 60,
511 D1e DD1 2611,

811 D10 D1g D2 DY 61y

Here, we denote 613 for limp_) 812. Again, there are not enough number of D’s and D’s to
make the diagram non-vanishing.

Now we show that Fig.2(d) gives no contribution. Second order terms inT, W and
W, give two kinds of contributions: (i) one of the two loops has two external legs, but the
other one has none; (ii) each of the two loops has one external leg. Case (i) represents a
tadpole diagram, and on the loep without external leg, the trace over the group generator,
Tr(T®), gives a vanishing result; case (i) represents a non-1PI diagram, which does not

contribute to two-loop Zy.
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The only non-zero contribution is due to Fig. 2(a). Its contribution is

= (VIOV(2) (6+(1)64(2)) (4 (2)64 (1)

+ o VWV () ($-(1)4-(2)) (3-(2)6-(1)

Plugging the expressions for the matter and gauge propagators, we obtain

|.\RAH_&AQ_%HN~&A%~

bwbw%_~Alnv%-

.D..*..Ilﬂaﬂ:.l Dc bnbw%ﬁ Aw~:

D+I33

What we need to do now is to expand the quantum matter propagator _Hellw.ﬂuﬂ using Eq.

(3.7) in the integral. Graphically, there are three different types of terms in the expansion of
Eq. (3.11)as shown in Fig.3. Here the curled lines stand for the external background fields

and the arrows in the propagators stand for the direction of momentum flow.

(a) (b)

FIG.3. The three diagrams represent three types expansions of Eq.(3.11)

Many individual terms in Eq. (3.7) may give a non-zero contribution upon their use in Eq.

(3.11), but the sum of the terms with “naked” derivatives is zero. This is proved as follows.

The terms with naked derivatives can contribute to Eq. (3.11) a term of the form
612014 D} D1 281203 D32 612,
or
612D10 D15 DI D181, D2 D261,

By using the commutation in Eq. (3.10), and the é-function properties in Eqs. (3.8) and
(3.9), we can see that these two types of contributions do not survive. Hence, the non-

vanishing contribution to Fig. 2(a) comes from those terms in Eq. (3.7) that do not have
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naked derivatives. Collecting all contributions of terms pf the type represented by Fig.3(a),

and integrating the spinor coordinate over one vertex, we obtain

- \a%aég p— n__a —

x [0, + (9°Ta) + E.. :

Qus.sz,sl SO+ S(0PWy) | e (3.12)
- \?32?.9; D5 l_s.s%h,ac -Hs.s

x [W Dy + Ss..%ﬁ@ﬂs.ls.

where the factor 2 comes from two symmetric situations. Similarly, all contributions of the

terms represented by Fig.3(b) can be expressed as

1 1 1 1
= —2[d'zd's'd" N Apap, 1 :
’ \H T s R e M (3-13)

and those represented by Fig. 3(c) as

I.=— \.&AH&AH %m| . ! !

Oy Oy —m*m Og - m*m

1 1 1 1
10 — (A8 A —(D°W, .
XT O + AQ_JV.TMA _Dcis.s 0o — m*m

1
b
:§+ L@ra) + Sus\m:§4

(3.14)

The above I, Iy and I. are in Minkowski space. As usual, we transform to momentum
space by using the momentum assignments given in Fig. 3. We work in Euclidean space, by
replacing go with 2q4 and ko with tk4. If the original mass matrix has a massless mode, then
we must have m = m* = 0. For this massless case, the dependence of 1/¢% on the mass
matrix is trivially holomorphic, although we have to deal with the infrared divergence. If the
original mass matrix contains no massless mode at all, then m and m* must be non-zero. In

this case, we have to do the integrations to get the actual m-dependence of 1/g°.
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As in the one-loop case, we work in four dimensional space-time and use the Pauli-

Villars regularization scheme to deal with the ultraviolet divergence of the matter fields:

1

K tmm) " o (R rm'm) = (B4 AY) T,

where the ultraviolet cutoff A — oco. The integrals are done by rescaling the momenta

g—qA, ko kA, p—opA,

and are expressed in terms of parameter a = m/A. As

1 1 1
Eimm kKi1A2) Ak +aa) (k2 + 1)

some integrals have a prefactor 1/A or 1/A% and hence can be eliminated right away. The
non-zero integrals have I'T external fields. Since we are only concerned about holomorphicity,
in these inlegrals we take external momentum p — 0 for siraplicity.

The sum of contributions terms I4, Iy and I. is gi-en by 6]
1Y x?

1677 [0y +1+ 5

1
= Lo+ Iy+ e = S1°(0)Ta(0) (3.15)

Examining the result, we find that the second order logarithmically divergent term [ln(a’a)]?
cancels out leaving only the first order In(a*a) term. This is crucial for the holomorphicity

of the gauge coupling constant as we will see later.
C. General representations in super QED

In a general representation in which [ and [ are arbitrary, the mass matrix does not
take the simple form as in Eq. (3.2). The calculations are similar to those of previous subsec-
tion. Here also the second order logarithmic divergence cancels out, and only the first order
logarithmic divergence is left. The final integrational result depends on the representation

of the mass matrix:
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a) if the representation of the mass matrix is massive or pseudo massive, we have
1 E:s

I = — Te[*(0)Fa(0)]{ =5
: %Eﬂ OO 1522 i_s —

x?
v+_+&, (3.16)
which is of the same form as Eq. (3.15).

b) if the representation of the mass matrix is intrinsically massless, we need to use

the momentum cutoff to regulate the infrared divergence. Hence

2
a 1 2 t
I= :5 = T OTa(0)]( 7 ) Tr | (e + M'M) +85,._, (3.17)

where “const.” stands for the terms that do not depend on the mass matrix M. In Egs.
(3.16) and (3.17) “Tr” stands for the trace over both mass matrix M and A, and group

generators T'®. But as indicated earlier this trace can be decomposed into a product of two,

the trace over the mass matrix and the trace over the matrix of group generators.

D. Holomorphicity of 1/¢?

The expressions (3.16) and (3.17) give the two-loop corrections to the gauge action

in respective cases. We write i in the standard form

|$ dizd*0 WoW,, (3.18)
w

in order to get the correction to 1/g%. For this purpose, we use the following identity
\%H%% Mr, =— ,\%&%m WeW, + total derivative. (3.19)

From this we immediately obtain Dm_q. a) For the massive and pseudo massive cases, the

two-loop correction to 1/¢? is
MM

1 Tef{ g ;
A =R I e;_._;;

e 7\ T6s2 Y41+ — 5 _ (3.20)

up to terms that do not depend on M?' and M, or negligible. This correction is the real part

of the holomorphic function

2T g

dp \ 1672

Therefore, we conclude that the two-loop correction to the gauge coupling constant is holo-

M
A

1 aw_

2
ﬁT:A v+ +_M

morphic for the cases of massive and pseudo massive mass matrices. The simplest represen-
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tation with | =1 =1 and m # 0 is a special case of this. b) For the intrinsically massless

case (representation with unbalanced numbers of families and antifamilies), we have

1 Tr{ g ; 2 i
Dml.mll&x 62 Han?o;.\S >\Q+no:mp._. (3.21)

Since the infrared momentum cutoff is nonzero, 1/¢% is clearly not the real part of any

holomorphic function of M.

IV. TWO-LOOP HOLOMORPHICITY IN SUPER YANG-MILLS THEORY

In super Yang-Mills theory, the action has the same form as that for the super QED
in the previous section, Eq. (3.1}, except that the gauge group is now non-Abelian. The
mass term again can be written as ¢T M ¢, where, in genera!, the mass matrix M can always
be chosen to be symmetric. Again we impose the constraint T°TM + MT® = 0 in order
to have the action gauge invariant. Here the T°'s are the gauge group generators in the
representation R. In the rest of the section, we calculate explicitly the two-loop dependence
of 1/¢g% on the mass matrix, by using the SBFM. The basic calculational procedure is very
similar to that in the super QED case, but because of the non-commuting nature of the
gauge group, the calculations are more complicated. But as at one-loop level, here also a
representation of the mass matrix can give rise to massive, pseudo massive or intrinsically
massless cases.

The background gauge covariant space-time derivative is denoted by Do (= Dyuot,),

and the spinor derivatives are denoted by D, and Ds. They are related by

Do = {Da, Da)-
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In this background invariant representation, we write the action as [8]

A=~ Awﬁ dizd'o ?L\Uom«\:@w,*\U?mlﬂ\@:na\: )
+\%§§ §eV e w\%azg $TMé + h.c). .
Here, V is the quantum gang» ol and ¢ is the quantum matter field. The background
gauge fields are hidden in the covariant derivatives. More specifically, the background spinor
connection terms I'* and I'® are given by D* = D* —iI'* and D% = D% — il'%, respectively,
where D® and D® are the regular non-background covariant derivatives. A similar relation

exists for the space-time connection T®%. The background field strengths W, and W; are

defined by

S
il

1 AGr =
IM—@ 3 *@quﬂw_,

Il

S -
We mﬁ._Uo;Un,ﬁo:.

To get the Feynman propagators for ¢ (#) and V fields, we should find, from action (4.1),
terms quadratic in ¢ (¢) and V, respectively. For the gauge field V, we need to expand e

in the action and keep only the terms that are in the second order of V. This yields

Ay = umww. Tr [d'2d*0 V(~D*D*D, + D°W,)V.

For simplicity, we have used D for the commutator [D, }, D for [D, }, W for (W, }, and
Ofor [O, }. Here, we define the commutator “{, }” by [A, B} = AB — BA, if at least one
of the two variables, A and B, is bosonic, or [4, B} = AB+ BA, if both of the two variables
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are fermionic. The background invariant gauge fixing term is given by
Ay = Jmm Te [#2d'0 V(DD + D*DY)V.
Now adding this to Ay, we can show that
Ay + Ag = IH.W T [ zd* 0V(O - iW*D, — iW D,)V. (4.2)

We define

and

I
i
0
|
S
Q
I\
!
5
i

Then, we obtain the propagator for the gauge field V (see Appendix B)
A , NG
VeVy) = -1 A!)l; 512
vt =-i(4) b
where the subscript “A” indicates that the group generaters are in the adjoint representation.

The action involving ¢ and ¢ fields is given by
Ay = \?2 o+ \}3 Vet \?3 V2%
(4.3)
- w\%a (420 §™M¢ + h.c],

up to second order in V. From this action, we can derive the following propagators for ¢
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and ¢ fields (see Appendix C for details)

(p()47(2) =M' 75 Dirz

1

(¢ @) =g M D262,

~ (4.4)

(6015 ) =537 DiPI

- 1 —
($(1)¢"() =557 DiDio,

where [0y and (0 are defined by (see Appendix A)
Pl =0,¢, DDo=04

The solutions for Uy and OJ_ are given by
O, = 0= iWDq - 5i{D",Wa),

and
0 =0-iWDs — W;@ﬁ%&.

At two-loop level, the ghost action does not contribute any dependence on the mass
matrix to the gauge coupling constant. Since we are studying holomorphicity, and our major
concern is the dependence of the gauge coupling constant on the mass matrix, we can ignore
the contribution from ghosts. Also notice that, although the mass matrix M here is actually
a background covariant one, as proved in Appendix A, it equals the original “ bare” mass
matrix Mg. So we can use the same symbol M for both. We now look for all non-vanishing
two-loop contributions to the gauge action. Up to second order in V, we have two vertices

that contain matter fields: i¢TVi4; and w.&j\mi:. From these vertices, we have the following
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quantum correction in the order of ¢*
b, o o 1, -
! |m AT&H S ﬂ._u?ﬁwa\m&wvvao::mgmn + .wls. ATﬁ\_nSmﬂ_vvno==mnpmn_
1 g ST
=L (V)T (08 T Gi0ud )
(4.5)

1 -

+o. T [((WVYTT (id13) T? (i¢26])]
1 .

+ 5 T (W) T°T? (id197) ],

where we have only included the connected graphs. Graphically, I can be represented by

X
(X

©

three Feynman diagrams as shown in Fig. 4.

a_ e~ ﬁ «N
Avw @N AVM GN
(a) (b)

FIG.4. Two-loop vacuum Feynman diagrams in non-Abelian gauge theory

The dependence on background fields W, W and T' is contained in the quantum propagators.

Now plugging in the super matter and gauge propagators, we have

1/ 1Y?* [ 1 _ 1 N
J=— 2= F3 o 2712 I3 212

5 ]D; 12 Tr ,ﬂ SR (DED2612)T SRy (DED26;2)
1/ 1Y’ [ 1 1

tol=) 6T |17 = (D}o10) T MM —————— (D}
7 &, 12 Tr o, = MM (D1612)TP" MM o, Y A\UNQSV (4.6)
1/ 1Y* [ 1 9

+-{=—] nTr|T°T°—— (D}D?
2 1, nir . D+ _MM A uﬁ_m:v )

where the first, second and third terms of the equation correspond to Figs. 4(a), 4(b) and
4(c), respectively. To get contributions from each of the diagrams, we need to expand

propagators D[+|_|>t§ and m_l in Eq. (4.6). In the non-Abelian super gauge theory, the
A

expansion of Dlh%@. is very much like the one in the super QED case, Eq. (3.7), except
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that we need to replace m by M, m* by M1, D by D and D by D. Also, we need to expand

operator %M using

B4 = 04 — iW3Dag — iW5Das,
and
. 1 .
[Daa,04) = mﬁ@??:\;_ — i{Dpg, WA} Dag.

Similar to the §-function properties in the super QED, we have

QB@N@M&S = m_m@m\me_w = é12, 4.7

&Edidsm: =0, for m+n <4, Ava

Using the D-properties we can show that Figs.4(b) and 4(c) give zero contribution, and only

Figs.4(a) gives non-zero contribuiion. Fig.4(a) represents

1 _AH W e—
= — —-| = r
2\@,/ " Oy - MM

1

e (DED3612)].
D+|>\N:§A 252 _wv

(D2DY61)T

The expansion of of propagators mm@.ﬂ and m_w in ] gives rise to different types of terms
represented by Fig. 5. The curled lines stand for the external gauge fields. Compared with
the the expansion in the Abelian case (Fig. 3), we can see that there are three more diagrams
in the Abelian case. Since each external leg can be I', W or W, or their derivative, we have

many combinations. Most of them could be shown to give rise to zero contribution because

of the D-properties in Eqs. (4.7) and (4.8).
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(d) © ®

FIG.5. Feynman diagrams in non-Abelian gauge theory
The integrals are evaluated using the Pauli-Villars regularization procedure for mat-
ter fields as in the case of super QED. Similarly we can identify their contribution to 1/4%.

For massive and pseudo massive cases, for a representation with dimension dg, we get

1 Tr{ ¢ ¥ Mt M
A = R -z 2
p dr A_manv TQ:.. + Ca)Trln A A v + nonmL. (4.9)
This is the real part of the holomorphic function
2Tr( g ¥ My
W A;i TS +C4)Trln AH\ +const.}, (4.10)

where Cp is given by Y, T°T° = Cgrl, and C4 is Cg for the adjoint representation. Notice
that the coefficient in front of the logarithmic function differs from that of the two-loop
B-function the reason being that we have omitted the pure gauge or ghost contributions,

which are not necessary for our purpose.
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For the intrinsically massless case, we have

1 Tr{ ¢

L 4.1
g2 dp \ 1672 (4.11)

2
Tﬁm +Ca)Trln (pi + MIM) +no:mL.

This has the same dependence on the mass matrix as Eq. (2.11) indicating that it is not the

real part of a holomorphic function of M.

V. MASS MATRIX INDEPENDENCE OF 1/G%

In Ref. [2] general arguments have been made to define a “Wilson coupling” gw
(a coupling in the Wilsonian effective action) which is claimed to be holomorphic. In this
section we explicitly verify this claim using our two-loop results.

In a general SQED case, generalizing the simple SQED expression for 1/¢% given

in Ref[2], we have

1 _1, TR gz, (5.1)

wﬂ g2 ' 8nldp
where Z, is the wave-function renormalization constant of the matter field. (Note that
for the simple SQED dg = 2.) The holomorphicity of 1/g% implies that the r.h.s of the
above equation should be independent of the mass matrix in the intrinsically massless case.
This means that the mass-matrix dependence of the two-loop correction to 1/4? should be
canceled by the one-loop contribution to Z4. In fact that this is so can be explicitly verified
using the one-loop result

mm

3212

Zg=1+ In(M'M + pd), (5.2)

from Ref[6] and the two-loop correction to 1/¢* in SQED from Eq. (3.21).
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In the case of super Yang-Mills theory
%H%|m_=%+mﬁw\wﬁlzﬁ? (5.3)
At one-loop
Zy=1+ ﬁw In(M'M + p). (5.4)

Again we see that the mass matrix dependence of the second and third terms at one-loop level

cancel the mass-matrix dependence of 1/¢2 at two-loop level, making H\Qﬁ holomorphic.

VI. CONCLUSION

The form of the mass dependent corrections to 1/¢% in the one-loop and two-loop
cases are identical. The reason is in the two-loop calculation, for all cases, the second order
logarithmic terms, [In(M*M))? or {In(p? + MY M)]?, cancel out leaving only the first order
In(MtM) or In(p2 + M'M) terms. We expect this to be true for the higher loops. The
work to prove this using Slavnov-Taylor-like identities is in progress. In conclusion, we have
explicitly shown that, up to two-loops, the holomorphicity of the gauge coupling function
depends on the representation of the mass matrix M constrained by Eq. (2.2), and in the
massive and pseudo massive cases it is holomorphic and in the intrinsically massless case
it is not. This is because in the first two cases one can use the mass matrix or perturbed
mass matrix as a regulator for the infrared divergence whereas the intrinsically massless case
requires an infrared momentum cutoff. We have explicitly verified the holomorphicity of
1/g%, in both SQED and super Yang-Mills theories, supporting the general arguments of
Ref. 2].

We thank S.P. de Alwis for discussions. We have benefited by the insightful remarks
of the referee. This research was supported, in part, by the U.S. Department of Energy,

Grant No. DEFG-ER91-40672.
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APPENDIX A SUPERSYMMETRY ALGEBRA

In this appendix, some useful aspects of supersymmetry algebra are given. We use

the convention in Ref.[11], with the exception of the covariant derivative which is denoted

by D instead of V.

A. Super Algebra in the Regular SUSY Theory

The covariant spinor derivatives Dy and Dg are given by

O it Das, Da= oo +i20° Do,

—_ . _H . L=
Dy = +1-0°Dag, Dg ®%n+~w

where the upper and lower spinor indices can be mutually converted to each other by using

Cqp, the SL(2,C) metric. The commutator of D, and Dy is

where Do is the space-time derivative (Dyg = anb:v. Now denoting wbabn by D? and
w@w@w by D?, we record the following properties for the covariant derivatives [11]:
1 es 2
mb Doe = 0= 8%,
[Da, D?) = —iDas D%, [Dg, D?] = ~iDga D",
o AG 7 ¥ )2 27202 _ 2
D*Dg =83D% D D; =630, D?D*D*=0D%,
D*D?D, = D°D* Dy,
D*D* + D*D* - D°D*D, =00,
D%, D% = 0+ iDgDa DY = —0O — iDy D D°°,

M@wbw + mbmbobe&.‘ = UQCNUQ.
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Defining 0% = 1Cog0%6%, 0% = 1C, ;8509 and &1 = (01 — 02)}(01 — 02)", we have
the following identities
D26 = D?0* = —1, Dféip = -D3éy2,
812D D™éy13 =0, form +n <4,

512D2 D619 = 612D D?612 = b1

B. Super Algebra in the Background Field Method

In the super background field theory, the background covariant derivatives D =

e Do = D* —i[®, and D = e Pl = P& _ ¢ where (1 is the background gauge

field and Ts are the super connections. Like in the case of regular super algebra, we use the

following definitions
2 . 1 a
D* = -DD,,
2

and

3
Q
Q-

i

\W*\Unewmv = Doi — tFaa-
The background field strengths are defined by
1 -4 1a < 1 7
W, = |M_@n, {DaDa}]s Wa=—5:1D"{Da,Da}]-

For future simplicity, we also define

)
g
I
B
8]
E-./
i
S
o}
&

and

1,6z . 1
Wa = ——(D"(D4Ds))y Wa=—7:

- (0°(2.D2)).

20

Some properties given below are very important for the propagator expansions in
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Appendices C and B:

(D, Wa} + {D*, W5} = (D"Wo) + (D*Wa) =0,

[Da, Dgg] = CasW,

4 E&@EL = CysWas

and
[Da, D) = —iDasD? +iWa = —iD*Das — Wa.
The background chiral and antichiral matter fields are denoted by ¢ and @, respec-
tively. We define the operators 4 by

P = 0,6, D'Dé=0-¢

These operators can then be expressed as

0, =0-iW°D, - W;Uﬁs\af
up to a term in the form of f - D, and

0. =0-iWsD, — W;?.%L_
up to a term in the form of f-D. Here f is an arbitrary function, and ] denotes w@nm@om.
It is obvious that

DY f(0,)D? = f(O-)D*D?, DHf(O-)D’ = f(O)D*D?,
and
[Pa,0) = w«?@& + w@%%@.
The covariant derivative on M has to be defincd as
(DM)=D'M - MD.
This is the consequence of the chain rule for the covariant derivative D
(D§)TMé + ¢"(DM) + §"M(D¢) = D("M$) = D(¢"M¢).

Then from the constraints T°TM + MT? = 0, it is easy to see that (DM) = 0. Similarly,

we have (DM1) =0, (DM) =0 and (DMY) = 0.
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APPENDIX B SUPER GAUGE PROPAGATOR

In this appendix, we will derive the expression for the propagator of the super gauge
field in the background field theory. The canonical supergauge field propagator is obtained

by putting the background field equal to zero in the final result.

A. Propagator for the Gauge Field

As given in Eq.(4.2), the quadratic part of the gauge action plus gauge fixing term

1 . 17,6 5
Ay + Ay = |®~.§ d'zd ov(O— WD, — W D,)V, (B.1)
where we have denoted D for commutator [D, }, and W for {, }, and Ofor [0}, }. In
these notations, we have

(DV) = [D, V] = [D —iT', V] = (DV) — i[T), T°|T*V" = (DV) — i f*P T V7,

where f29° are the group structure constants and T'° are the group generators in the repre-
sentation R. Meanwhile, since in the adjoint representation, the po component of the group

generators T can be written as Aﬂ»vua = f2?? we have
(DV) = (DV) =TTV = T*(6* D ~ TV

Now defining D, as the background covariant derivative in the adjoint representation and
defining

Vi T!
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in the column matrix form, where d is the rank of the group, we can write

(DV) = T(D4Y).

It is straightforward to generalize this to
(DD---DV) =TT (DaDa---DaV).

Therefore, we have

THVDD---DV) = Te(VT?)(DaDa - DaV)’

= 2[V™(DaD4a - DaV)],

and

Tr (V(Q - iW°D, - W D;)V)

=2[V((Op ~ tWp"Daa - iWa"Daa)V)],
where we have used Tr(T°T?) = Tré?’ with the trace factor Tp = 2.

Now adding the real source
W ﬁ\??? n\%a%ﬁqw,

.N_

to action (B.1), where J = , we obtain the logarithm of the partition function

.\&
InZ(J) = &w\%s%ﬁ:@, W4 D g — iWsEDse)

Obviously, the gauge propagator is

~

Gm

Oy — iWg" D,y — W4 " Dae

=
<
s

Il

il

|
'
i



39

APPENDIX C SUPER MATTER PROPAGATORS

In this appendix, we derive the expressions for the propagators of the super matter
fields in super background field theory. This is done in Minkowski space. All the resuits can
be applied to the regular SUSY theory by simply taking the background fields to be zero

and replacing the background covariant derivatives with regular covariant derivatives.

A. Super Propagator for the Matter Fields

The quadratic action for the matter fields is given by
Ag = \%&Q - w d'z(d?0 ¢"M¢ +h.cl,

where ¢ and ¢ are the background chiral and antichira! fields, respectively, and M is the
mass matrix in the background field method. We denote ihe icgular chiral and antichiral

fields by ¢ and é¢, respectively, then

& = QIQ&.& & = NID&:
where  and Q0 are the background fields, and

M= mbqiomo

where Mg is the mass matrix with no background field. We claim that M has to equal Mg.
This is because the mass term has to be invariant under a gauge transformation and the

right hand side of the above expression is just a special gauge transformation.
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Converting the action into the full spinor space, we get
Ay = \%&& %e - LE: @& - é \Em.@&v
+

by using properties in the previous appendix. The spinor covariant derivatives are given by
D* = e D%, and D* = e~ D6 Now adding background chiral source j and antichiral

source J to this action [7], we have

\AﬁA.w.u ,\»&b&%% %H$||$ El@w@ll&._.?&*m;r» Qwv
+\%H%§J+\%H%$w
\%e%% &a& - |$q§ \Unﬁl 2z :S* 74
Oy
+ﬁal@~u+$41@~ V

n\%&s m:m %ICV QFI@N:%I@NV “

+

where A is the matrix

Al\smm@n 1 v
1 -mtg-D?/

Now functionally integrating out the background chiral and antichiral fields, we have the

logarithm of the partition function in the matrix product form

InZ(5,7) = |w\%H§A .D|u®~ v ADH@N v v\ﬁ_ Amﬂwwwv (C.1)

where the inverse of the matrix A can be shown to be

t 1 H2
M'g =P

P 1+ M'g; @:sal,laﬂwmv.

1 1y2 1 52 2
1+ Mg-D Eflﬁki@ Mo =D
After simplifying Eq. (C.1), we have

InZ(5,5)
. t 1 2
_ IW\.&\_H%QAQA i A\S DLD:lERJ\U

)
O, MM

1
O--M™™M

7
()
O, (0, MM MD J
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By using the facts that

Mw = D%y, W = D%y,
where 812 = 6%(z1 — 2)64(6) — 62), we oblain
o .
($(1)¢7(2)) = |%N_ww_w%.~,v O |~.>t§ MD}6i,
(#(1)$"(2)) = |%M.,_W%Mw o I,.\s%@w@?:,
(#(1)¢7(2)) = |m~ww_w%~,w oo ME%R@?;.

These are the four matter propagators in the super background field method.

APPENDIX D MASS MATRIX

A. Constraints on the Mass Matrix

In this appendix, we discuss the general representation of the mass matrix M, which
is subject to the constraints from gauge invariance. We mainly discuss the mass matrix in
the super Yang-Mills gauge theory, but the discussion is applicable to the super Abelian
gauge theory as well.

R labels the representation of the gauge group G, and M denotes the mass matrix.

The invariance of the mass term
\3 ¢"M¢ +h.c
under gauge transformation requires

G(R"MG(R) = M.

42

Because finite representations of simple groups are unitary, we have
G(R)™' =G(R)!, MG(R) = G(R)'M.
Indicating the group generators in this representation as T, we have
TTM + MT* =0, T°M'+ MIT°T = 0.

From Schur’s lemmas {12], we know that if R is an irreducible representation, we must have
either M = 0, or det M # 0. This means that for an irreducible representation, the mass
matrix is either trivially zero, or all of its modes are massive.

To have a mass matrix with both massless modes and massive modes, the represen-

tation has to be reducible. The reducible representation R can be written as

G, 0 --- 0
0 G, - O
Qﬂﬁwv = . . .. . ’

where G; (i = 1,---,1) are irreducible representations. Assuming the mass matrix in this
representation has the form

Mn -+ My

M= P ,
My - My

where M is a matrix with dimension dimG; xdimG}, and using the relation G(R\TMG(R) =
M, we have GTM;;G; = M,;. From Schur’s lemmas [12], we know that, if dim(G) #
dim(Gj), then Mi; = 0. This means that M can be decomposed into diagonal blocks, and
for cach block the corresponding G; all have the same dimension. Since different blocks are
trivially decoupled, we can assume the whole mass matrix M is one of such blocks, without
loss of generality. In other words, we can assume that all Gi’s (i = 1,-- -, 1) have the same
dimension, n x n. Furthermore, though different types of representations (like real, pseudo- j
real or complex) might have same dimension, they cannot mix. That is, the coupling between
type 1 and type j, Mi,, is zero. Hence, we can investigate different types of representations

separately.
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B. Real and Pseudo-Real Representation
For a real or pseudo-real irreducible representation, G, we have
Gi=J7'GlJ. (D.1)

For a real representation, the matrix J equals I, the n x n unit matrix; and for a pseudo-real

representation J = —JT with J? = —1. For both cases, J™! = Jt. If Mj; is nonzero, we
have

G; = EmMHQm\S&.. (D.2)

Comparing this with Eq. (D.1), we see that representations G; and G; are equivalent. By
rotating sector i or j of the super matter field ¢, we can have G; = Gj, and M;; = ayJ,
where a;; are nonzero complex consiants. Since this is true for all 2 and j, we can define
G; = G, for all i, where subscript “r” stands for “real” or “pseudo-real”. The representation
of the group then becomes

i
e ————

G(R) = diag{G., G, ..., G:}, (D.3)
and the mass matrix becomes

Q:.\ h:.\/

M = : :
apnd - ayJ
ap -0 oay

= oo ® J.

an  --- o an

Furthermore, since we can always choose a symmetric mass matrix, we have a;; = aj for

the real representation, and a;; = —aj; for the pseudo-real representation.
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C. Complex Representation

For a complex irreducible representation GG;, we must have M;; = 0, otherwise, we
will have |
Gi = M;'G; M,
which conflicts with the complex condition. For j # 1, we have either M;; =0, or
Gj = E.,M_QHE:.
This means that, if M;; # 0, then representation Gj is equivalent to the complex conjugate
of representation G;. As in the case of a real or pseudo-real representation, we can rotate
the sector i or j of the super matter field ¢, so that we have exactly Gi = G;. This implies
Mij = bi;I, where I is an n x n unit matrix. Since this is true for all ¢ and j, we can define
G; = G, for all i, where subscript “c” stands for “complex”. The representation of the group

then becomes
1 li
e e, e et
G(R) = dieelGe, Ge,y ..., Ge, GE, GI, ..., Gt}

Notice that the number of irreducible complex representations is not necessarily equal to the
number of their conjugates. Assuming the former number is [ and the latter number is I, we

have the following form for the mass matrix

LITIRY B T |
bul ... byyl
M = i+1 1+l ,
byt ... byul
T TR N
which can be reexpressed in terms of matrix product
by - by
M= &:.: v:+~ ®~.

by ... by

F+: F+:
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Since the whole matrix M is chosen to be symmetric, we have b;; = b;;.
D. Trace Calculations

We now calculate the following typical trace:
Te (T°T?(MM)*),

where k is an arbitrary integer. We show that the trace over mass matrix can be separated
from the trace over the group generators.

For a real or pseudo-real representation, we have shown that
M=A®/J,

where

apg - n:\

is an [ x I dimensional matrix, and J, as we know, is an n x n dimensional matrix. From

this we have
and therefore,

\Q:S = A\»*\»v ® Naxf

where Inxyn is an n x n dimensional unit matrix. Meanwhile, the group generator 77 in
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representation K can written as (see Eq. (D.3))
T°=ha®Ty,

where I is an [ x [ dimensional unit matrix. We then have
ToTP (M M)*
= (a'A) @ (TT?),
and
Tr (T T (M M)*)
=Tr (At4)* - Tr (T7TP).

Also because

Tr (T°T*) = ITe (T T?),

Tr (MM)* = e (a1 4)",

we have

Tr (T°T?(MM)*)

= Lo (Mt e (7o),
dp

where dg = [ - n is the dimension of the representation.

For a complex representation, we have

0 B
M= BT 0 ® N:x-:
where
bt oo byyg
bugy o by
is an | x [ dimensional matrix. Then,
(B"'BT) ® Inn 0

MM =
A 0 (B'B) ® Inxn
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In this representation, the group generator T? can be written as

79 = La®T? 0
0 g ® T’

therefore,
Te (77T (M M)")
(B™B7)" @ (T7TY) 0
0 (B'B)" @ ((T2)"(T2)")
— [Te(B'B)* + T (BT BT T (17T2).

=Tr

Also, since we have

Te (T°T%) = (1 + D Te (T24F),

T (M'MY = [T (B'B)* + Tc (BT BT)'],

we obtain
Te (T°T?(M'M)*)
= L (rore) e (MY
dp

where dg = (I 4+ 1) - n is the dimension of the complex representation. This is of the same

form as that for the real or pseudo-real representation.
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