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ABSTRACT

A model describing Ising spins with short range interactions moving randomly

in a plane is considered. In the presence of a hard core repulsion, which prevents the

Ising spins from overlapping, the model is analogous to a dynamically triangulated

Ising model with spins constrained to move on a at surface. It is found that as a

function of coupling strength and hard core repulsion the model exhibits multicritical

behavior, with �rst and second order transition lines terminating at a tricritical

point. The thermal and magnetic exponents computed at the tricritical point are

consistent with the exact two-matrix model solution of the random Ising model,

introduced previously to describe the e�ects of uctuating geometries.
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1 Introduction

Following the exact solution of the Ising model on a random surface by matrix

model methods [1], there has been a growing interest in the properties of random

Ising spins coupled to two-dimensional gravity. More recently, work based on both

series expansions [2] and numerical simulations [3, 4] has veri�ed and extended

the original results. It is characteristic of these Ising models that the spins are

allowed to move at random on a discretized version of a uid surface. In a speci�c

implementation of the model, Ising spins are placed at the vertices of a lattice built

out of equilateral triangles, and the lattice geometry is then allowed to uctuate

by varying the local coordination number through a \link ip" operation which

varies the local connectivity [3]. Remarkably the same critical exponents have also

been found using consistency conditions derived from conformal �eld theory for

central charge c =

1

2

[5], which should again apply to Ising spins. It is generally

believed that the new values for the Ising critical exponents are due to the random

uctuations of the surface (or the world sheet in string terminology) in which the

spins are embedded, and therefore intimately tied to the intrinsic fractal properties

of uctuating geometries. It came therefore as a surprise that non-random Ising

spins, placed on a randomly uctuating geometry but with �xed spin coordination

number, exhibited the same critical behavior as in at space, without any observed

\gravitational" shift of the exponents [6].

The natural question is then to what extent the values of the critical Ising ex-

ponents found in the matrix model solution (� = �1, � = 1=2,  = 2, � = 2=3,

� = 3=2 [1]) are due to the annealed randomness of the lattice, and to what extent

they are due to the physical presence of a uctuating background metric. The most

straightforward way to answer this question is to investigate the critical proper-

ties of annealed random Ising spins, with interactions designed to mimic as closely

as possible the dynamical triangulation model, but placed in at two-dimensional

space. We should add that it is well known that for a quenched random lattice the

critical exponents are the same as on a regular lattice [7], as expected on the basis

of universality, even though in two dimensions the Harris criterion (which applies

to quenched impurities only) does not give a clear prediction, since the speci�c heat

exponent vanishes, � = 0, for Onsager's solution.

In this letter we present some �rst results concerning the exponents of such a

model. A more detailed account of our results will be the subject of a forthcoming

publication [11].
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2 Formulation of the Model

In a square d-dimensional box of sides L with periodic boundary conditions we

introduce a set of N = L

d

Ising spins S

i

= �1 with coordinates x

a

i

, i = 1:::N ,

a = 1:::d, and average density � = N=L

d

= 1. Both the spins and the coordinates

will be considered as dynamical variables in this model. Interactions between the

spins are determined by

I[x; S] = �

X

i<j

J

ij

(x

i

; x

j

)W

ij

S

i

S

j

� h

X

i

W

i

S

i

; (2.1)

with ferromagnetic coupling

J

ij

(x

i

; x

j

) =

8

>

<

>

:

0 if jx

i

� x

j

j > R

J if r < jx

i

� x

j

j < R

1 if jx

i

� x

j

j < r

; (2.2)

giving therefore a hard core repulsion radius equal to r=2. As will be discussed

further below, the hard core repulsive interaction is necessary for obtaining a non-

trivial phase diagram, and mimics the interaction found in the dynamical triangula-

tion model, where the minimum distance between any two spins is restricted to be

one lattice spacing. For r ! 0, J

ij

= J [1� �(jx

i

� x

j

j �R)]. The weights W

ij

and

W

i

appearing in Eq. (2.1) could in principle contain geometric factors associated

with the random lattice subtended by the points, and involve quantities such as the

areas of the triangles associated with the vertices, as well as the lengths of the edges

connecting the sites. In the following we will consider only the simplest case of unit

weights, W

ij

= W

i

= 1. On the basis of universality of critical behavior one would

expect that the results should not be too sensitive to such a speci�c choice, which

only alters the short distance details of the model.

The full partition function for coordinates and spins is then written as

Z =

N

Y

i=1

X

S

i

=�1

(

d

Y

a=1

Z

L

0

dx

a

i

) exp(�I[x; S]) : (2.3)

In the following we will only consider the two-dimensional case, d = 2, for which

speci�c predictions are available from the matrix model solution. It should be clear

that if the interaction range R is of order one, then, for su�ciently large hard

core repulsion, r !

p

5=2 < R, the spins will tend to lock in into an almost regular

triangular lattice. As will be shown below, in practice this crossover happens already

for quite small values of r. The critical behavior is then the one expected for the

regular Ising model in two dimensions, namely a continuous second order phase
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transition with the Onsager exponents. Indeed for the Ising model on a triangular

lattice it is known that J

c

=

1

2

p

3 ln 3 = 0:9514:::. On the other hand if the hard

core repulsion is very small, then for su�ciently low temperatures the spins will tend

to form tight ordered clusters, in which each spin interacts with a large number of

neighbors. As will be shown below, this clustering transition is rather sudden and

strongly �rst order. Furthermore, where the two transition lines meet inside the

phase diagram one would expect to �nd a tricritical point.

In order to investigate this issue further, we have chosen to study the above

system by numerical simulation, with both the spins and the coordinates updated

by a standard Monte Carlo method. The computation of thermodynamic averages

is quite time consuming in this model, since any spin can in principle interact with

any other spin as long as they get su�ciently close together. As a consequence, a

sweep through the lattice requires a number of order N

2

operations, which makes it

increasingly di�cult to study larger and larger lattices. On the other hand, we should

add that we have not found any anomalous behavior as far as the autocorrelation

times are concerned, which remain quite comparable to the pure Ising case.

In the course of the simulation the spontaneous magnetization per spin

M =

1

N

@

@h

lnZj

h=0

=

1

N

< j

X

i

S

i

j > ; (2.4)

was measured (here the averages involve both the x and S variables, < >�< >

x;S

),

as well as the zero �eld susceptibility

� =

1

N

@

2

@h

2

lnZj

h=0

=

1
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X
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S
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S
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It is customary to use the absolute value on the r.h.s., since on a �nite lattice the

spontaneous magnetization, de�ned without the absolute value, vanishes identically

even at low temperatures. In addition, in order to determine the latent heat and the

speci�c heat exponent, we have computed the average Ising energy per spin de�ned

here as

E = �

1

N

@

@J

lnZj

h=0

= �

1

JN

<

X

i<j

J

ij
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) W

ij

S

i

S
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> ; (2.6)

and its uctuation,

C =

1

N

@

2

@J

2

lnZj

h=0

: (2.7)
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3 Results and Analysis

In the simulations we have investigated lattice sizes varying from 5

2

= 25 sites

to 20

2

= 400 sites. The length of our runs varies in the critical region (J � J

c

)

between 1M sweeps on the smaller lattices and 100k sweeps on the largest lattices.

A standard binning procedure then leads to the errors reported in the �gures.

As it stands, the model contains three coupling parameters, the ferromagnetic

coupling J , the interaction range R and the hard core repulsion parameter r. We

have �xed R = 1; comparable choices should not change the universality class. As

we alluded previously, for small r we �nd that the system undergoes a sharp �rst

order transition, between the disordered phase and a phase in which all spins form

a few very tight magnetized clusters. On the other hand, for su�ciently large r,

the transition is Ising-like, between ordered and disordered, almost regular, Ising

lattices (for our choice of range R, the transition appears to be very close to regular

Ising-like for r � 0:6 and larger, see below).

A determination of the discontinuity in the average energy of Eq. (2.6) at the

critical coupling J

c

shows that it gradually decreases as r is increased from zero.

Fig. 1 shows a plot of the latent heat versus r at the transition point J

c

. In general

we do not expect the latent heat to vanish linearly at the endpoint, but our results

seem to indicate a behavior quite close to linear. From the data we estimate that

the latent heat vanishes at r = 0:344(7), thus signaling the presence of a tricritical

point at the end of the �rst order transition line. Beyond this point, the transition

stays second order, as will be discussed further below. The phase transition line

extends almost vertically through the phase diagram; for r = 0 we found on the

largest lattices J

c

= 0:19(2), while for r = 0:6 we found J

c

= 0:93(3).

To determine the critical exponents, we resort to a �nite size scaling analysis. In

the following we will be mostly concerned with the values for the critical exponents

in the vicinity of the tricritical point. In the case of the spin susceptibility, from

�nite-size scaling, we expect a scaling form of the type

�(N;J) = N

=2�

��(N

1=2�

jJ � J

c

j) : (3.1)

To recover the correct in�nite volume result one needs ��(x) � x

�

for large argu-

ments. Thus, in particular the peak in � should scale like N

=2�

for su�ciently large

N . In Fig. 2 we show the evolution of the computed peaks in � as a function of

lnN , for r = 0:35.

Despite the fact that the lattices are quite small, as can be seen from the graph

a linear �t to the data at the tricritical point is rather good, with relatively small
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deviations from linearity, �

2

=d:o:f: = 8:8� 10

�3

. Using least-squares one estimates

=� = 1:27(7), which is much smaller than the exact regular Ising result =� = 1:75.

From scaling one then obtains the anomalous dimension exponent � = 2 � =� =

0:73(7). To further gauge our errors, we have computed the same exponent in the

regular Ising limit, for r = 0:6. In this case we indeed recover the Onsager value: we

�nd on the same size lattices and using the same analysis method =� = 1:70(8). We

also note that the shift in the critical point on a �nite lattice is determined by the

correlation length exponent �, namely J

c

(N) � J

c

(1) � N

�1=2�

. This relationship

can be used to estimate �, but it is not very accurate. From a �t to the known

values of J

c

(N) we obtain the estimate � = 1:3(2).

A similar �nite size scaling analysis can be performed for the magnetization.

Close to and above J

c

we expectM � (J�J

c

)

�

, and, at the critical point on a �nite

lattice, as determined from the peak in the susceptibility (which incidentally is very

close to the inection point in the magnetization versus J), M should scale to zero

as M

N

(J

c

) � N

�=2�

. In Fig. 3 we show the magnetization M computed in this way

for di�erent size lattices close to the tricritical point. In spite of the larger errors

the results again clearly exclude the pure Ising exponents, and give �=� = 0:30(10),

to be compared to the exact regular Ising result �=� = 0:125. A similar analysis in

the pure Ising limit (more precisely, for r = 0:6) gives �=� = 0:15(7).

The results for the peak in the Ising speci�c heat C at the tricritical point as

a function of lattice size L are shown in Fig. 4. One expects the peak to grow as

C � N

�=2�

, but the absence of any growth implies that �=� < 0 (a weak cusp in

the speci�c heat). If we insist on �tting the peak in the speci�c heat to a power of

N , we get �=� � �0:11(5), a negative value due to the decrease of the peak with

increasing system size. On the other hand we should add that, in general close to a

critical point, the free energy can be decomposed in a regular and a singular part. In

our case the singular part does not seem to be singular enough to emerge above the

regular background, leading to an intrinsic uncertainty in the determination of an

� < 0, and which can only be overcome by determining still higher derivatives of the

free energy with respect to the coupling J . A better approach would seem therefore

to determine the correlation length exponent � instead, and use scaling to relate it

to � = 2 � 2�. In the regular Ising case one has in a �nite volume a logarithmic

divergence C � lnN (and �=2� = 0), and we indeed see such a divergence clearly

for r = 0:6, which corresponds to the almost regular triangular Ising case.

One can improve on the estimate for J

c

by considering the fourth-order cumulant
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=� �=� �=� �

This work 1.27(7) 0.30(10) < -0.11(5) 1.3(2)

Matrix model 1.333... 0.333... -0.666... 1.5

Onsager 1.75 0.125 0.0 1.0

Tricritical Ising 1.85 0.075 1.60 0.555...

Table 1: Estimates of the critical exponents for the random two-dimensional Ising

model, as obtained from �nite size scaling at the tricritical point.

[9]

U

N

(J) = 1�

< m

4

>

3 < m

2

>

2

; (3.2)

where m =

P

i

S

i

=N . It has the scaling form expected of a dimensionless quantity

U

N

(J) =

�

U (N

1=2�

jJ � J

c

j): (3.3)

The curves U

N

(J), for di�erent and su�ciently large values of N , should then in-

tersect at a common point J

c

, where the theory exhibits scale invariance, and U

takes on the �xed point value U

�

. We have found that indeed the curves meet very

close to a common point, and from the intersection of the curves for N = 25 to

400 we estimate J

c

= 0:48(1), which is consistent with the estimate of the critical

point derived from the location of the peak in the magnetic susceptibility. We also

determine U

�

= 0:47(4), to be compared to the pure Ising model estimate for the

invariant charge U

�

� 0:613 [10].

One can estimate the correlation length exponent � from the scaling of the slope

of the cumulant at J

c

. For two lattice sizes N;N

0

one computes the estimator

�

eff

(N;N

0

) =

ln[N

0

=N ]

2 ln[U

0

N

0

(J

c

)=U

0

N

(J

c

)]

; (3.4)

with U

0

N

� @U

N

=@J . Using this method, we �nd � = 1:3(3).

In Table I we summarize our results, together with the exponents obtained for the

two-matrix model [1], for the Onsager solution of the square lattice Ising model, and

for the tricritical Ising model in two dimensions [8]. As can be seen, the exponents

are quite close to the matrix model values (the pure Ising exponents seem to be

excluded by several standard deviations).

4 Conclusions

In the previous sections we have presented some �rst results for a random Ising

model in at two-dimensional space. The model reproduces some of the features
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of a model for dynamically triangulated Ising spins, and in particular its random

nature, but does not incorporate any e�ects due to curvature. Due to the non-

local nature of the interactions of the spins, only relatively small systems could be

considered so far, which is reected in the still rather large uncertainties associated

with the exponents. Still a rich phase diagram has emerged, with a tricritical point

separating �rst from second order transition lines. We have localized the tricritical

point at J

c

= 0:48(1) and r = 0:344(7). The thermal and magnetic exponents

determined in the vicinity of the tricritical point (presented in Table I) have been

found to be consistent, within errors, with the matrix model solution of the random

Ising model. Our results would therefore suggest that matrix model solutions can

also be used to describe a class of annealed random systems in at space.
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Figure 1: Latent heat along the �rst order transition line, plotted against the hard

core repulsion parameter r. The tricritical point is located where the latent heat

vanishes.

Figure 2: Peak in the magnetic susceptibility, �

max

, versus the number of Ising spins

N , for �xed hard core repulsion parameter r = 0:35.

Figure 3: Finite size scaling of the magnetization at the inection point, M

inf

, versus

the total number of Ising spins N , for �xed hard core repulsion parameter r = 0:35.

Figure 4: Plot of speci�c heat C versus ferromagnetic coupling J at r=0.35, showing

the absence of a growth in the peak with increasing lattice sizes, in contrast to the

behavior of the magnetic susceptibility. The errors (not shown) are smaller than the

size of the symbols.
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