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Abstract

The asymmetries Ak ≡ [Γ(t → W+dk)−Γ(t̄ → W−d̄k)]/[Γ(t → W+dk)+Γ(t̄ → W−d̄k)] in
the partial widths of the top quark decays are discussed within the Standard Model (SM),
the Two-Higgs-Doublet Model (2HDM) and supersymmetric extensions of the SM (SSM).
The leading contributions to these asymmetries in the SM and in the 2HDM are induced
by the up-type quark self-energy diagrams and are found to be very small. However,
in the SSM, the asymmetry Ab can be substantial, O(αQCD), provided the CP-violating
phase of gluino-top-stop couplings is not suppressed. Within the SSM Ab is generated by
the vertex corrections.
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1 Introduction

A very heavy top quark t can offer a few relevant advantages for the study of CP violation:

• If mt > 130 GeV, it would decay before it can form a bound state [1]; therefore the
perturbative description is much more reliable.

• For the same reason, the spin information of the top quark would not be diluted by
hadronization, so that the spin effects can provide a very useful tool in searching
for CP violation.

• Again, because of the large mass of the top quark, its properties are sensitive to
interactions mediated by Higgs bosons [2].

• The Kobayashi-Maskawa [3] mechanism of CP violation is strongly suppressed for
the top quark since its mixing with other generations is very weak; therefore it is
sensitive to non-conventional sources of CP violation.

Discussion of heavy-quark rate asymmetries has been initiated by the pioneering arti-
cle by Bander, Silverman and Soni in Ref. [4], which was devoted to the bottom-quark
decays. The same mechanism of the rate-asymmetry generation was then improved [5]
and eventually applied to the top quark. The top-quark decay-rate asymmetry has been
discussed in the literature [6], usually for cases of 3-body decays, which make the problem
much more involved. Here, we will concentrate on dominant 2-body decays of the top
quark: t → W+dk. Other consequences of CP violation due to the top quark spin effects
can be found in refs.[7]–[11].

2 SM and 2HDM

Let us denote the contribution from di internal quark to the mixed t–uj quark self-energy
diagram by

i{6pt[PLΣL(m2
i ) + PRΣR(m2

i )] + PLmjΣ
S
L(m2

i ) + PRmtΣ
S
R(m2

i )}, (1)

where PL/R are the chiral projection operators, pt is the incoming top-quark momentum,
mt denotes the top-quark mass, p2

t = m2
t , and mj is the mass of the outgoing uj quark.

Hereafter we assume that Vij-elements of the Kobayashi-Maskawa (KM) matrix [3] are
factorized out and do not enter into Σ’s. The analogous expression can be written for the
incoming antitop of momentum pt̄;

i{6pt̄[PLΣ̄L(m2
i ) + PRΣ̄R(m2

i )] + PLmtΣ̄
S
L(m2

i ) + PRmjΣ̄
S
R(m2

i )}. (2)

It is easy to see that the following relations hold:

ΣL/R = −Σ̄L/R and ΣS
L/R = Σ̄S

R/L. (3)

For the tree-level amplitude we use the following notation:

A1 = V ∗
tkÂ1 , Â1 = − ig√

2
ū(pk)γµPLu(pt)ǫ

µ, (4)
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where ǫµ is the W -boson polarization vector. The diagram in Fig. 1 with the self-energy
inserted before the decay vertex produces a 1-loop amplitude for the top-quark decay:

A2 = −Â1

∑

ij

V ∗
tiVjiV

∗
jk

m2
t

m2
t − m2

j

Σ(m2
i ), (5)

where i denotes the internal down-type quark flavour and

Σ(m2
i ) ≡ ΣL(m2

i ) + ΣS
R(m2

i ) +
mj

mt
ΣR(m2

i ) +
m2

j

m2
t

ΣS
L(m2

i ). (6)

A similar expression can be obtained for the antitop decay. The rate difference between

Figure 1: The self-energy induced contribution to Ak. The vertical dashed line denotes
the absorptive part of the corresponding integral.

top and antitop decay is given by the interference of the tree-level and 1-loop amplitudes:

2mt(Γ − Γ̄) = 2
∫

dΦ(W+dk)[Re(A1A
∗
2) − Re(Ā1Ā

∗
2)], (7)

where Γ ≡ Γ(t → W+dk), Γ̄ ≡ Γ(t̄ → W−d̄k), Ā1 and Ā2 stands for the tree and 1-loop
induced amplitudes for the antitop decay. For the phase-space element dΦ(· · ·), we use:

dΦ = (2π)4
nf
∏

i=1

d3pi

(2π)32Ei

δ(4)(Pin −
nf
∑

i=1

pi), (8)

As is usual for rate asymmetries, since CP-violating couplings enter with opposite signs
for the top and the antitop decays, the asymmetry can be non-zero if there is an absorptive
part of the 1-loop contribution to the amplitude:

Ak ≡ Γ − Γ̄

Γ + Γ̄
= −2

∑

ij

Im(V ∗
tkVtiV

∗
jiVjk)

|Vtk|2
m2

t

m2
t − m2

j

Im[Σ(m2
i )], (9)

where the relations of Eq. (3) have been adopted. The above formula has a few relevant
features. Since in the SM there is only one CP-violating parameter, our asymmetry must
be proportional to it; in fact all non-zero values of Im(V ∗

tkVtiV
∗
jiVjk) satisfy:

Im(V ∗
tkVtiV

∗
jiVjk) = ±J. (10)

The J factor, which is invariant under reparametrization [12], can be rewritten in terms
of the Wolfenstein parameters [13] of the KM matrix:

J = A2λ6η, (11)

where A ≃ 1, λ = sin θC = 0.22, and η is a CP-violating parameter of the KM matrix.
Because of the unitarity of the KM matrix, it is clear that non-zero contributions to the
sum in Eq. (9) appear only if i 6= k and j 6= t. This supports the common belief [5] that
rescattering of the initial (or final) state does not contribute to rate asymmetries. The
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last important remark is that the asymmetry is doubly GIM-suppressed; first because the
loop is summed over i and second, because it is also summed over j. Therefore we expect

Ak ∼ λ6 (m2
ul
− m2

um
)

m2
W

(m2
dn

− m2
do

)

m2
W

. (12)

This turns out to be a very small number. The asymmetry within the SM may only be
of an academic interest; however it is instructive to note what the suppression factors
are, in order to overcome them within some modifications of the KM mechanism of CP
violation. It also illustrates many generic features of CP violation. For completeness
we present here the result for Ak calculated within the 2HDM under the assumption
that decays t → H+dk are kinematically allowed. The relevant contributions to the
amplitudes are given by similar diagrams as in Fig. 1, with the internal W line replaced
by the charged Higgs boson line. We do not consider the possibility that CP is violated
through interactions of neutral Higgs bosons and we keep only contributions growing with
tan2 β ≡ (v2/v1)

2:

Ak = − α

8 sin2 θW

[fW (y) + tan2 βfH(x, y)]
∑

ij

Im(V ∗
tkVtiV

∗
jiVjk)

|Vtk|2
m2

i

m2
W

m2
j

m2
W

, (13)

where the leading terms in the expansion m2
i,j/m

2
W have been kept. The fW and fH are

functions originating from imaginary parts of self-energies involving W and H exchange,
respectively; they are given by:

fW (y) = −3(1 + y4)/y6 , fH(x, y) = (1 − x2)2/(x4y2) , (14)

y ≡ mt/mW , x ≡ mt/mH .

Eventually, assuming A = 1, we can write the following expression:

Ak = − αη

8 sin2 θW

m2
bm

2
c

m4
W

[fW (y) + tan2 βfH(x, y)]











−[(1 − ρ)2 + η2]−1 for k = d
λ2 for k = s

−λ6m2
s/m

2
b for k = b.

(15)

From the above we see that Ak can be, within the SM, at best of the order of 10−9,
and even that tiny number can only be reached for the rarest mode: t → W+d. Since
tan β is limited from above by the measurement [14] of the branching ratio for b → cτντ

(tanβ < 0.54[mH/1GeV]) we can conclude that even within 2HDM we are not able
to enhance the rate asymmetry. However, if we admit more than three generations of
quarks Ak may become much bigger, since in that case we can overcome both sources of
suppression: no λ6 factor and a new t′ quark can have a comparable mass as mt so that
the suppression due to the uj propagator is absent.

3 Supersymmetric Standard Models

In this section we will restrict ourselves to the dominant top-quark decay mode: t → W+b
and effectively neglect any flavour mixing. Supersymmetric versions [15] of the SM offer
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new sources of CP violation. We write down the CP-violating interaction that is relevant
for us:

L = i
√

2gs[t̃
∗
LT a(λ̄atL) + t̃∗RT a(λ̄atR)] + (t ↔ b)

− (i/
√

2)Vtbb̃
†
L

↔

∂µ t̃LW−µ + h.c., (16)

where gs is the QCD coupling constant. For our purpose the most relevant new source of
CP violation, which appears in the SSM, would be the phase in the t̃L − t̃R mixing. The
stop quarks of different handedness are related to the stop quark mass eigenstates t̃+, t̃−
through the following transformations:

t̃L = cos αtt̃− − eiφt sin αtt̃+

t̃R = e−iφt sin αtt̃− + cos αtt̃+. (17)

The only 1-loop diagram responsible for the generation of Ab is shown in Fig. 2. The
reader can convince himself that there is no CP-violating contributions coming from the
t − t self-energy diagram; it is again an illustration of the fact that rescattering into
itself does not contribute to rate asymmetries. The b̃L − b̃R mixing, which may also

Figure 2: The vertex correction to Ab in the SSM. The vertical dashed line denotes the
absorptive part of the corresponding integral.

provide the necessary phase, has the same structure as the one for the top sector, with
the substitutions: φt → φb and αt → αb. However, if we assume that the scalar b-quarks
are almost degenerate, their mixing effect can be neglected. The generalization is obvious.
It is worthwhile to observe that, if we add phases eiφλ and e−iφλ to the terms (λ̄atL) and
(λ̄atR) in Eq. (16), owing to the complex gluino mass, their effect can be absorbed into
φt(→ φt − 2φλ) and φb(→ φb − 2φλ). Since the same interactions generate the neutron’s
electric dipole moment (NEDM), we have to take into account the limits originating from
this measurement. However, direct restrictions on φt/b from the NEDM turn out not to be
very reliable [16] and therefore will not be applied here. Indirect bounds may be obtained
within the supergravity-induced SSM. However, as showed in Ref. [17], even assuming the
same phase for all quark families, the model allows for maximal CP-violating phases for
sufficiently heavy up- and down-squarks; therefore it is legitimate to assume maximal CP
violation. It should be stressed here that we are not restricting ourselves to the minimal
supergravity-induced models.

A very convenient way to parametrize the t → bW+ and t̄ → b̄W− decay vertices is
the following:

Γµ =
−igV KM

tb√
2

ū(pb)

[

γµPL − 2pµ
t

mW
F R

2 PR

]

u(pt), (18)

Γ̄µ =
−igV KM

tb
∗

√
2

v̄(pt̄)

[

γµPL +
2pµ

t̄

mW

F̄ L
2 PL

]

v(pb̄). (19)

No other relevant form factor is generated at the 1-loop level of the perturbation expan-
sion. We relate the rate asymmetry and the form factors as follows:

Ab ≡
Γ(t → W+b) − Γ(t̄ → W−b̄)

Γ(t → W+b) + Γ(t̄ → W−b̄)
=

(mt/mW )w2(m2
t , m

2
b , m

2
W )Re(F R

2 − F̄ L
2 )

2m4
W − m2

W m2
t − m2

Wm2
b − (m2

t − m2
b)

2
. (20)
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Here the kinematic function w(x, y, z) = (x2 + y2 + z2 − 2xy − 2xz − 2zy)
1

2 . In the SSM,
the CP-violating factor, Re(F R

2 − F̄ L
2 ), is 3

Re(F R
2 − F̄ L

2 ) = −2αs

3π
sin(2αt) sin(φt)

mλmW

(m2
t − m2

W )2
Im I(m2

t̃ ). (21)

In this article, we assume that only the lightest stop quark t̃+, of mass mt̃, is available in
the absorptive integral Im I(m2

t̃
). We have

Im I(m2
t̃ )/π = (1 + m2

W /m2
t )w(m2

t , m
2
λ, m

2
t̃ ) − DL/w(m2

t , m
2
b , m

2
W ) ; (22)

D = (m2
W − m2

t )
2 − (m2

t̃ − m2
λ − m2

t )(m
2
W − m2

t ) − (m2
b̃
− m2

λ)(m
2
t + m2

W )

L = log(L+/L−); L± = F ± w(m2
t , m

2
W , m2

b)w(m2
t , m

2
t̃ , m

2
λ) ;

F = 2m2
t (m

2
λ + m2

b − m2
b̃
) − (m2

t − m2
t̃ + m2

λ)(m
2
t + m2

b − m2
W ) .

In Fig. 3, we show a typical size of the rate asymmetry Ab at the level of one per cent,

Figure 3: The rate asymmetry Ab as a function of the scalar bottom quark mass mb̃ for
various mt when mλ = 100 GeV and mt̃ = 50 GeV.

for general cases. The best environment for measuring the rate asymmetry would mostly
likely be the future linear e+e− collider at 500GeV. Since it is expected that about 50000
tt̄ events will be produced each year, the smallest possible measurable asymmetry will be
of the order of 1 %, assuming that BR(t → W+b) ≃ 50 %, for one year’s run. Therefore
we conclude that the measurement of the rate asymmetry induced within the SSM will
be quite challenging. Noticing that if tt̄ are pair produced, nonvansihing asymmetry
must be an effect of CP violation in the process of tt̄ decays because whenever t is being
produced there is an accompanied t̄ and therefore the production mechanism cannot fake
the asymmetry in the decay rates.

4 CPT Constraints

The CPT invariance guarantees that the particle and the antiparticle have the same total
widths. Assuming no cancellation between different orders of perturbation expansion, we
can therefore conclude that, order by order, contributions to the total widths should be
the same. In particular this means that at the order of α2:

∑

decay channels

Γ(t → · · ·) =
∑

decay channels

Γ(t̄ → · · ·). (23)

One may have noticed that besides 2-body decays considered earlier there are also 3-
body decays contributing at this level of perturbation expansion. However their effect is

3Form factors defined in our previous paper [18] are related to those adopted here by the relations:

f
L/R
2

= F
L/R
2

, f̄
L/R
2

= F̄
L/R
2

, etc. Therefore one can see that for CP-violating contributions we get
(FR

2
− F̄L

2
) = (fR

2
− f̄L

2
) = 2fR

2 CPV , where in the last step Eq.(3) of Ref. [18] has been used. It is clear
how the CP-conserving pieces cancel.
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identical channel by channel, for t and t̄ and therefore irrelevant for our purpose. It is
related to the fact that the W self-energy amplitudes do not induce any rate asymmetry.

It is worthwhile to observe how the above constraint is fulfilled. Let us restrict ourself
to the SM. In the case of self-energy induced asymmetries, it is particularly simple; one
can see from the formula for the asymmetry, Eq. (9), that the rate difference summed
over all 2-body final states (summation over k) could be written as:

∑

k

[Γ(t → W+dk) − Γ(t̄ → W−d̄k)]

∼
∑

k

∫

dΦ(Wdk)
1

2
|Â1|2

∑

ij

Im(V ∗
tkVtiV

∗
jiVjk)Im[Σ(m2

i )] . (24)

An irrelevant factor from the j propagator is not shown here. Since
∫

dΦ(W+dk)
1

2
|Â1|2 = mtIm[Σ(m2

k)] , (25)

we can write the rate difference summed over all 2-body final states as
∑

k

[Γ(t → W+dk) − Γ(t̄ → W−d̄k)] ∼
∑

ijk

Im(V ∗
tkVtiV

∗
jiVjk)Im[Σ(m2

i )]Im[Σ(m2
k)] = 0 .

(26)
It vanishes because Im(V ∗

tkVtiV
∗
jiVjk) is antisymmetric under i ↔ k exchange. In the

2HDM, if t → H+dk is kinematically allowed one should include also this decay channel,
the conclusion stays, of course, the same.

A similar situation occurs for the vertex-induced asymmetry within the SSM. Since we
neglect any flavour mixing, there are only two 2-body decay channels opened: t → W+b
and t → t̃λ. It is obvious from Eq. (23) that at least two decay channels must exist in
order to generate a non-zero rate asymmetry. Equation (23) tells us also that the following
relation is satisfied:

[Γ(t → W+b) − Γ(t̄ → W−b̄)] = −[Γ(t → t̃λ) − Γ(t̄ → t̃†λ̄)] . (27)

It is convenient to adopt here a phase convention in which CP violation in the process
t → W+b appears only in the (tt̃+λ) vertex. In such basis it is easy to separate out
CP-violating phases in the tree-level amplitude A1(t → t̃λ) and the 1-loop amplitude
A2(t → W+b). It will be convenient to adopt the following definitions for CP-violating
contributions to those amplitudes:

A2(t → W+b) = eiφÂ2(t → W+b) , A1(t → t̃λ) = eiφÂ1(t → t̃λ). (28)

In order to see how the CPT-constraint is satisfied, it is instructive to write down an
expression for the asymmetry before the loop integration is performed, by means of the
Cutkosky [19] rule for the appropriate absorptive part:

[Γ(t → W+b) − Γ(t̄ → W−b̄)] ∼ (29)

−2Im(eiφ)
∫

dΦ(t̃λ)
∫

dΦ(W+b)Â1(t → t̃λ)A(Wb → t̃λ)∗A(t → W+dk)
∗. (30)

For formal reasons we put stars to indicate complex conjugations, although both A(Wb →
t̃λ) and A(t → W+dk) are real numbers;

∫

dΦ(· · ·) represents an appropriate phase-space
integration including summation over spins of on-shell particles. The reader can easily
verify that an analogous rate difference for t → t̃λ would have an opposite sign.
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5 Summary

We have discussed the CP violation in the decay rate-asymmetry of the top quark in
various models. We found effect at a level of a per cent in the SSM, where a CP-violating
phase may occur in the t̃L–t̃R mixing. We also illustrate how the CPT constraint manifests
itself in explicit calculations such that the total widths of a top quark and an antitop quark
are equal.
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(1992) 53;
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