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A NEW METHOD FOR CALCULATION OF
LOW-FREQUENCY COUPLING IMPEDANCE
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In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than
the radius of the vacuum chamber~ For example, the Superconducting Super Collider (SSC) will have an rms bunch
length above 6cm and a beam-pipe radius below 2cm. The main concern for beam stability in such a machine
is the low-frequency impedance, i.e., the coupling impedance at frequencies well below the cut-off frequency of
the vacuum chamber. A new analytical approach is developed for calculation of the low-frequency impedance of
axisymmetric structures that allows quick and reliable. estimates of contributions to the impedance from various
chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are
obtained.
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1 INTRODUCTION

The low-frequency impedance of axisymmetric structures has been studied by different
approaches. In Reference 1 a matching method was applied to study the case of a beam pipe
with a cylindrical cavity, and a formula for the inductance of a small pillbox was derived.
The numerical solution of the Maxwell equations in time-domain with the TBCI code2

allows one to obtain the wake potential of a bunch in such structures. The dependence of
the inductance of small pillboxes and irises on their geometrical parameters was derived
from fitting numerical results obtained by means of TBCI in Reference 3. In a similar way,
formulae for the inductance of triangular-shaped insertions were obtained in Reference 4
using the semianalytical integral-equation approach. While practically important, these
results do not represent a regular method for obtaining impedances of different structures.
This paper aims to fill this apparent gap and' to develop a theory that allows effective
derivation of the low-frequency impedance for small discontinuities on the beam pipe.

We will consider axisymmetric structures that consist of an infinitely long, perfectly
conducting smooth pipe that has a localized discontinuity (e.g., a pillbox or an iris) on
it. The frequency under consideration is much below the cut-off frequency of the pipe,

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No.DE-AC35-89ER40486.
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w « clb. In this limit, we show that the calculation of low-frequency impedance is
reduced to solution of two quasistatic problems - electrostatic and magnetostatic ones.
Assuming additionally that dimensions of the discontinuity (its width g and height h) are
much smaller than the pipe radius b, we are able to use conformal mapping for solution of
the electrostatic problem and to derive simple formulae for the impedance of several shapes
of discontinuities. Comparison with numerical calculations using TBCI shows very good
accuracy of our theory in the range of its validity.

2 THE PRINCIPLES BEHIND THE METHOD

To evaluate the coupling impedance, we have to calculate the fields induced in the vacuum
chamber by a given current perturbation. Let the current harmonic

fez, t) = loiz exp (ikz - iwt) , (1)

where k = wlc, propagate along the chamber axis. If one finds the scattered-field harmonic
E z = E(r, z) (hereafter we omit the time factor exp(-iwt)), then the longitudinal
impedance is given by (see, for example, reviews in Reference 5)

00

ElfZ(w) = -- = -- dzE(r, z) exp (-ikz) ,
10 10

-00

(2)

where E is the Fourier harmonic of the induced voltage. For axisymmetric structures
the monopole longitudinal impedance does not depend on the transverse displacement
of the integration path, i.e., the integral in the RHS is independent of r. Since the current
wavelength is large compared to the discontinuity size (low frequencies), the beam fields
near the pill-box vary slowly and can be treated as almost static ones.

One can easily find the magnetic contribution to E. For cavities, shown in Figures l(a)
and l(b), the beam azimuthal magnetic field Bcp(r) = /Lolo/(2Jrr) fills the volume of the
cavity, therefore, the presence of the pillbox produces an additional magnetic flux

<I> = / / B<p(r)dS ,

s

(3)

where the integration goes over the cross section S of the enlargement. Using the smallness
of the dimensions of the cavity, we can simply put <I> :::: Bcp(b)S. From Faraday's law we
can easily find the contribution of the solenoidal electric field, produced by oscillations of
this flux with time, to the induced voltage (electromotive force) as

E(rn) = iw<l> . (4)
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FIGURE 1: Discontinuities of the vacuum chamber.
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From the physical point of view the additional magnetic flux due to the enlargement can
be treated as if produced by a toroidal solenoid, having the cross section of the cavity, and
attached to the. smooth pipe. This solenoid is characterized by a dipole magnetic moment
M = 2Jrb<f>I /-Lo. The magnetic moment is uniformly distributed along the circumference of
the solenoid and has only an azimuthal component. Let us introduce the magnetic moment
per unit length, m = M I(2Jr b), and magnetic polarizability of the discontinuity am per unit
length of circumference as m = amH<p(b). Then am = <f>/(/-LoH<p(b», and in the case of a
small pillbox, am = S. Respectively; the magnetic contribution to the impedance takes the
form

E(m) . Zoam
Z(m)(w) = -- = -lW-- ,

10 2Jrbc
(5)

where /-Lo is replaced by Zoic, Zo = 120Jr Q. Substituting am = S we get the well-known
inductive impedance of a small pillbox.1

In addition to the magnetic term given by Equation (5) due to the generation of the
solenoidal electric field, there is also another contribution to the impedance that comes
from distortion of the beam-potential electric field by the chamber discontinuity. Because
the distorted field is the potential field, rot E= 0, its longitudinal component can be written
as Ez = -a¢(z)laz. It makes the following contribution to E:
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00

fee) = f dzE(z) exp (-ikz)

-00

00

= - f dze-iwz/coz(c/J(z) - c/Joo) .
-00

(6)

In Equation (6) we have taken into account that the perturbed field is localized near the
discontinuity, and that ¢ (z) ---+ ¢oo when z ---+ ±oo. Integrating by parts, one finds

Wl OO

.£(e) == -i - dze-1UJZ/C(¢(z) - ¢oo)
c -00

W 100

~ -i - dz(¢(z) - ¢oo) .
c -00

(7)

(8)

(9)

(10)

In the last step we used the fact that the wavelength c/ W is large compared to the pipe radius
and, therefore, to the size of the region where the perturbed field is localized.

To perform integration in Equation (7) it is convenient to shift the integration path from
the axis closer to the wall. If the distance from the pillbox to the integration path is such that
g, h « IRI « b, where R == (z, x) and x == r - b, the main component of the perturbed
electrostatic potential is a dipole,

1 px
¢(z) == ¢oo + ¢dip(Z) == ¢oo + -2- 2 + 2 '

neo x z

where the last term corresponds to the electric dipole in radial direction, distributed along
the circumference of the chamber cross section, and p is the dipole moment per unit length
of the pipe circumference. From Equation (7) we find immediately (for x < 0):

.W P
£(e) == l--.

C 2eo

It is natural to introduce the electric polarizability per unit length ae of the discontinuity
as p == eoaeEy , where E y == /0/(eoc2nb) is the beam electric field at the wall. Then the
electrostatic contribution to the impedance is

£(e) . Zoae
Z(e)(w) == -- == -lW-- .

/0 4nbc

It turns out (see below) that the induced dipole moment for the pillbox is opposite to the
radial beam field, i.e., ae < 0, and the electric contribution to the inductance is negative in
this case.
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Summing up Equations (5) and(10) we find the low-frequency impedance of a discon
tinuity as a sum of the magnetic and electric terms that are proportional to the magnetic
and electric polarizability respectively. This result is analogous to that for the impedance of
a pumping hole at low frequencies,6 which has been derived in a rigorous but more com
plicated way using the Bethe theory of diffraction by small holes and an expansion over
waveguide modes.

3 RECTANGULAR PILLBOX AND STEP

While the calculation of the magnetic polarizability is straightforward, in order to find
the electric polarizability we have to solve an electrostatic problem, namely, to calculate
the dipole moment induced on the pillbox by a homogeneous electric field. For small
discontinuities (g, h « b) the dipole moment does not depend on b, and one can solve the
problem considering the limit b ~ 00. In this limit, the cylindrical geometry reduces to
the plane one and we have to find the distribution of the potential created by an infinitely
long rectangular groove in a perfectly conducting plane wall that is generated by a uniform
electric field perpendicular to the wall. This field is in fact the beam electric field at the wall,
E r .

A standard approach for solving this kind of electrostatic problems is to apply the
conformal mapping technique, e.g., Reference 7. For the small pillbox the conformal
mapping that relates the coordinates (x, y) with the complex variable 1ft + i¢ is given
by the following equation (see the Appendix for more detail):

. CE ( . 1/1 + i¢ ) 'hZ + 1X ~ - arCSIn ---, U + 1 ,
CuEr

where C ~ g/(2E(u)) and the parameter u is defined by the equation

g E(u)

2h - K(~) - E(~) •

(11)

(12)

In the equations above, ¢ is the potential, 1/1 is the electric flux, and K and E are elliptic
integrals of the first and second kind (E denotes the incomplete elliptic integral when it
has two arguments and the complete integral with one argument). Inverting the dependence
given by Equation (11) and taking the imaginary part, one can find ¢ as a function of x and y.
From asymptotic expansion of the elliptic integral, which can be easily performed using the
integral representation, cf. the Appendix, we find that at large distances, Jx 2 + z2 » g, h,
the potential is

[
C2 x]¢ ~ -Er x + -(1 - u2

) 2 2 + const,
2 x +z

and hence the electric polarizability is

(13)

(14)
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FIGURE 2: The electric polarizability of a pillbox versus the aspect ratio.

The function f (gI h) gives the dependence of ae on the aspect ratio gI h and is plotted in
Figure 2. The function ae has the following asymptotic behavior:

l
-g2In

a
e

= -2gh + 2h2 jrr (In(2rrgj h) + 1)

when g ~ h

when g» h.
(15)

The conformal mapping arid polarizability for other shapes of the discontinuity (Figures
l(b)-I(e)) are discussed in the Appendix.

Collecting together Equations (5) and (10) and using the asymptotic expansion from
Equation (15) we obtain the low-frequency impedance of the small short pillbox (g ~ h),

. Zo ( g2)Z(w) = -lW-- gh - - ,
2nbc 2n

(16)

which is inductive. The electric contribution to the inductance is negative and small in this
case. The comparison of Equation (16) with numerical computations by means of the ABCI

code8 is shown in Figure 3. As follows from this figure, the electric contribution to the
impedance is small but noticeable.

For deeper pillboxes one must correct the above formula, taking into account that
the magnetic field in the pillbox varies with radius as 1Ir. When the ratio hib is not
very small, we have to use the exact expression of Equation (3) for the magnetic flux.
Performing simple integration, we find that the approximate result am = gh, which is



::r:
c:

LOW-FREQUENCY COUPLING IMPEDANCE

6.-------...,.------r----~---~---~---~

"''''",'",

"',,,
. .":'''

5 :- : ~ - ~ .".:~:: -:" " .
: :,,' '" :
: ~ .",;;'''' .

4 : 0 == ABCI ; ;,:~< ; ................; :............... ",';"; :

~ ~ ../;;,/: ~
: : : ...... ~ '"

~ 3 : : >:j>.~..
--i : : /.~/

2 - ~ ~:;" .~ .
. ".: ",'",

/'/.

: """'~"":
.",'.............;,....

101

2 3
h mm

4 5 6

FIGURE 3: The inductance of a deep pillbox versus its depth: without (dash-dotted) and with (dashed) the
electric term; with the electric term and smeared magnetic moment (solid). Here pipe radius b=2cm, pillbox
length g=lmm.

valid in the limit h « b, has to be replaced by am = gbln(l + hjb) (the solid curve
in Figure 3). The impedance Zm with this logarithm's term coincides exactly with the
expression obtained in Reference 1 by the field-matching method. As for the electric term,
we do not need such corrections in this case, g « h, since the electric field is distorted in
the region with a typical size of the order of g.

In the opposite extreme, g » h, the situation is different: the electric and magnetic
contributions almost cancel each other, and the low-frequency impedance of the shallow
enlargement takes the form

Zoh 2

Z(w) = -iw-
2

- (2In(2rrgj h) + 1) ,
2rr be

(17)

where g should still be below b. The h2 dependence- of the shallow-cavity inductance was
found earlier by numerical methods (for example, References 3 and 4), but Equation (17) also
gives an additional logarithm-type dependence on the aspect ratio that was hard to extract
from fitting in the previous works. Figure 4 shows the comparison of ABCI computations
and our results for shallow cavities. Minor differences between the analytical and numerical
results for g ~ b, especially for the deeper cavity, are explained by the fact that our approach
is valid only when g < b.

Increasing the length g of the pillbox beyond the value of b, we arrive at the situation
corresponding to two separate steps. Apparently, in this limit the impedance will not
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FIGURE 4: The inductance of shallow pillboxes versus the length (b=2cm).

depend on g because a very long pillbox is actually composed of two independent steps
- one that increases and one that decreases the beam-pipe radius. It is evident that the
transition to the limit of two independent steps occurs when g becomes of the order of pipe
radius b, g rv b. Hence, we can estimate the impedance of a step simply by putting g = b
in Equation (17) and dividing it by a factor of 2. This gives the following result (h « b):

Zoh2

Z(w) = -iw-
2

- (2 In(211:bj h) + 1) .
411: be

(18)

Since, however, the logarithm already has large ratio 211:bj h as its argument, the exact
value of coefficient e in the substitution g ~ eb is not very important; it would make a
relatively small correction rv In ej In(211:bj h) to Equation (18). To check the accuracy of
Equation (18), we have compared results given by this formula with numerical results for
a single small step obtained by means of the ABCI code. With b = 2cm, the analytical and
numerical results for h ::::; Imm agree within 1%.

It should be noted that, in addition to the imaginary part given by Equation (18), there
is also a real part of the step impedance associated with the potential jump through the
transition from the broad to the narrow part of pipe. The real part of the impedance is
proportional to In(1 +hj b) being positive for the transition "narrow-to-broad" and negative
in the opposite case. For shallow cavities the contributions to the real part from the two
steps exactly cancel each other.
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4 OTHER SHAPES OF DISCONTINUITIES
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The conformal mappings for a symmetric trapezoid, Figure l(b), and triangular insertions,
Figures l(d) andl(e), are given in the Appendix. Considering a shallow trapezoid (h « g)

one can find the inductance of a single sloping step (transition) in the same way as that of
the abrupt step, Equation (18). The inductance produced by the transition with the slope
angle () = rr v has the form

. Zoh 2 [(b ) 3 rr 1 ]Z(w) = -lW-- lnrrv - - 2cotrrv + - - y - 't/J(v) - - cotrrv - - ,
2rr 2bc h 2 2 2v

(19)
where y = 0.5772 ... is Euler's constant, 't/J(v) is the psi-function, and the transi
tion is assumed to be short compared to the chamber radius, i.e. the transition length
1 = h cot rr v « b. The ratio of this inductance to that of the abrupt step (v = 1/2,
Eq. (18)) with the same height is plotted in Figure 5 as a function of the slope angle. It
should be noted that Equation (19) transforms into Equation (18) in the limit v ~ 1/2.

In the same way, one can consider discontinuities that protrude inside the chamber, like
an iris or a collimator, as in Figure 1(c). It is clear that in this case both the magnetic
and electric dipole moments must change sign. It turns out, however, that in this case the
electric contribution is larger than the magnetic one, and the low-frequency impedance is
again inductive with positive value of the inductance. Making use of conformal mapping
in Equation (25) with v = -1/2, one can find the inductance for an iris of the length
g and depth h. When h « g, the impedance of the iris coincides with that of a shallow
cavity, Equation (17). This result seems quite natural and, indeed, was found earlier3,4 from
numerical results. For the case of a thin (or deeper) iris, g « h, the asymptotic expression
for Z (w) takes the form

Zo [2 gh ]Z(w) = -iw- h + - (In(8rrg/ h) - 3) .
4bc rr

(20)

(21)

Figure 6 shows the comparison of this formula with numerical computations. It is seen that
Equation (20), derived in the limit h « b, works amazingly well even for very deep, narrow
irises.

As a bridge between these two analytical asymptotics (g » hand g « h), we give below
a formula for the low-frequency impedance of the iris with an arbitrary aspect ratio:

Z(w) = -iw Zo gh F ('~) .
2rrcb g

Here function F(x), plotted in Figure 7, is obtained by solving Equations (25)-(32) (see
the Appendix) numerically for ae , with v = -1/2. Then, adding Equation (10) to the
magnetic contribution of Equation (5) with am = -gh (g « band h « b are assumed,
rigorously speaking), we get the formula above. Figure 7 also gives an idea on the accuracy
of Equation (21), comparing it with the ABCI results. Pipe radius b = 2cm, h = 1-15mm,
and g = 2-8mm were used in the ABCI computations.
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FIGURE 7: The iris inductance dependence on the aspect ratio, see Equation (21).

As another example, we consider discontinuities of a triangle-shaped cross section with
height (depth) h and base g, shown in Figures led) and lee) (see the Appendix). When
g « h, the low-frequency impedance of such a chamber enlargement is

Zo ( g2)Z(w) = -iw-- gh - - ,
4Jrbe Jr

and that of a triangular iris is

(22)

(23)Z(w) = -iw~ [h 2 + ~gh (1 -ln2)] .
4be Jr

For the case of shallow triangular perturbations, h « g < b, both the enlargement and
contraction of the chamber have the same inductance,

which is independent of g.

5 LARGE CAVITIES

. Zoh22ln2
Z(w) =-lW 2 '

Jr be
(24)

Thus far, we have assumed that the dimensions of the discontinuities on the beam pipe were
much smaller than the beam-pipe radius. We can relax this restriction and apply our method
for large axisymmetric discontinuities. However, as before, the wavelength will be assumed



106 S.S.KURENNOY and G.V. STUPAKOV

to be large compared to a typical discontinuity size, which now can be of the order of, or
larger than, the pipe radius.

The magnetic contribution for a large pillbox can be easily found for an arbitrary shape
of the boundaries if we use the exact expression of Equation (3) of the magnetic flux while
calculating the magnetic polarizability.

As for the electric contribution, we have to solve the electrostatic problem exactly without
invoking the plane approximation. This part of the problem has been solved using a standard
electrostatic code, POISSON.9 After having calculated the potential distribution produced in
an axisymmetric structure by a linear charge located on the chamber axis, we integrate it
numerically at r = b according to Equation (7). Effectively, this integration involves only
a part of the integration path that crosses the cavity opening, since on the wall ¢ (z) = ¢oo.
For the illustration of the method, we have calculated the inductance of the cavity having the
shape shown in Figure lea) with the length g = 5cm and depth h = 3cmon the pipe ofradius
b = 2cm. The magnetic part of the impedance is L(m) = Zag In(l +h/b) / (2JTbc) = 9.2nH.
The electric one (from POISSON computations) is L(e) = -3.5nH, which amounts to the total
impedance L = 5.7nH. The ABCI code gives us a very close value, L = 5.78nH.

As one more example, we have considered a cavity of the same shape and'size as above,
but shielded from the beam pipe by a screen in such a way that only an axisymmetric
short gap of length O.4cm couples the cavity and beam pipe. In such a layout the induced
electric dipole is very small and the inductance has to be due only to the magnetic term,
L ~ L(m) = 9.2nH, while the ABCI result is L = 9.4nH. These two examples show that
our approach works well for large discontinuities also.

6 CONCLUSIONS

We have developed a method that allows the calculation of the low-frequency impedance
for a small discontinuity of the beam vacuum chamber. There are two contributions to the
impedance - the electric and the magnetic, which have opposite signs - but the resulting
low-frequency impedance is always inductive. This approach gives a clear physical picture
and allows us to reproduce and explain results obtained earlier from numerical simulations.
In many cases, simple analytical formulae for the low-frequency impedance are derived.

We have to emphasize here that being perturbative in small parameters g / band h / b, our
method includes all the important terms in the lowest order so that neglected terms are much
smaller than those retained. In that sense, our result is accurate in the range of its validity.

We have also demonstrated that our method allows us to compute easily the low-frequency
impedance for large cavities. As a future generalization we intend to apply the approach
to study the impedance of small discontinuities at frequencies above the cut-off frequency.
We believe that in this frequency range the idea of effective dipole moments will be fruitful
as well.
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APPENDIX: CONFORMAL MAPPING

The conformal mapping from the upper half-plane w = ljJ + i¢ on the plane v = z + ix
for the discontinuity having the symmetric trapezoidal shape with height h, base g, and
slope angle JrV, where g ::: 2h cot JrV (see Figure l(b)), can be derived using the standard
technique of the Schwarz-Cristoffel transformation. Choosing the point correspondence
between w- and v-planes as (0,1) B (0,gI2), (O,u) B (g12 - hcotJrv,h), where
o~ u ~ 1, and taking into account the problem symmetry yields the following conformal
mapping:

lw ( g2 - l)V .
v = C dg 2 2 + lh ,o g - u

where transformation parameters C and u satisfy the simultaneous equations:

g lu (1 g2)V--hcotJrv=C dg 22 ;
2 0 u-g

{l (1 _g2 )V
h=CsinJrv}u d~ ~2-u2 .

(25)

(26)

(27)

The integrals in the equations above can be expressed in terms of the Gauss hypergeometric
function 2Fl and gamma-function r (see definitions in Reference 10). Solving these
equations with respect to C gives

2hu
C=-------------

Jrv(l - UZ)2Fl (1, 1 - v, 2, 1 - u-z) ,

where u is defined as a root (0 ~ u ~ 1) of the equation

(28)

~ 2-Zv F (l 3 2)g . V Jr U 2 1 2> - v, 2 - v, u (29)
- SlnJrV - cOSJrV = -- .
2h r(~ - v) r(l + v) 1 - u2 2Fl(1, 1 - v, 2,1 - u-z)

Asymptotics at w ~ 00 of the integral in the RHS of Equation (25) can be obtained easily:

v(l - uz)
v=Cw+const+C + ...

w

Reversing this relation with account of w ~ 00 and v ~ 00 yields

v v(l - uz)
w = - + constl - C + ...

C v

(30)

(31)
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The first term here corresponds to an unperturbed electric field, and the last one gives the
dipole contribution. From this asymptotic behavior we can obtain the electric polarizability
per unit length of circumference (see discussion in Sections 2 and 3).

(32)

In the case of a pillbox, Figure l(a), v = 1/2, and hypergeometric functions 2Fl
in Equation (29) are reduced to complete elliptic integrals. 10 As a result, Equation
(29) transforms into Equation (12) of Section 2. Respectively, Equation (25) for v =
112 yields Equation (11) with the integral representation of incomplete elliptic integral
E (arcsin(w Iu), u), up to the potential normalization (we use the dimensionless variables
in the Appendix, unlike the main text).

It is worth noting, that Equations (25) and (29) can be applied not only for chamber
enlargements but also for chamber contractions if we replace h ~ -h (h > 0) for v < o.
In this case, v = -1/2 corresponds to an iris, Figure l(c).

The particular case u = 0 (g = 2h cot Jr v) gives conformal mapping for triangular
perturbations, Figures l(d) and l(e). In this case, conformal mapping of Equation (25)
takes the form

(g12 - ih)r(1/2) 1-2v (1 3 2) .
V = 2r(3j2 _ v) r(l + v) w 2 Fl 2- v, -v, 2' W + lh .

Hypergeometric functions in Equation (29) transform now into combinations of gamma
functions, and the electric polarizability of Equation (32) is reduced to

[
Jrh ]2

ae = -2v sin Jrvr(lj2 _ v) r(l + v) .
(33)

(34)

To derive the impedance of a shallow and short transition (see Section 4), we consider
the limit g » h of Equation (29), with v fixed, 0 < v :s 112 (more rigorously, one should
keep Jr v » 2hI g; and this case is not reduced to shallow triangular perturbations). In this
limit, u ~ 1 and we can use in Equation (29) the linear transformations for hypergeometric
functions 10 to obtain the expansions over small parameter 8 == 1 - u2 , 0 < 8 « 1, as
follows:

1 -2 1 - v 2 (1 - v)(2 - v) 2
2Fl(-,1-v,2,1-u )=1---(8+8)+ 8 + ...

2 4 16

1 3 2 r(3/2 - v)
2 Fl(2' -v, 2- v, u ) = r(3j2) r(l- v) x

x [1 - ~8 (In 8 + y + 1 - 21n 2 - ljf(1 - v) + ... )] ,
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where y = 0.5772 ... is Euler's constant, 1/J(x) is the psi-function.l° Substituting these
expansions into Equation (29) and solving it with respect to 0, we get, after some algebra,
from Equation (32) the electric polarizability

4h
2

[ ( g ) 3 Jr 1 ]+ - InJrv - - 2cotJrv + - - Y -1/J(v) - - cotJrV - - .
Jr h 2 2 2v (35)

Putting it into Equation (10) and adding the magnetic contribution, Equation (5), which
just cancels the first term, proportional to the trapezoid area, in the expression above, leads
to Equation (19) for the impedance of a shallow transition.




