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1. Symmetric polynomials

In the course of our study of Casimirs for Uq(sl(N)) we shall repeatedly encounter
special symmetric polynomials of N variables denoted by x1, · · · , xN . In the classical theory
of Casimirs of sl(N), symmetric polynomials in N variables play a special role since the
Weyl group of sl(N) is the symmetric group on N objects. The Weyl group acts on the
Cartan torus and on its Lie algebra ℑ and a well-known theorem of Harish–Chandra says
that there is natural isomorphism between the centre of U(sl(N)) and the Weyl-invariant
elements of U(ℑ). The more precise corresponding statements in the case of Uq(sl(N))
when q is a root of unity will be given below.

The elementary symmetric polynomials c1, · · · , cN are defined by the identity

N
∏

i=1

(1 − txi) = 1 − c1t + c2t
2 − · · ·+ (−1)NcN tN ≡ G(t). (1.1)

Hence for i = 1, · · · , N

ci =
∑

1≤j1<···<ji≤N

xj1 · · ·xji
(1.2)

and it is an old theorem attributed to Newton that any symmetric polynomial in x1, · · · , xN

(with coefficients in a ring) is a polynomial in c1, · · · , cN with coefficients in the same ring.
The polynomials of interest to us in the sequel are generalisations of the elemen-

tary ones obtained by replacing the variables xi by their mth power. Hence we define

P
(N)
i,m (c1, · · · , cN ) for i = 1, · · · , N and m = 1, 2, · · · by the identity

N
∏

i=1

(1 − txm
i ) ≡ 1 − P

(N)
1,m t + P

(N)
2,m t2 − · · ·+ (−1)NP

(N)
N,mtN . (1.3)

It is useful to have expressions displaying these polynomials directly in terms of the
elementary symmetric polynomials ci (and not in terms of the variables x1, · · · , xN). A
method that works nicely for fixed m is to remark that for any primitive mth root of
unity q

1 − tmxm
i =

m
∏

l=1

(1 − qltxi) , (1.4)

from which we deduce that

N
∏

i=1

(1 − tmxm
i ) =

m
∏

l=1

G(qlt) . (1.5)

Finally we obtain the desired result

1 − P
(N)
1,m tm + P

(N)
2,m t2m − · · · + (−1)NP

(N)
N,mtNm =

m
∏

l=1

G(qlt). (1.6)
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This formula makes the computation of the P
(N)
i,m ’s for reasonnable values of N and m

tractable, at least with the help of a computer.

The polynomials P
(N)
1,m will play a distinguished role in what follows. The generating

function
∞
∑

m=1

P
(N)
1,m

tm

m
(1.7)

is easy to express in terms of c1, · · · , cN , because

− log(1 − txi) =

∞
∑

m=1

xm
i

tm

m
, (1.8)

leading to
∞
∑

m=1

P
(N)
1,m

tm

m
= − log G(t) . (1.9)

Let us end this section with some examples of these polymials. First note that for our
purpose we will have to consider only the particular case cN = 1.

In the case of Uq(sl(2)), we will need P
(2)
1,m, which is closely related to the mth

Chebichev polynomial of the first kind.

In the case of Uq(sl(3)) and m = 5, the polynomials of interest are

P
(3)
1,5 (c1, c2) = c5

1 − 5c3
1c2 + 5c1c

2
2 + 5c2

1 − 5c2

P
(3)
2,5 (c1, c2) = c5

2 − 5c1c
3
2 + 5c2

1c2 + 5c2
2 − 5c1 .

(1.10)

In the case of Uq(sl(4)) and m = 5, we will need

P
(4)
1,5 (c1, c2, c3) = c5

1 − 5c3
1c2 + 5c1c

2
2 + 5c2

1c3 − 5c2c3 − 5c1

P
(4)
2,5 (c1, c2, c3) = c5

2 − 5c1c
3
2c3 + 5c2

1c2c
2
3 + 5c2

2c
2
3 − 5c1c

3
3 + 5c2

1c
2
2

− 5c3
2 − 5c3

1c3 − 5c1c2c3 + 5c2
3 + 5c2

1 + 5c2

P
(4)
3,5 (c1, c2, c3) = c5

3 − 5c2c
3
3 + 5c2

2c3 + 5c1c
2
3 − 5c1c2 − 5c3 .

(1.11)

2. Uq (sl(N)) at roots of unity

Let {α1, ..., αN−1} be the set of simple roots of sl(N). We define vectors ǫ1,..., ǫN by

αi = ǫi − ǫi+1 and
∑N

i=1 ǫi = 0.
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The “simply connected” quantum group Uq (sl(N)) is defined by the generators ei,
and fi, for i = 1, ..., N − 1, and k±ǫi

for i = 1, ..., N , and the relations







































































kβ1
kβ2

= kβ1+β2
,

kǫi
ejk

−1
ǫi

= qδij−δi−1,j ej ,

kǫi
fjk

−1
ǫi

= q−δij+δi−1,j fj ,

[ei, fj] = δij

kαi
− k−1

αi

q − q−1
,

[ei, ej ] = [fi, fj] = 0 for |i − j| ≥ 2 ,

e2
i ei±1−(q + q−1)eiei±1ei + ei±1e

2
i = 0 ,

f2
i fi±1−(q + q−1)fifi±1fi + fi±1f

2
i = 0 .

(2.1)

Let U0 be the subalgebra generated by the kǫi
’s, and U+, U− the subalgebras generated

by the ei’s, fi’s, respectively.

Two sets of quantum analogues of the roots vectors are inductively defined as







ei,i+1 = ẽi,i+1 ≡ ei for i = 1, ..., N − 1
ei,j+1 = eijej − q−1ejeij for i < j

ẽi,j+1 = ẽijej − qej ẽij for i < j ;
(2.2)

as are the fij and f̃ij .

Quantum analogues of Poincaré–Birkhoff–Witt bases can be built with ordered mono-
mials in these generators [1].

When q is not a root of unity, there exists a quantum analogue of Harish–Chandra
theorem [2,3]: there exists an algebra isomorphism h from Z, the centre of Uq (sl(N)), to
the algebra of symmetric polynomials in the k2ǫi

. This isomorphism h can be written as
h = γ−1 ◦ h′, with the following notations: h′ is the projection on U0, within the direct
sum U = U0 ⊕ (U−U +UU+), with U ≡ Uq (sl(N)); γ is the automorphism of U0 given by
γ(k2ǫi

) = qN+1−2ik2ǫi
.

A set of generators of Z is given by

{Ci = h−1(ci(k2ǫ1 , ..., k2ǫN
))}i=1,...,N−1. (2.3)

An expanded expression for these generators (denoted there by c̃k) appears in [4] in the
form (up to slight changes of convention and normalization):

Ci = qi(N−i)Ni(q
−2)−1NN−i(q

−2)−1
∑

σ,σ′∈S(N)

(−q−1)l(σ)+l(σ′)l
(+)
σ1σ′

1

...l
(+)
σiσ′

i

l
(−)
σi+1σ′

i+1

...l
(−)
σNσ′

N

,

(2.4)
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where Ni(x) =
∏i

n=1(1 + · · · + xn−1), where l(σ) is the length of the shortest expression
of the permutation σ in terms of simple transpositions, and where

l
(+)
ii =

(

l
(−)
ii

)−1

= kǫi

l
(+)
ij = l

(−)
ji = 0 for i > j

l
(+)
ij = (q − q−1)(−1)j−i+1f̃ijkǫi

for i < j

l
(−)
ij = (q − q−1)(−1)j−ik−ǫi

ẽij for i > j .

The first and last of these Casimirs are explicitly given by

C1 =

N
∑

i=1

qN+1−2ik2ǫi
+ (q − q−1)2

∑

1≤i<j≤N

(−1)j−i−1qN+1−i−j f̃ijeijkǫi+ǫj
(2.5)

and

CN−1 =

N
∑

i=1

q−N−1+2ik−2ǫi
+(q−q−1)2

∑

1≤i<j≤N

(−1)j−i−1q−N−1+i+jfij ẽijk−ǫi−ǫj
. (2.6)

When q is a root of unity, the image Z1 of h is still a well-defined central subalgebra
of Uq (sl(N)) [3], but it does not generate the whole centre. Let Z0 be the subalgebra of

Uq (sl(N)) generated by the elements fm
ij , em

ij and kmǫi
. (We could also replace fij by f̃ij ,

or eij by ẽij , this would lead to the same Z0.) When m′ is odd, these elements are central,
and the centre Z of Uq (sl(N)) is actually generated by Z0 and Z1 [3].

3. Relations in the centre of Uq (sl(N))

Theorem: If m′ is odd, the following relations are satisfied in the centre of Uq (sl(N)),

P
(N)
1,m (C1, ..., CN−1) =

N
∑

i=1

qm(N+1)k2mǫi

+ (q − q−1)2m
∑

1≤i<j≤N

(−1)m(j−i−1)qm(N+1−i−j)f̃m
ij em

ij kmǫi+mǫj

(3.1)

and

P
(N)
N−1,m(C1, ..., CN−1) =

N
∑

i=1

q−m(N+1)k−2mǫi

+ (q − q−1)2m
∑

1≤i<j≤N

(−1)m(j−i−1)qm(−N−1+i+j)fm
ij ẽm

ij k−mǫi−mǫj

(3.2)
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Remark 1: Actually, all the powers of q are equal to 1 since m′ is odd, but we conjecture
that these formulae remain true for even m′. [In this case, the terms f̃m

ij , em
ij and kmǫi+mǫj

are not individually central, but their products are.]

Remark 2: To get the right-hand sides of these relations, one simply replaces each
term (including numerical factors) in the expression of C1 (resp. CN−1) by its mth power.

This remarkable relationship seems to hold between P
(N)
i,m (C1, ..., CN−1) and Ci for the other

values of i as well, if Ci is written in a suitable Poincaré–Birkhoff–Witt basis.

Proof of the theorem:

a. We first apply the relations (2.1) and (2.2) in order to write (3.1) and (3.2) and the
Ci’s in the Poincaré–Birkhoff–Witt basis. Then

h
(

P
(N)
1,m (C1, ..., CN−1)

)

= P
(N)
1,m (h(C1), ..., h(CN−1))

=

N
∑

i=1

qm(N+1)k2mǫi

(3.3)

(and the corresponding formula with P
(N)
N−1,m). This follows from the definitions of the

first section. It then appears that this projection belongs to Z0, and hence so does the

whole result ([3] Prop. 6.3.c). This part of the proof also applies to P
(N)
i,m (C1, ..., CN−1)

for 1 < i < N − 1, whereas the second part is limited to the cases i = 1 or i = N − 1.

b. We can then use considerations on the degrees of the monomials appearing in P
(N)
1,m

(and P
(N)
N−1,m) to complete the proof. The term of highest degree of P

(N)
1,m (resp.

P
(N)
N−1,m) is indeed Cm

1 (resp. Cm
N−1), and it is also the only term of degree m. According

to the form of the Ci (2.4), only monomials of degree at least equal to m can contribute
to non-trivial terms belonging to Z0: a necessary condition is indeed that the products
of root vectors they contain correspond to an element of the root lattice R belonging
to mR. For the same reason, the contribution of the monomial of degree m is precisely
the second part of the right-hand side of (3.1) (resp. (3.2)).

Relations (3.1), (3.2) differ, for N > 2, from the equation in the last remark of [3]. In
particular, the degree of the polynomial is different. In the case of Uq(sl(2)), the relation
(3.1) was already given in [5].

4. Applications

a. Parametrization of generic irreducible representations:
We know from [6] that generic irreducible representations of Uq (sl(N)) are character-
ized by the values of the central elements on them. Once the values of the elements of
Z0 are determined, a choice between mN−1 values for C1, ..., CN remain. A nice way
to parametrize them is to write, for a representation ρ,

ρ (Ci) = ci(ζ1, ..., ζN) (4.1)
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with ci defined in (1.2) and
∏N

i=1 ζi = 1. (Note the absence of h−1, by comparison
with (2.3).) The mN−1 irreducible representations on which the elements of Z0 take
the same value simply correspond to the parameters

qp1ζ1, ..., q
pN ζN , (4.2)

with p1, ..., pN ∈ Z and
∑N

1 pi = 0 mod m. Since

ρ
(

P
(N)
i,m (C1, ..., CN−1)

)

= ci(ζ
m
1 , ..., ζm

N ) (4.3)

for 1 ≤ i ≤ N − 1, these sets of parameters indeed correspond to the sets of solutions
for the Ci’s, to the system of N − 1 equations including (3.1) and (3.2).
With this parametrization, the ζi become powers of q when the central elements em

ij ,
fm

ij and k2mǫi
take the values 0, 0 and 1 respectively. In this highly non-generic case,

a finite number of irreducible representations is related to the same parametrization.
These representations are q-deformations of classical representations.

b. Application to fusion rules:
We suggest that these relations and the above parametrization could help in the study
of fusion of unrestricted (generic) irreducible representations of Uq (sl(N)), as in [7]
in the case of U(sl(2)). The strategy would be the following: to evaluate the values
of the elements of Z0 in the tensor product of two irreducible representations (they
are scalar); find then a solution for the parameters ζi compatible with these values.
Then all the irreducible representations characterized by the parameters (4.2) should
appear in the fusion rule, with multiplicity 1 in the case generic⊗minimal–periodic,
and with multiplicity m(N−1)(N−2)/2 in the case generic⊗generic.
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[3] C. De Concini, V.G. Kac and C. Procesi, Quantum coadjoint action, Preprint Pisa

(1991).

[4] L. D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups

and Lie algebras, Leningrad Math. J. 1 (1990) 193.

[5] T. Kerler, Darstellungen der Quantengruppen und Anwendungen, Diplomarbeit,

ETH–Zurich, August 1989.

[6] C. De Concini and V.G. Kac, Representations of quantum groups at roots of 1,

Progress in Math. 92 (1990) 471 (Birkhäuser).
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