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Abstract

From the data recorded with the DELPHI detector at LEP in the years 1991-
1992, 46497 events were selected having a high-momentum muon in hadron
jets. A �t to the average electric charge sum of the jets recoiling against a
b-quark jet tagged by a high-PT muon results in an average mixing parameter
of � = 0:144 � 0:014(stat:)+0:017�0:011(syst:).
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Introduction

The neutral mesons B0
d (bd) and B

0
s (bs) physically are quantum mechanical mixtures

of the beauty eigenstates jB0 > and jB0 > evolving in time as an oscillation between the
two. This e�ect was �rst measured in 1987 [1]. The �B = 2 transition is a second order
weak interaction as shown in �gure 1. In the Standard Model the transition amplitude
[2] depends on the fundamental parameters mtop, and the two CKM matrix-elements [3]
Vtd and Vts.

The observable of mixing is the probability that a B0 meson which is produced as a
jB0 > decays as its antiparticle,

�d =
B0
d ! B0

d ! final

all B0
d

�s =
B0
s ! B0

s ! final

all B0
s

: (1)

At LEP the B hadrons are thought to be formed independently during the fragmentation
phase subsequent to a Z0 decay into a bb pair. A (model dependent) pair creation
mechanism of new qq pairs within the colour interaction �eld allows the leading b quark
to pick up an antiquark (u,d,s) from the vacuum forming a charged B meson (bu), or
one of the B0 mesons (bd and bs). The probabilities for these processes are called fu, fd
and fs. Baryon formation occurs in a further fraction fbaryon y of the events. Without
di�erentiating between B0

d and B0
s mesons one measures a linear combination of the

mixing parameters
� = a � �d + b � �s (2)

a and b being coe�cients representing the abundance and sensitivity of the B0 type to
the observable. The most common method [4] to measure the probability � is based upon
events with a dilepton topology i.e. a situation in which both B hadrons in the event decay
semi-leptonically. Both the semi-leptonic decays of the B0

d and the B0
s yield a positively

charged lepton but mixing will 
ip the charge of the lepton for both the strange and the
non-strange B0s. Thus in a dilepton analysis, assuming the semi-leptonic branching ratios
of both B0s to be equal, a and b simply represent the abundance of the corresponding
B0 in b fragmentation: a = fd; b = fs.

Determining the beauty of the jets from the charge of the two leptons results in a small
e�ciency, since only about 20% of all B hadrons decay semi-leptonically. In order to use
ten times the statistics (�ve times if only muons are used) the approach of this letter is
to obtain the charge of the beauty quark on one side of the event from a semi-leptonic
decay (thereby also tagging a b event) and analyse the opposite hemisphere by means of a
momentumweighted charge sum (jet charge). As a consequence of the fact that B0�B0

transitions break the deterministic relation between the beauty on the lepton side and on
the jet side, mixing tends to lower the (absolute) value of the average jet charge opposite
to leptons of a given charge. The quantitative analysis relies on the expectation for the b
jet charge obtained from a detailed Monte Carlo simulation which reveals that �s a�ects
the jet charge less than �d. Therefore the parameters of the linear combination in eqn. 2
deviate from the dilepton case. It has been proposed [5] to write a = fd and b = C � fs.

yThe following relations between the parameters f are given: fu = fd, fs = x s

u

fu where x s

u

is called the s quark

suppression factor. No heavy 
avour production during the fragmentation is assumed, fc = fb = 0 and thus fu+ fd+ fs+
fbaryon = 1.
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The DELPHI Detector and Event Selection

The DELPHI detector at LEP has been described in detail [6]. This analysis is mainly
based upon charged particle reconstruction and muon identi�cation. Charged particles
were measured using the tracking system consisting of a vertex-detector of three layers
of silicon microstrip diodes, an inner jet-chamber, a time projection chamber (TPC) and
additional drift chambers in the barrel and forward region which frame the barrel and for-
ward ring imaging �Cerenkov counter systems. All are installed inside a superconducting
coil. Muons were identi�ed using drift chambers which are installed in the outer layers
and on the surface of the hadron calorimeter in combination with the central tracking sys-
tem [7]. Neutral particles were accepted as unlinked calorimetric showers of reconstructed
energy above 2 GeV which lay inside the polar angle region of jcos�j < 0:75.

Charged particle tracks were required to have a minimum length of 50 cm and a
maximum impact parameter at the interaction point of 5 cm in r and 10 cm in z, r
denoting the distance from the interaction point (IP) in a plane perpendicular to the
beam line and z the distance from the IP along the beam. The track polar angle was
required to lie inside j cos � j< 0:92. Accepted charged particles were required to have a
momentum above 0.1 GeV=c.

Multihadronic events were expected to have at least three charged particles in each
z hemisphere amounting to a total absolute momentum in charged particles of at least
15 GeV=c. The event sphericity axis was required to lie within a polar angle range of
j cos � j < 0:95. Jets were reconstructed using the LUCLUS algorithm with default
clustering parameter (djoin = 2:5). Muons were identi�ed in the region of polar angles
down to 11 degrees. The events were retained if at least one muon of momentumbetween
3.0 and 35.0 GeV=c and with momentum transverse to the momentum sum of the other
particles of the jet, PT between 0:5 and 7:5 GeV=c, was detected. Starting from about
970000 multihadronic Z0 decays recorded during the 1991 and 1992 runs of DELPHI,
these requirements led to a sample of 46497 hadronic events with a muon in a jet. A
sample of 496324 Z0 ! qq Monte Carlo events was generated with the JETSET 7.3 [8]
program using the parton shower model together with string fragmentation in hybrid
mode, i.e. the Lund symmetric fragmentation function for light quarks and Peterson's
function for c and b quarks.

The decay of heavy quarks proceed in JETSET via a free quark decay model which
describes the inclusive lepton spectrum quite well. But the lepton spectrum from B !
Dl� decays is too soft in JETSET and the lepton spectrum from B ! D�l� decay modes
is too hard. Therefore the calculation of the weak matrix elements for the decays of heavy

avours have been modi�ed in the DELPHI Monte Carlo simulation. The matrix elements
for the B and D meson decays to X(e; �) � are calculated following the predictions of
Grinstein, Isgur, Scora and Wise [9] and the decays B ! X�� according to the model
developed by Wirbel, Stech, Bauer [10]. The lepton spectra from B meson decays as
predicted in these form-factor models are in excellent agreement with the experimental
data [11]. For the decay B ! D��(e; �) � a branching fraction of 2% was assumed.

The Monte Carlo event sample was passed through a detailed detector simulation
and analysed in the same way as the data, yielding 23004 hadronic Z0 decays with an
identi�ed muon. The resulting lepton spectra (P and PT ) are plotted together with the
measured data in �gure 2.



3

Analysis Method

In Z0 decays beauty is usually produced in a pair of quark and anti-quark recoiling
from each other. This de�nes a two jet structure in the event topology. The total beauty
in the event at the time of production is zero. Therefore the analysis of B0 mixing is
based upon the measurement of the total beauty when the b quarks decay.

On one side of the event this is done by measuring the charge of a high momentum
muon from a semi-leptonic b decay. The beauty in the opposite hemisphere is evaluated
from the (longitudinal) momentum weighted charge sum Qoppo,

Qoppo =

P
i qi � j~pi � ~eSj

�

P
i j~pi � ~eSj�

: (3)

The sum runs over all charged tracks with a momentum above 0.2 GeV=c in the hemi-
sphere, experimentally de�ned by the sphericity axis (unit vector ~eS), opposite to the
high momentum muon. The parameter � gives di�erent weights to the hard and soft
parts of the momentum spectrum. The statistical precision of the Monte Carlo predic-
tion of < Qoppo > depends on the r.m.s. of the jet charge distribution and this r.m.s.
rises with �. On the other hand too low a value of � overemphasizes the lowest momenta
and reduces the sensitivity to the charge of the heavy quark in the B meson to which the
jet belongs. It was found that a value of � = 0:6 minimizes the statistical error of the
�nal result.

The jet charge Qoppo in a single event is not a unique and unambiguous measure of the
b quark charge like the lepton charge in the semi-leptonic �nal state. Nevertheless, due
to the leading particle e�ect (i.e. the experimental fact that the most energetic particle in
a jet tends to carry the original heavy quark [12]) the B hadron receives a large fraction
of the quark's momentum which is transferred to its decay products. This establishes a
correlation between the jet charge and the beauty of the jet. The mean of the jet charge
distribution < Qoppo > will emerge as a unique and unambiguous function of the b charge
in a large sample of b-jets.

Due to mixing on the lepton side, the sample of jets opposite to a lepton of a �xed
charge sign (e.g. positive) will contain a relative fraction of � = fd � �d + fs � �s which
belong to this event set just because the lepton charge is reversed. This fraction of events
will have a b-jet instead of a b-jet opposite the positive lepton. Ignoring all backgrounds
and assuming the semi-leptonic branching ratios of all B mesons to be equal, one expects
for the average jet charge

< Qoppo > = (1� �) < Qb�jet > +� < Qb�jet > : (4)

The above equation is not complete because of the fact that the mixing a�ects the average
b-jet charge as well, tending to reduce the di�erence between b- and b-jet, thereby reducing
the sensitivity of the method. The expectation for the mixing dependent b-jet charge is
composed of �ve terms,

< Qb�jet(�d; �s) > = (fb�Baryon + fu) < Q(�b; B
�) > +

fd(1� �d) < Q(B0
d) > +fd�d < Q(B0

d ! B0
d) > +

fs(1� �s) < Q(B0
s ) > +fs�s < Q(B0

s ! B0
s ) > : (5)

In the above formula < Q(�b; B
�) > represents the average jet charge of all b-jets in

which the b quark �nds itself inside a B hadron that is unable to undergo a transition
into its antiparticle, < Q(B0) > denotes the jet charge for jets in which the B0 decays
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as it was produced, while < Q(B0 ! B0) > is the jet charge for jets in which a B0

was produced, which subsequently decays as its anti-particle. The di�erent contributions
to < Qb�jet > were obtained from a Monte Carlo simulation and are listed in table 1.
Note that to improve the statistical accuracy of the Monte Carlo model equal fractions of
normal B0 decays and B0 ! B0 decays are desirable. Therefore the generator level runs
of the JETSET program were performed with full mixing of both B0

d and B0
s . Inserting

eqn. 5 into eqn. 4 yields the function generating the expected value of < Qoppo > for a
pure sample of primary semi-leptonic b decays including the decays from the b! � ! �

cascade (subscript bp in eqn. 6). However, various background reactions have to be
considered and introduced into the model. Here the importance of the PT spectrum of
the muons becomes evident since the relative contributions of the background classes
change with PT .

Calling a
(i)
class the relative abundance of the di�erent classes in the PT bin, i, and

< Qclass > the Monte-Carlo determined average jet charge in each class, the complete
expression for the jet charge opposite to a sample of positive muons is

Qoppo(�d; �s)
(i) = a

(i)
bp � f(1 � �(�d; �s))< Qb�jet(�d; �s) >+ �(�d; �s)< Qb�jet(�d; �s) >g

+ a
(i)
bc � f(1 �

~�(�d; �s))< Q
b�jet

(�d; �s) >+ ~�(�d; �s)< Qb�jet(�d; �s) >g

+ a(i)cp �< Qc�jet >

+ a
(i)
double�c� < Qdouble�c >

+ a(i)any �� < Qany � >

+ a
(i)
hadrons� < Qhadrons > : (6)

A �t to this expression was carried out over a range of 17 PT bins between 0.5 and 7.5
GeV=c, �s was �xed while �d was varied.

The model expectation for a muon from a semi-leptonic decay of a charmed hadron
from the b-c-cascade (bc) is in principle obtained from the equations 4 and 5 by a charge
exchange operation z. Primary c decays (cp) will contribute some jets with < Qoppo > =<
Q (c� jet) >, with the lepton charge following from that of the quark. The class `double
charm' comprises all muons from the b� c cascade which come from B decays with two
charm quarks in the �nal state (e.g. J= or two D mesons); here the beauty quantum
number of the original B meson does not follow from the muon charge. The class `any
�' refers to (semi)leptonic decays of light 
avoured hadrons and the class `misidenti�ed
hadrons' denotes the contribution of hadron tracks that are erroneously tagged as lepton
candidates by the experimental particle identi�cation procedure.

The �t procedure takes advantage of the fact that the fraction of the background
classes depends on the transverse momentum of the lepton candidate with the b purity
increasing with increasing transverse momentum. In the small fraction of events with
more than two b quarks (four jets) only the decays of the two B hadrons with the highest
momenta were included in this analysis.

The total charge sum of a Z0 decay is zero. However, the measured total charge may
be di�erent. Due to secondary hadronic interactions the total particle charge is increased
since hadrons interact preferentially with positively charged nuclear matter.

This leads to an excess of positive particles,

N+ �N�

N+ +N�
= 0:0100 � 0:0006 (data)

zDue to di�erent semi-leptonic branching ratios of charged and neutral D mesons the probability

to �nd a B�-jet in the b-c-cascade lepton sample is suppressed. This is expressed by ~�(�d; �s) in eqn. 6.



5

generator level full detect or simulation

Qb�jet Qb�jet Qb�jet Qb�jet

< Q(�b; B
�) > �0:101 � 0:001 +0:100 � 0:001 �0:101 � 0:004 +0:100 � 0:004

< Q(B0
s )) > �0:045 � 0:003 +0:047 � 0:003 �0:064 � 0:010 +0:058 � 0:011

< Q(B0
s ! B0

s )) > �0:027 � 0:003 +0:027 � 0:003 �0:006 � 0:011 +0:023 � 0:011

< Q(B0
d)) > �0:091 � 0:002 +0:090 � 0:002 �0:083 � 0:005 +0:075 � 0:005

< Q(B0
d ! B0

d)) > +0:022 � 0:002 �0:022 � 0:002 +0:009 � 0:009 �0:026 � 0:011

total < Q > �0:068 � 0:001 +0:071 � 0:001 �0:080 � 0:003 +0:076 � 0:003

Table 1: The average b-jet charge (� = 0:6) determined from a Monte Carlo study. Only
the last line depends on the mixing chosen. Values are (�d; �s) = (0:49; 0:49) for the
generator and (�d; �s) = (0:18; 0:49) for the full detector simulation.

= 0:0130 � 0:0008 (simulation) (7)

A related observable is the ratio of negative over positive particles as a function of the
momentum which is shown in �gure 3 for the data.

A weighting technique was applied to compensate for the positive charge excess. Dur-
ing the computation of Qoppo the charge of positive particles is weighted by the parametri-
sation function f(p) = 1� (c1+ c2p+ c3p2)exp(�c4p)� c5. Note that this procedure does
not rely on the simulation. For the Monte Carlo events a similar procedure was applied
and an independent set of parameters was obtained. x

Result

The spectra of Qoppo for the positive and negative muon samples are displayed in
�gure 4. The mean values of similar distributions for di�erent bins of muon-PT are
displayed in �gure 5. The rise in absolute value of < Qoppo > with increasing PT is due
to the higher b purity at large PT values of the lepton. There is no other kinematical
correlation between the two observables. The solid lines indicate the �t result and the
expectations for maximal mixing (�d = �s = 0:5) and no mixing (�d = �s = 0:0). The
hatched band indicates the statistical error of the �tted Monte Carlo model. The data
points in �gure 5 are given numerically in table 2.

The values for the coe�cients a(i) of eqn. 6 were taken from the Monte Carlo description
of the PT spectrum shown in �gure 2. The relative sample composition can be found in
table 3 while the absolute number of events in each PT bin is listed in table 4. The Monte
Carlo events are subdivided into the di�erent lepton classes.

The Monte Carlo model in eqn. 6 is completed by the determination of the expectation
for < Qoppo > for the �ve b-jet classes (see table 1) and the background classes. The
result of the simulation of the non-b background classes is displayed in table 5.

Note that the values in tables 1 and 5 correspond to the composition of a sample of jets
with a high P and PT lepton in the opposite hemisphere. As a consequence of this topology
the hemispheres which contribute to these values are depleted of lepton candidates while
the lepton side obviously is enhanced in muon tracks. Since high momentum muons are

xThe parameters for the data were c1 = �0:046; c2 = 0:17; c3 = �0:06; c4 = 1:3; c5 = 0:013 and the description of the

MC required c1 = �0:046; c2 = 0:338; c3 = �0:214; c4 = 1:487; c5 = 0:026.
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PT [GeV=c] 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.2
< Qoppo >(�+) �0:020(6) �0:022(6) �0:016(7) �0:023(7) �0:018(8) �0:030(6)
< Qoppo >(��) +0:022(6) +0:016(6) +0:018(7) +0:027(7) +0:028(8) +0:026(6)

PT [GeV=c] 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0 2.0-2.4 2.4-2.8
< Qoppo >(�+) �0:032(6) �0:043(7) �0:038(8) �0:043(8) �0:048(7) �0:038(8)
< Qoppo >(��) +0:044(7) +0:039(7) +0:029(8) +0:042(8) +0:047(7) +0:049(9)

PT [GeV=c] 2.8-3.2 3.2-3.6 3.6-4.0 4.0-5.0 5.0-7.5
< Qoppo >(�+) �0:062(11) �0:049(13) �0:064(16) �0:034(15) �0:068(20)
< Qoppo >(��) +0:047(10) +0:038(13) +0:059(16) +0:045(14) �0:054(20)

Table 2: The observed value of < Qoppo > in the di�erent PT bins for positive and negative
muons.

full detector simulation
class contribution(%)
b� primary 40:5� 0:4
b� c� cascade 10:2� 0:2
b! double� c 2:4� 0:1
c! lepton 14:7� 0:3
any � 2:9� 0:1
misid: hadrons 29:2� 0:4

Table 3: The selected lepton sample composition; the errors are statistical only .

charged tracks they contribute heavily to the jet charge. Using the data, the size of
this e�ect is demonstrated by the analysis of the distribution of the jet charge Qsame

on the lepton side of the event which is shown in �gure 6. The mean value for the jet
sample containing positive (negative) muon candidates is < Qsame >= 0:1813 � 0:0017
(< Qsame >= �0:1756 � 0:0017). The corresponding distributions in the Monte Carlo
have mean values < Qsame >= 0:1867 � 0:0025 and < Qsame >= �0:1723 � 0:0024. The
jet charge distributions containing the lepton candidate are nearly not a�ected by mixing.
Therefore they can be used as powerful check of the Monte Carlo description of the data.

The interpretation of the average jet charge opposite to the lepton candidate has to
take into account not only the mixing but also the realistic composition of the jets i.e.
the fact that the probability to �nd a second hard lepton track in the opposite jet is
considerably lower { than the fraction of leptons within an unspeci�ed sample of b-jets.

The average jet charge from non-b background, except for charm, is small. This can
be understood from the fact that in kaon or pion decays and in the case of misidenti�ed
hadrons the charge of the lepton candidate does not follow directly from the 
avour of
the jet. Thus the reconstruction of < Qoppo > from this source yields approximately zero,
indicating a mixture of equal parts of quark and antiquark jets.

Nevertheless, here the leading particle e�ect gives a slightly higher probability to have
positive hadrons misidenti�ed in jets from positive quarks. So the jet charge average
of the non-charm background is not a priori zero. This could, in principle, establish a
small mixing sensitive part in the fraction of misidenti�ed hadrons coming from b decays.

{If x denotes the probability to �nd a high momentum lepton in a jet, the fraction of dilepton events within the

single-lepton sample is x2

1�(1�x)2
= x

2�x
which is nearly half of x for small x.
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PT [GeV=c] 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.2
Data 4787 4387 3780 3404 2953 5110
b� primary 198 226 272 354 386 889
b� c� casc 312 334 307 237 191 338
b� double� c 81 73 92 57 53 49
c� primary 549 474 412 340 239 406
any � 156 101 97 79 53 63
misid: hadrons 1199 993 784 652 552 784

PT [GeV=c] 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0 2.0-2.4 2.4-2.8
Data 4075 3258 2764 2294 3414 2124
b� primary 927 906 853 748 1178 844
b� c� casc 186 144 81 57 76 44
b� double� c 45 28 20 12 16 15
c� primary 285 185 122 94 119 55
any � 44 24 19 8 15 3
misid: hadrons 510 323 223 152 217 111

PT [GeV=c] 2.8-3.2 3.2-3.6 3.6-4.0 4.0-5.0 5.0-7.5
Data 1452 882 589 773 451
b� primary 589 311 224 254 154
b� c� casc 15 18 5 6 1
b� double� c 6 5 0 3 6
c� primary 36 29 14 13 13
any � 1 3 2 0 0
misid: hadrons 85 46 31 25 38

Table 4: The observed PT distribution comparing the data (�rst line) with the di�erent
classes of muon candidates from the Monte Carlo (subsequent lines) (Figure 2).

However, this is not explicitly included in the �t but this background is taken from the
Monte Carlo with the mixing parameters of the simulation (see table 1).

The �t was performed with the following values for the relative contribution to the
total b-jet sample:

Fd = 0:396 � 0:005 Fs = 0:124 � 0:003 (b� primary)

Fd = 0:492 � 0:012 Fs = 0:100 � 0:005 (b� c� cascade) (8)

Starting from the the original Monte Carlo settings fd = 0:391 and fs = 0:117, which
follow if one assumes an s quark suppression factor of 0:3 and a baryon contribution of
10%, the fractions Fd and Fs result from the full detector simulation plus event selection
(distinguished here with capital letters).

A least squares �t to eqn. 6 was performed in 17 bins of muon transverse momentum.
The two samples of positive and negative lepton candidates were treated separately in
the data and in the Monte Carlo. In the �t �d was allowed to vary while �s was �xed,
this yielded

for �s = 0:0 : �d = 0:391 � 0:059 (�+) �d = 0:354 � 0:049 (��)

for �s = 0:5 : �d = 0:247 � 0:058 (�+) �d = 0:223 � 0:048 (��): (9)
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full detector simulation
class < Q > opp: to �+ < Q > opp: to ��

c! lepton �0:071 � 0:005 +0:053 � 0:005
any � �0:005 � 0:010 +0:027 � 0:010
misid: hadrons �0:012 � 0:004 +0:009 � 0:004

Table 5: The average jet charge opposite to non-b background lepton candidates deter-
mined from a Monte Carlo study.

parameter variation range (GeV=c) standard �t value ��
Pmin 2:0� 4:0 3:0 +0:000

�0:003

Pmax 30:0 � 45:0 35:0 +0:003
�0:000

Pmin
T 0:3� 0:6 0:5 +0:004

�0:000

Pmax
T 5:0� 7:5 7:5 +0:003

�0:000

binning 11 < Nbin < 24 17 �0:001

Table 6: Systematic studies of the lepton cuts and the binning

The results for other assumptions on the value of �s are displayed in �gure 7. The width
of the error bands represent the total error including the systematic errors. The variation
of �d with �s is almost linear, with slope of �0:272 � 0:015 (statistical error from the
Monte Carlo).

With C = 0:91 � 0:05, which was obtained from the slope of the plot in �gure 7 and
the original Monte Carlo settings, the result can be written as

� = fd � �d + fs � C � �s = 0:144 � 0:014: (10)

The error includes the statistical error of the Monte Carlo. The corresponding expectation
for < Qoppo > in di�erent PT bins is displayed in �gure 5 together with the observed
data.

Systematic Errors

The systematic error on the measurement can be split into two parts following the
treatment of the two hemispheres of each event. First, there is the study of the lepton

class variation range (% ) ��
b� primary �8 +0:004

�0:004

b� c� cascade �15 +0:006
�0:004

b! double� c �20 +0:001
�0:000

c! lepton �11 +0:002
�0:001

any real � �10 +0:001
�0:000

misid: hadrons �7 +0:003
�0:002

Table 7: Systematic error due to the variation in the lepton sample composition.
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Parameter variation range standard �t value ��

�b 0.004-0.007 0.006 +0:008
�0:004

�c = �b 7-11 9 +0:002
�0:001

x s
u

0.26-0.34 0.3 �0:005

fbaryons 0.0-0.2 0.1 �0:001

�PS
QCD 0.255-0.400 0.255 +0:004

vector mesons
all mesons

c;b
0.65-0.85 0.75 �0:002

�PT 0.345-0.445 0.395 +0:005
�0:001

Mfrag 1.0-2.0 2.0 �0:005

Table 8: Systematic error due to the variation of fragmentation parameters.

sample composition including all e�ects that stem from muon identi�cation, branching
ratios and the description of the transverse momentum spectrum. Second, there is the
opposite side where the jet charge Qoppo is computed. Here the e�ects of secondary
interaction in matter a�ecting the charge spectrum have to be considered. The Monte
Carlo model parameters which de�ne the fragmentation process and thus the momentum
spectrum entering the charge sum, were also investigated.

Systematic Error: Lepton Sample Composition

The sample composition was checked by varying the binning in PT including di�er-
ent values for the cuts on minimum and maximum of the lepton total and transverse
momentum. The results of these tests can be found in table 6.

In addition, other PT de�nitions { PT relative to the LUCLUS axis, PT with respect to
the jet thrust, PT relative to the sphericity axis { were used to explore the b purity of the
sample, and gave consistent results. These PT de�nitions give slightly lower b purity but
as a cross-check of the Monte Carlo description the �nal result should, and did, remain
stable.

Finally, each lepton class in the sample was given a modi�ed weight in order to see

how a variation of the coe�cients a
(i)
class a�ects the result. The outcome of this study is

listed in table 7.
The total systematic error due to these uncertainties in the lepton sample was calcu-

lated to be
systematic error : ��(lepton sample) =+0:010

�0:007 : (11)

Systematic Error: Fragmentation

Here the simulation of the inclusive charged momentum spectrum of Z0 ! bb events
was varied starting from the DELPHI Monte Carlo tuning which was obtained from the
study of various standard observables of jets.

A powerful parameter to check whether di�erent parts of the spectrum are over- or
under-estimated is the exponent in the charge sum, since it gives di�erent relative weight
to soft and hard tracks. The parameter � was varied between 0:3 and 1:0 and the change
in the results was �� =+0:007

�0:002. As an additional cross-check the minimal momentum cut
for tracks to enter the charge sum was changed between 0:1 GeV=c and 2:0 GeV=c and
a variation of �� =+0:006

�0:002 was observed.
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The impact of the longitudinal fragmentation function on the result was studied by
the varying Peterson's �b;c using a weighting technique. This allowed us to compare the
Monte Carlo description to the muon spectrum in the data (P and PT ) and determine
an appropriate range of variation as well as the systematic uncertainty on the mixing.

The strange quark suppression factor x s
u
and the probability for baryon formation

fbaryons a�ect the primary hadrons formed in the fragmentation process. These param-
eters can be changed directly in the �t function, assuming the dominant e�ect of x s

u
to

be the change in the ratio of B0
d and B0

s mesons. The range of variation is motivated by
the result given in reference [13].

Finally other important parameters of the JETSET program were varied on generator
level. Hadronic Z0 decays were produced until at least 160000 leptons matching the re-
quirements on P and PT were detected. The change in the values of < Qoppo > obtained
for the �ve b-jet classes and for the background classes (except misidenti�ed hadrons)
when compared to the results produced with the original parameter setting was deter-
mined. This set of systematic shifts was added to the corresponding Monte Carlo results
of the full detector simulation which serve as input to the �tting of eqn. 6. Then the �t
to the data was performed with the shifted Monte Carlo input numbers.

The evolution of the strong coupling constant during the parton-shower cascade is
governed by �QCD

PS . Di�erent spin-states (vector or pseudoscalar mesons) are formed and
the Gaussian transverse momentum distribution has a width of �PT . The intervals in
which the parameters were varied are chosen according to the tunings in [14] (�QCD) or
represent symmetrical variations around the defaults (�PT , vector meson fraction). The
fragmentation process stops if the invariant mass of the remaining unfragmented system
is less thanMfrag. The lower limit ofMfrag is taken to be safely above the lightest hadron
masses and the upper limit comes from the �t to DELPHI data. The results are displayed
in table 8.

The total systematic error due to the fragmentation model is computed from the
quadratic sum of the entries in table 8 and the larger value from the direct checks (ie.
changing the exponent �)

systematic error : ��(fragmentation) =+0:014
�0:009 : (12)

Also the de�nition of a hadronic event was changed. The requirement for the minimum
number of charged tracks in the event was increased to 8 and an additional cut on the
total momentum balance (20:0 GeV=c) was applied. The result was � = 0:145 � 0:015.
In comparison to the �nal result in eqn. 10 the error due to event selection is assigned to
be �� = �0:001.

The total systematic error is the quadratic sum of the two categories mentioned above
plus the error due to the event selection criteria

systematic error : ��(total) =+0:017
�0:011 : (13)

Conclusion

The analysis of Z0 decays from 1991 and 1992 DELPHI data with muon identi�cation
yields 46497 hadronic events with a muon in the momentum range 3:0�35:0 GeV=c with
transverse momentum between 0:5 GeV=c and 7:5 GeV=c, de�ned with respect to the
momentum sum of the particles in the jet disregarding the muon itself.
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A �t of the Monte Carlo expectation to the average value of the momentum weighted
charge sum Qoppo in di�erent bins of transverse lepton momentum results in

� = fd � �d + fs � 0:9 � �s = 0:144 � 0:014 (stat:)+0:017�0:011(syst:): (14)

The error is dominated by the systematic error of the Monte Carlo model which is mainly
caused by the uncertainty of the tuning of the fragmentation parameters.

Although this analysis cannot discriminate between the B0
d and B0

s mixing, it never-
theless measures the B0 mixing in an event sample which is inaccessible to the dilepton
method. The combined measurements on the �(4S) [15], which are sensitive only to the
B0
d mixing, can be displayed as a horizontal band in the �s ��d plane. The result of the

present letter appears as a second band with negative slope. Assuming that the bands
correspond to independent Gaussian probability densities, the log likelihood of the com-
mon density is the sum of the contributions of the two bands. The common likelihood of
both results allows to set a limit on �s,

�s > 0:31 (95% c:l:): (15)

The complete likelihood contour in the (�d; �s) plane is shown in �gure 7.
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Figure 1: Feynman graphs for B0-B0 transitions.
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Figure 2: Normalised muon spectra; a) transverse momentum, b) absolute momentum;
points: DELPHI data, histograms: Monte Carlo expectation.
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Figure 4: The jet charge Qoppo opposite to the muon a) for negative and b) positive
muons. A value of � = 0:6 is used. The mean values are a) Qoppo = 0:0322 � 0:0019 and
b) Qoppo � 0:0318� 0:0019. The Monte Carlo expectation for �s = 0:49 and �d = 0:19 is
given as histogram. This distribution is sensitive to mixing.
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muons, as a function of the transverse momentum of the muon. The lines indicate the
model expectation for no mixing (�d = �s = 0:0), full mixing (�d = �s = 0:5) and the �t
result displayed as a band showing the statistical uncertainty of the Monte Carlo model.
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Figure 6: The jet charge Qsame containing the muon a) for negative and b) positive
muons. A value of � = 0:6 is used. The Monte Carlo expectation is given as histogram.
This distribution is nearly not a�ected by mixing.
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Figure 7: The �t result �d for various assumptions on �s. The dashed lines indicate the
1� contour of the total error. The result from the �(4S) experiments appear as horizontal
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