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ABSTRACT

We give a detailed presentation of the electroweak 1-loop contributions to the
production mechanisms of top quark pairs, g — {f and gg — ¢, for the energy
range of future hadron colliders. The full gauge invariant set of loop diagrams with
Higps, Zq and W= bosons is considered including strong Yukawa couplings. The
parton cross sections get sizeable modifications up to 40% and are sensitive to the
Higgs boson mass and the Yukawa coupling. Results are also given for the observ-
able hadronic cross section pp — ttX, where the large corrections at the parton
level are substantially reduced to the order of a few per cent. For the electroweak
Standard Model the maximun contribution is about 7% for a light Higgs boson with
M, = 60 GeV. For Higgs bosons with My > 200 GeV, the electroweak contribu-
tions are typically 2 — 3%.



1 Introduction

The search for the top quark is one of the central tasks of present and future particle physics.
The present lower bounds of 103 GeV (D0) and 108 GeV (CDF) for the standard model top
mass from direct searches at the Tevatron [1] leave practically no window for the production of
tt pairs at LEP 200. Presumably proton (anti-)proton colliders will be the only machines for
producing top quarks within the next decade. An indirect upper limit for the top quark mass
follows from radiative corrections to electroweak precision observables. It is around 200 GeV if
the Minimal Standard Model (MSM) is assumed [2]. The lower mass range can be covered by
the Tevatron. For large top quark masses, however, proton-proton colliders like LHC and S8C
would be required. Moreover only high energy colliders can produce a sufficiently large number
of top quarks for a precise determination of its mass and decay properties.

The main production mechanism of top quarks in pp-collisions are described in terms of the
parton subprocesses of gluon-gluon fusion and quark-antiquark annihilation. In lowest order
these processes are of O(a?) in the strong coupling constant a, and they were calculated in [3].
The lowest order electroweak contributions of O{a?) to the Drell-Yan annihilation process via
vy-and Z- exchange would only be of significance for my < Mz/2 (4], which is experimentally
ruled out.

Since the tt-production cross section in pure QCD contains besides a, the top quark mass
my as the only free parameter, it is suitable for a measurement of m,. For this purpose, higher
order contributions have to be taken into account.

Cross sections and distributions including QCD corrections to ((a?) have been given in
(5], and higher order QCD effects close to the production threshold are discussed in [6]. Since
the tree level O(a?) y-and Z-exchange diagrams contribute less than 1% at the parton level,
they are negligible. On the other hand, electroweak 1-loop contributions of O(«a?) to the basic
QCD processes deserve some closer inspection. They can become important for the energy
range of future hadron colliders for two reasons: the large ¢? (= & in the parton frame) and
the large Yukawa couplings of the (virtual) Higgs bosons to a heavy top quark. Through the
virtual presence of the Higgs boson, the ti-production becomes model dependent, in particular
dependent on the mass of the Higgs boson My. From investigations of the e e~ — £ production
cross section [7] it is known that the Higgs effects increase oc m? close to the threshold and
modify the cross section significantly, depending crucially on My

In this paper we study the 1-loop contributions from the electroweak interaction to the
basic processes g — tt and gg — tt, and discuss the implications for the observable hadronic
cross section pp — ttX. Our main interest is the influence of large Yukawa couplings (and
thus the My-dependence) on the cross section. For reasons of gauge invariance, the full set
of massive gauge boson, Higgs and would-be Goldstone boson exchange diagrams has to be
considered. This set of diagrams is UV-finite without renormalisation of the strong coupling
constant. Out of the parameters, only mass renormalisation for the top quark in the #{u)-
channel top propagators in gg — tt is required. This is different for pure electroweak processes,
which are not UV-finite without coupling constant renormalisation. The IR singular photonic
corrections form a separate gauge invariant subset and are not considered here.

The paper is organised as follows:

In section 2 we recall the Born parton cross section of the two top pair production mecha-
nisms and describe their convolution with the parton structure functions in order to obtain the



hadronic cross section. This is followed by a detailed investigation of the electroweak 1-loop
contributions to the lowest order matrix element. The compact representation of the gg — £
and gg — tI cross sections and the discussion of their dependence on the top quark mass and
Higgs boson mass close section 3. Finally, in section 4 we present the results for the observable
hadronic cross section pp — t£X and investigate its sensitivity to a variation of the Higgs boson
mass between 60 GeV and 1000 GeV. The explicit expressions for the 1-loop corrections and
some details of the calculation are summarised in the appendices.



2 Top pair production in leading order QCD

The main production mechanisms for the ti-production in high energetic pp-collisions to O(a?)
at the parton level are (the particle momenta are in parantheses):

o the annihilation of a ¢g pair into £f via a virtual gluon:

q(pa) T(p3) — t{p2) Hp1) ,

¢ the fusion of two gluons:

9(ps) 9(p3) — t(p2) t(p1}) -

The graphical representation of these processes is shown in Fig. 1 and Fig. 2, respectively. We
choose the Mandelstam variables:

5 = (p+p2)’ = (ps+ps)’
t = (pr—ps)’ = (ps—p2)°
@ = (p2—pa)’ = (pa—p1)’° (2.1)
satisfying the on-shell relation:
§+i+4=2m?, (2.2)

where the masses of the incoming partons are treated as zero.

The differential cross section for the two particle scattering process 3 +4 — 1 + 2 can be
written as follows:
dé 1 — L 2oy (2
E = 167!‘-‘;’22 | M(5,t,4) | (2'3)
with the spin and colour averaged squared matrix element. The Born matrix element of these
two subprocesses denoted by M% and MY, respectively, are defined by the standard QCD
Feynman rules given in the Feynman-'t Hooft gauge (for the non abelian vertex all momenta

are understood as incoming):

c q
g M/< .
D —1gs Ty, (2.4)

q
g" Pa
&Qﬂ/ gc P fa.bc [(pll - p3)ugpo'
gb o -(p3+p4) +{2p3 + P4)p9vcr —{p3+ 2p4)e 800 (2.5)

where g, = \/4na, is the strong coupling constant and T° = A°/2, with the Gell-Mann matri-
ces X°, satisfy the SU(3) commutation relation [T, T%) = ify.T¢. The fup’s are the SU(3)
structure constants,



Born parton cross section for ¢ — tf

qia(P4) tj(Pz)
— g -
q s(ps) tpy)

Figure 1. Lowest order Feynman diagram for ¢g — #f

With the QCD Feynman rule from Eq. (2.4) and the momentum assignments of Fig. 1 the
leading-order QCD matrix element of gg-annihilation is given by:

‘-ﬁvr. . _ig#y
Mg = fsaﬁ ug(p2152)(~zg,Tﬁ T'U) U%('P]_;sl) ( § ) 8

5 (p3, 53) (19T ) vh (Pay 54) | (2.6)

where a, f and 1, 7, k, {; care flavour and colour indices, respectively. Straightforward calculation
of the square of this Born matrix element M¥ averaged over the initial spin and colour degrees
of freedom and summed over the final ones leads to:

=. ... 64rlad 2 . ;&
ZngF:T<§) [P+(3—2m?)t+5—+m3] : (2.7)

where angular brackets denote the factor due to the summation (average) over the colour degrees
of freedom. Integrating the differential cross section between the kinematical limits:
1 1 4m}?

m§—§§—§§ 1-—

2
§+%§ - Ami (2.8)

<t<mi-
8

yields the total gg — tf cross section as given in [3]:

em 4170:3 2.1 dm?
508 = 5 Qlayl- 5 ). (2.9)

Born parton cross section for gg — tt

The gluon fusion matrix element is composed of the three different production channels
(s-,t—, u—channel) as follows [3]:

% = g2 (pa) &(p3) T (pa, 52) T vi(p1, 1), (2.10)
where
ab Tﬁfabc
Tuw = — [(Fs= #3)9uw + (2P3 + Pa)u¥e — (2P4 + P3)u7u]  : s-channel
—1)Te Tt
+(—-«~)m—2m17u(?53— #1+m)y.  : t-channel
t —my
(—i)TmeT-r?-LI
+W7y(ﬁ4— $1+me)y.  u-channel . (2.11)
Ty
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Figure 2: Lowest order Feynman diagrams for gg — ¢

Since the initial state gluons are unpolarised the computation of 3 | M% {? requires an
averaging over the polarisation states of the initial gluons. The polarisation sum of the gluon
polarisation vectors €j{Xs,ps) and €(A3,p3) has to be chosen in such a way that only the
physical (transverse) polarisation states remain and the unphysical one (longitudinal) does not
contribute to the matrix element:

Z GL(A, k) fl—'()\! k) = ~Gu + pr
A=1,2
Quw kuth + kv _ 7k )
g nk (kn)?
where 7 fulfills the conditions k7 # 0 and ne = 0. The vector 7 has been chosen to be the sum
of the gluon four vectors p3, py, so that @, is given by:

2.12)

Q= 2p3up4v + P3vPap . (2.13)
Egs. (2.3), (2.10) completely determine the differential gg — #f cross section at parton level,
which can be written as follows [3]:

d&%g ra?

with

4 2
M,, = Z (t - (@ —m?) : | s-channel |
M, = - 2)2{( mi) (@ — m?) - 2m2(f — m?) — 4m?} : | t-channel |2

N 2 .

Muyw = m{(t ~md)(@ - m?) — 2mi(a - m?) - 4m{} : | u-channel 2
M, = ——4—{mt £(8+1)} : 2(s-channel)(t-channel)*

5(t —m?)
M, = ﬁ{mt —~ @ (8§+14)} : 2(s-channel){u-channel)*

4m£ 2 *

Mo, = —= {8 —4m}} : 2(t-channel)(u-channel}* . (2.15)

(f - m}) (i - m})
After carrying out the f-integration the total Born parton cross section for the gluon fusion is

given by:

1ra2
) = Tt (@3R8 G+ 12

~4(1+ p)B}
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The hadronic cross section for pp — tIX

The hadronic cross section is composed of the perturbatively calculable short distance par-
ton cross section & and the universal, scale dependent QCD parton distribution functions
fi(21,Q), f;(z2,Q). For protons carrying the momentum P, or P, with the center-of-mass
energy S = (P + P;)? the hadronic cross section is given by [8]:

o(P, Pp) = Z fd$1d32 fi(21,Q) fi(22,Q) 64;(p1, P2, () | (2.-17)

where the sum runs over all incoming partons carrying a fraction of the proton momenta (py 3 =
z1,2P1,2). Since the factorisation scale Q and the renormalisation scale £ have to be of the same
order of magnitude we do not distinguish the two and conventionally take both as the top quark
mass: Q = p = m,. With the parton luminosity [9]:
dL,'j 1 1 da’:]_ T
= — | filzy, A~ 12 .

where 19 = %"—i, the resulting hadronic cross section can be written as:
Vdr ¢1 dLi;\ ..
o(S) = XJ: fT i (g _d.;) (855;) - (2.19)

In order to derive the pp — ¢ cross section in leading order QCD the parton cross sections
of the dominant production mechanisms, gluon fusion and gg-annihilation, calculated in the
previous sections, have to be convoluted with the quark or gluon distribution functions. The
application of Eq. (2.19) yields the following hadronic cross section:

1 1dLg . . m L
og(5) =f g (—-ﬂ 5&};(5)+%d—ﬁ $0% .§)) . (2.20)

S dr dr
For the explicit numerical calculation we used the parton distribution functions obtained by
including the muon data of the BCDMS collaboration as it is described in (10].



3 Electroweak radiative corrections
to the parton cross section

3.1 Structure of 1-loop contributions

We examine the O(aa?) electroweak contributions to both the ¢g — f and gg — #f sub-
processes. The loop diagrams under consideration are shown schematically in Figs. 3, 4. The
complete set is gauge invariant, IR finite, and also UV finite even without renormalisation of the
strong coupling constant (only mass renormalisation in the t(u)—channel is required together
with external wave function renormalisation of the fermions).

Draan Dsaan Dvaan{ Dssaa

Figure 3: Electroweak O(aa?) contributions to the gg-annihilation (dashed lines denote Z°,
W#* and Higgs bosons, diagrams with ringed vertices and lines denote the counter terms)
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Figure 4: Electroweak O(aa?) contributions to the gluon fusion (u-channel diagrams are not
explicitly shown)

The 1-loop expansion of the gg-annihilation and gluon fusion amplitudes consists of the
genuine 1-loop diagrams and the tree diagrams involving the counter terms for the ggg-vertex
and the top quark propagator. The counter terms are formally obtained by the transformation
for the left-and right handed quark fields and for the top quark mass

VYir = ZLRYLR , Me — My — oy

where
1Fs

Vi r= ¥ ,Zrr=14+0ZLR

in the Lagrangian, which describes the free propagation of the top quark and its interaction
with the gluon field G¥:

L= 6(?’ - mg)¥ +¥(-g, T V.Y GY .



This yields the counter terms for the gluon-top quark vertex and the top quark self energy as
follows:

t
gtggﬂgi::__ 0 100, = —19,T° v, (6Zv — 8Z 4vs) (3.1)
t

t(p:j}_ S PN =1 [g(8Zy — 6Z4¥s5) — mubZy +6my],  (3.2)

where

1
AT 5(52{, +6Zg). (3.3)

The finite parts of the counter terms are fixed by the following renormalisation conditions (the
symbol " denotes renormalised quantities):

¢ The pole of the top quark propagator defines the on-shell top quark mass:

S(f=m) =0, (3.4)
fixing the mass renormalisation constant as follows:
Jmt
E ( EV - Es)l 2-m . (35)

e The residue of the fermion propagator is equal to one, equivalent to:

1
Hm Fom (#) =0, (3-6)

fixing the wave function renormalisation constants by:

ad
AT, —Ev(p = mt) me_ 3p 2(EV +Es)l 2=m?

674 —Za(p? =m?). (3.7)

Thus, the counter terms according to Egs. (3.1), (3.2) are expressed by the top quark self energy
(and its derivative), which has been decomposed as follows:

L(#) =#(Zv(p”) - a(p®) 75) + me Ts(p?) (3.8)

with scalar functions Ey 4 g. These operations lead to finite vertex corrections A and self

energies 53, which consist of the sum of the 1- loop diagrams A, ¥ and their counter terms §A,,
4%

\£££J<Z:+\ﬁﬁﬁjﬁ:: ;A = A, +i6A, (3.9)

T+ 185 (3.10)

The finite initial state ggg-vertices are obtained analogously by substituting m, — My.

8



3.2 Structure of amplitudes for pp — {7 subprocesses

Within the Minimal Standard Model (MSM) the top-gluon vertex and the top quark self energy
are modified due to the exchange of vector bosons Z°, W+ and the Higgs boson 7, together
with the unphysical components x, & in the Feynman-'t Hooft gauge. The Higgs bosons have
Yukawa couplings o« m:/Mw to the top quark that can be written in the following generalised
form (s, = sin 8, My mass of the charged gauge boson W1);

T)-Xs(¢+) t e my

______ : 25 Moy (€5 — €p¥s5) (3.11)
t(b)

7.%(¢") tb) . temy ;

______ vy v (s + €cp7s) - (3.12)
t

For the quark-gauge boson coupling we use the following representation:
2w Qa

iev,(gv — g47s5) - . (3.13)
Qs
The coupling constants gV,gA,c,,cp,c;, in the Feynman-'t Hooft gauge within the MSM are
specified in Tab. 1.

A W= n X ot
T"—ZQfafu 1

v stwcw 2\/§sw ~ - i

77
ga """’i"z,wcw v - - -
Cs - - ('1) 0 %(1 - _Ef)
cp - - 0 | (<) %(1 + )
c;, - - 0 | -¢ Cp

Table 1: Gauge- and Higgs boson couplings to fermions (@ f,T3f : charge and third isospin
component of the fermion f, ¢y, = cos 8y, ms: bottom quark mass)

The differential parton cross section for the gg-annihilation (¢ = ¢g) and the gluon fusion
(i = gg) is obtained from Eq. (2.3) by using the spin and colour averaged transition amplitude
squared up to Ofaa?}):

STIMs,Ea) P= 3 | (Mi{as) + 6 Mi(aa,))
= 3| My 2 +3 2Re[IM; x M)+ O(a?a?) . (3.14)

The matrix elements 86 Mg oo comprise the electroweak next-to-leading order contributions to
the (¢g,gg)-subprocesses, which are shown in Figs. 3, 4.



The electroweak 1-loop corrections for gg-annihilation originate from the exchange of gauge
bosons and Higgs particles in the final as well as the initial state. Due to the mass dependence
of the Yukawa coupling (x m,, ¢ = u,d,...) the Higgs contribution to the initial state vertex
correction ﬁ:;"“ is negligible. The correction for the gg-subprocess is given by:

SMgg = M+ M (3.15)

where

) : . . —igH¥
Mg = 5«:;311?(192,32)(*zgsszn)vi-(Phsl)( g ) X
5(p3, 53) (iAL™) wl, (pa, s4)
n 1 . s fi —igh”
SME = Sa (pa.52) (AL wh(pr, 1) (T ) x

95 (P3, 53)(—i9s T %) uh(pa, 54) . (3.16)

The renormalised quark-gluon vertex can be described as an effective vertex with finite form
factors in the following way [p(p): momentum of the (anti)quark]:

St e . o O _ i _
AL (8) = (—igs T°) 2 W EV +7.75Ga + (P - p)y oo Fv + B+ p)urs Gl - (3.17)
q
Since, as a result of the interference with the Born matrix element, G4 and G g do not contribute
to 6 Mgz we need only the form factors Fiy and Fys. For the initial state vertex contribution
with light quarks also the magnetic term Fjs is negligible. Thus the matrix element with initial
state corrections is given by:
TETS, ) . A
—=L (P2, 52) ¥ vi(p1, 1) 05 (p3, 53) ¥# 0, (pa, 54) > FF(3,mg, My),
3 V=20 Wt

IME = aa,
(3.18)
and with final state corrections we get:
in T5T5 N . _ ;
5M£5 = aa, j; % 33 (p2, 82) [, FV(S)+2_m(pl—p2),u Fpr(8)] vi(p1, 51)05 (3, s3) v* (P4, 54)
(3.19)

with

2
n m N N
FV,M(S):(ZS A}W) S FluGme M)+ Y FEp(8,m, My).  (3.20)
h S=n,x,2% v=2°wi

The form factors Fﬁﬁ(s‘, mg, Mgy ) are listed in App. A.2.

For the sake of clearness we decompose the correction §M,, to the Born matrix element for
the gluon fusion in the following different types of 1-loop diagrams, which are shown in Fig. 4:
vertex corrections JMX;"", top quark self energies 6M§9, box diagrams SMEQ and fermionic
triangle diagrams M7 . These contributions can be summarised in terms of coefficients of so

10



called standard matrix elements M,-(V‘A)'(t’“)

transition amplitude to O(aa,):

, 50 that we obtain a compact representation of the

§Mgg = SMITT + 5ME 4+ 6MG + SM,

g

= Y MU (E 4G (3.21)

i=1,..,7;

The matrix elements M:i'(t’“} (they are o 75) do not contribute by interference with M.
The coefficients H;, G; comprise the contributions of all Higgs bosons of the model under
consideration (MSM) and of the massive gauge bosons, respectively. The standard matrix
elements contain the information about the Dirac matrix structure of the corrections and are
given in App. B.1.

The vertex correction MY T¢% represents the sum of different production channel s tu
99 P
contributions:

5Mg¥‘fgertem — 6M;/; + JM;/'g,t + 5Mg'§u L (322)
Since the vertex corrections to the gtf-vertex in the gluon fusion subprocess and the final state
contribution A:;f‘" to the ¢ — ¢t matrix element of Eq. (3.16) are the same, the matrix element
5Mg;',’ can be expressed by the form factors Fy, F already known from Eq. (3.20):

gt

MYy = al(pa, ) GAL) oo, o0) (T27) G0 ) ¢

(—sfabe) {(Pa — P3)u Gpo + (P4 + 2P3)p 9o — (P3 + 2Pa)0 Gup}
oo,

= T fabe {[MF - 2M3 1 By (3)

. Fag(3
+ [(t — ) MY —aMit 4 4M1V7"] ;:rgz)} . (3.23)
i

?(p1)

Figure 5: Feynman diagrams for the t-channel vertex corrections

We give explicitly only the results for the t-channel contributions to 5M;§ (X =

Vertez,X,0). The application of the following substitutions to 5M§g’t leads to the corre-
sponding u-channel matrix elements:

f(—)rﬁ,p3Hp4,E3H64,TG<—>Tb. (3.24)

The 1-loop diagrams shown in Fig. 5 lead to the following t-channel vertex contribution:

SMVE = é(pa) ¢ (pa) W (2, 52) X
s [GAD) (= 1 + me) (—ig, Ty )
t—mt

1



+(~19s T V) (F2= Fa+ me) GARY]} wl(pr, s1)
aa, (TS T8,)

2
= trTgmiml) MVt ( e ) BV LS GV . (395
VL (Ce P D LSS SC 4 INCED

t4 i=1,....7;

The vertex corrections Afl, A®? contain the counter terms according to Eg. (3.9).

g T(p2—ps)
_ ’\ SV L st
gb Tcwl(F’:S—P1)

Figure 6: Feynman diagram for the t-channel self energy

The top quark self energy (Fig. 6) contributes to the ¢- and u-channel matrix element:

6 Mgg = SME! + M, (3.26)
where
SME! = éi(pa) e5(ps) T (p2, 52) x
g’zT;‘mTrEzl

m Yu(B2— Pa+ my) (igt) (#s— #1 + ™e) Vo U:L(Ph 51)

aa, (175,75 )) Vi ( me )2 ¢ Tt
= - JT ™ E M _— E H™ E G| . 3.27
(t —m?)? ! 25 Mw 3 i v ¥ ( )

=1,...7
11,...,17

The coefficients (H, G)EV‘E)’(t’u) are finite and the explicit formulae are given in App. A.3.
9 4
9 299 == t(p,)

A
b P3 —
g Q2 Q b= t(p,)

Figure 7: Box diagram

7y

!

: SHY 1 Bt
|

i

The box diagram Bj, of Fig. 7 contains only finite four-point integrals D,,. According
to Passarino and Veltman [11] they are expanded in terms of all possible Lorentz covariant
combinations of the external momenta (as well as the metric tensor Gu) a8 it is described in
App. C.3. The box matrix element can be written as follows:

SMg, = SME + M (3.28)
where
bMgt = €(pa) &§(p3) T(p2, 52) i B, vl(p1, 51)
2
_ -ma b Vit ms O, O,
= Qo (IijTml) "=1,Z‘7; Mi {(stMW) ;H, + ;G: . (329)

11,..,17

12



The coeficients (H, G’)?"f are given in App, A.3.

Finally we give the matrix element 6 M3, for the tf-production via the s-channel-Higgs-
exchange of a virtual neutral, scalar Higgs boson 7 with its width T,.

tJ(Pz)

?(PJ

Figure 8: Feynman diagram for the s-channel-Higgs-exchange

The diagram in Fig. 8 and the corresponding crossed one yield (M,,* = Mll';‘t):

2 . 5ab) oo
IM? = 1’\/1"1/‘t ( e ) ( z 5 d (A ) .
Moo =M Gt ) G g O, S M) (3.30)

The previous results allow for the following compact representation of the matrix element
to Oaa,) for the gluon fusion:

abe 1] R
Mgy = aa, {% [(Mg"*—zMaV't) Fr(8) + ((E— o) My

Fa(8)] (=169 MY piy(5, M)
_4MV11+4MVJ) M :| + 12 F12 n
15 17 2 2 ( M2)2 (ann)Z
V(5 Out,r -

a T M - t
t ( Pt 2)2““’ (s)}

V(g Bu(g
o1 (3+ i (2) +py ()D} (3.31)

:mb rpa Vu
+i 17 M,
gt i-mi (@-mf)?

where the coeficients p;” denote the following contributions:

2
(V.5,0),(tw)  _ me ) (V.2.0),(t,u) (V.E,0),(t.w)
N ( T §S: H + }Vj G! (3.32)
2
< m bl
Piz = (é;;}if;) Hyy (3.33)

The wu-channel contributions result from the application of the transformations according to
Eq. (3.24) to the t-channe] coefficients.

3.3 Parton cross sections

The differential parton cross section to order o is completely determined by the results of

the last sections up to the remaining contraction of the matrix elements §M; with the Born
matrix element M¥% according to Eq. (3.14) (i = ¢7, gg):

dai(t,8) 1

) dit 16w &2

2R [SM; x M) (3.34)

13



For the ¢g — t# process one gets the two contributions:

INITIAL STATE

dein(s, i 2 9 a2
OO Rl (s me M B+ o2t S gty (3.9
dt g 9 v 2
FINAL STATE
"3, 1) aa? 2 ) . .8
5 qth. = 54’ (5) 2Re[Fy (8)] (£ + (5 - 2m?) i + 5+ my)
—2Re[Fyr(8)] (£ + (5 - 2md) £+ m) } . (3.36)

After carrying out the ¢-integration according to Eq. (2.8) the total gg — ¢ parton cross section
to O(aa?) is given by:

5 ,_aa321 4mf . G . 9
0al3) = 3 Grayl-— QRE[FV(S)+;FV(5:mq,Mv)](3+2m:)

+Re[Far(3)] (5 - 4mf)} . (3.37)

The quite compact representation of 0 Mgg according to Eq. (3.31) enables its contraction
with the gluon fusion Born matrix element Eq. (2.10), which can be parametrised by the help
of the standard matrix elements:

abe 15 —3) T8 T?
Mng — 4:rras {f _ _‘ﬂ (Mgi/,f, _ 2M;3V,t) + ( f) 3m2 ml (Mﬁ,t . II/,tJ
- t
(_?’) Tbm :11 Viu Vou
+,&__JTT(M11 - M) (3.38)

and the average {sum) over the degrees of freedom of this process to be done in a pretty handy
way. Thus, the gg — ¢I parton cross section can be written as follows:

dogq(5,8) aafi I 1 R ¢ L(E—4) .
8= T 13281%Be ,-:1223 c(0)5 |MH(2,9) Fu(8) + M*(12,5) gz FM(9)

+ Z Ct( )Mt(z ) py‘t(£1§)+ P?'t(faé) + a,t
T T T TR
11,....17

Va8 pPUa,8) o
()M ) [”; e UL D)

- my (% - mf)z

+4(Mt(12,2)+Mt(12,3)) . (5,Mn)} , (3.39)

(5 — M2+ (M, T, 12

where ¢ numerates the 14 standard matrix elements and J = 1,2,3 the s,¢, u-channel of the
Born matrix element. In Eq. (3.39) the following abbreviated forms have been introduced:
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o cl*t4) () denotes the averaged (summed) product of the colour factors of the s, ¢, u-channel
contribution to é My, and those of the j-th channel of the Born matrix element. The
summation (average) over these factors is carried out in App. B.3.

e M{¥)(4,7) contains the summation over the top quark spins and the average over the
gluon polarisation states:

ooy 1 .
M(t,'u)(i,J) — E Z Z Mt_V-(t:u) x ng.: , (340)
A 81,82
where M%g‘j describes the j-th production channel contribution to the Born matrix ele-
ment:
* 1 » 1]
d Vit Vit
Mg = 3 (My~ —2My7 )
* 1 * ®
M — MYt _ v
B i mz ( 11 1 ) -
* 1 * *
3 v, v,
Mg = i — m? (M - M) (3.41)

A more detailed description how to take the gluon polarisation average has already been
given by Egs. (2.12), (2.13). The explicit expressions for M(+*)(4, j) can be found in
App. B.2.

3.3.1 Discussion

In order to reveal the numerical influence of the electroweak corrections on the top pair produc-
tion cross section and to investigate their dependence on the free parameters of the MSM, top
quark and Higgs boson masses, we introduce a relative correction A; (i = ¢g, gg) at the parton
level: _

G:(8) =05(8) +86.(8) =65 (1 + A)) . (3.42)
In Figs. 9, 10 and Figs. 11, 12 we display our results for the relative correction to the ¢g -
annihilation and the gluon fusion subprocesses, respectively, as a function of /5 for a very low
and a very high value of the top quark mass. The increasing influence of the Higgs boson with
increasing top quark mass m; is reflected by the broadening of the area covered by the variation
of the Higgs boson mass M, between 60 and 1000 GeV. Apart from a small region close to
the tt-production treshold, where the electroweak 1-loop corrections enhance the Born cross
section, the relative corrections are negative and increase sizeably with the energy v/§ and the
top quark mass. Since the flavour dependence of the qg — £f cross section caused by the initial
state electroweak correction is of no numerical significance, Az is representatively shown for a
uT-pair as initial state. A special feature of the gg — t cross section to O(wa?) is displayed
in Figs. 13-16: due to the contribution of the s-channel-Higgs-exchange diagram the relative
correction Agy contains the characteristic Breit-Wigner resonance structure around v/ = M,.

For the numerical evaluation the electroweak parameters are chosen as follows (taken from
the "Particle Properties Data Booklet’ ,(June 1992)):

1

Mz = 01. GeV My =80.22 e —
z =081.173 Ge w = 80 GeV «a 137 035985
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Fig. 11: Relative correction to the parton gg-=tt cross section, m=100 GeV

5 I IIFIIII I I [llll[]

-15 [ II[IIIJ 1 1 lIIIEE]

s'? [Gev]

Fig. 12: Relative correction to the parton gg-tt cross section, m=250 GeV

40 I T T | I B B
: — M= 60 Gev A
20 —
------- M,=1000 GeV -
E = —
o 0
i -

s'/? [Gev]
17



By [%]

Ay (%]

m=100 GeV

T T

T T — I

—M,=
......... M,=100 GeV
-——--M,=200 GeV

60 GeV

L 1 1 | 1
500 1000 1500
s'* [Gev]
Fig. 14: m=100 GeV
i T T T T T ] T f
- _
- —M,= 300 GeV
2 M,= 500 GeV
-———-M,= 700 GeV

500

&y [%]

B [%]

40

20

Fig. 156: m=250 GeV

T _ LI ﬁ TT°7 .~| L _ T 7 _ B _ T _ LI

- ——M,= 60 GeV -
- M,=100 GeV -
- - — - M,=200 GeV |
— — M,=400 GeV -

I

___________________h___k_ﬁ_—_

F o e M,= 700 GeV-]

600 BOO 1000 1200 1400 1660 1800 2000
s'/? [GeVv]
Fig. 16: m=250 GeV
T — LA ﬁ 1T _ T T 1 _ T 1T m LI _ 17T _ L
- —M,= 500 GeV-

800 800 1000 1200 1400 1600 1800 2000
s [Cev]

18



4 The pp — ttX-cross section to O(ac?)

In the course of the calculation of the leading order hadronic cross section we described the
required convolution of the parton cross sections with the parton structure functions according
to Eq. (2.20). Using this knowledge and the electroweak next-to-leading order parton cross
sections derived in the last section the hadronic total cross section to O(aa?) can be written

as follows: 1y L dL L dL
T T ran o
o(8)= [ T (558 0w+ 352 5, (41)

o T

After the convolution of the parton cross sections according to Eq. (4.1) the observable
hadronic cross section pp — ttX is at high energies mainly determined by the contribution of
the convoluted gg — it cross section due to the dominance of the gluon distribution. Since
the jets from the produced top quarks are better distinguishable from the background at larger
scattering angles, it is sensible to impose a cut on the transverse momentum P:. Analogous
to the discussion of the parton cross section in the previous section we define the relative
correction A:

o(§)=op(S)+60(S) =05 (1+A), (4.2)

which reflects the influence of the electroweak 1-loop corrections on the hadronic cross section
a(S). Figs. 17, 18 show this relative correction as a function of the Higgs boson mass for two
center of mass energies: v/S = 16 TeV (LHC) and v/3 = 32 TeV (SSC). The next-to-leading
order contributions diminish the production cross section compared to the Born result for all
Higgs boson masses. The size of A is nearly insensitive to the total energy \/S. The biggest
effect is obtained for small Higgs boson masses; for M, > 200 GeV there is very little variation
with M. The influence of the Higgs sector increases for large top quark masses, as expected
from the structure of the Yukawa couplings. For illustration, we have chosen two values for the
top quark mass: m, = 100 GeV as an example for a 'light’ top quark and m; = 250 GeV for a
very heavy top quark. The introduction of a pe-cut increases the relative correction.

The relatively large corrections up to 40% observed at the parton level are reduced to
a few per cent (< 7%) for the observable hadronic cross section. This is a consequence of
the convolution with the parton densities, which are very small in those regions where the
electroweak contributions to the parton processes are large apart from a small region close to
the threshold. The positive enhancement of the parton cross section close to the ti-threshold
for a very light Higgs boson (Fig. 11 and 12) is overcompensated by the negative contributions
in the subsequent larger domain, thus yielding an overall negative contribution to o(S).

In summary, the electroweak correction reaches at most —7% for very heavy top quarks and
for light Higgs bosons close to the present limit from LEP. In all other cases, they are of the
order of a few per cent and thus much smaller than the inherent theoretical uncertainties from

QCD.
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Appendix A
A.1 Self energies
\
e S — - in

t(p)
Figure 9: Feynman diagram for the top quark self energy

The unrenormalised top quark self energy shown in Fig. 9 can be decomposed as follows:

x ™ 2
£(4) = [(2stw) DLUORIINE) (A1)

with He
2T ) =2y - B ys) 4 menf (A.2)

where the coefficients of EVA s describing the Higgs boson exchange are (m' is the mass of the
internal quark):

E{}I(pz) = —(c+ CpCp) Bi(p*, m', Ms)
SH(%) = c(cp+ cp) Bi(p?, m/, M)

4
A
S
=
[

’ .
(2 = cpeh) = Bo(p?, m/, M) (A.3)
my
and the gauge boson contribution is given by:

23°) = —(o} +93) 2Bi(p?, !, My) + 1]
{0 ~2gvga (2 B1(p2 m!, My) + 1]

E®) = -(¢f - gA) [4BO(P m', My) - 2]. (A.4)

(H,G}

These scalar functions Ly ¢” yield the renormalisation constants 82y (H.G) ond omy; , which
determine the counter terms required for finite 1-loop corrections due to Higgs boson and
massive gauge boson exchange, respectively. According to the Egs. 3.7, 3.5 they read:

(H,G)

62y (mi) = (ci + cpep) [By(mi, m', Ms) + 2md Bl (md)] — (¢ — cych) 2mem’ By(m?2)  (A.5)

5th 2 I 2 ) 2 ’ m' 2 !
™y = (Cs + Cpcp) B, (mtl m, MS) - (Cs - CPCp) — BO(mta m :MS) (AG)
82 (mf) = (g%, + g4) (2B1(m?, m', My) + 1 + 4m? B (m?)] (gv 94) 8mym’ By(m?) (A7)
m¢
— (97 + ¢5) [2B1(m?, m/, My) + 1] + (g% - g,q) [4Bﬂ(mt ym/,\My)—2]  (A8)

The two-point functions Bp; are given in App. C.1 and thelr derivatives are denoted by

8By 1 (p*m' .M )
By (m) = === apt (sv)l
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A.2 Vectorial and magnetic form factors

The Higgs sector contribution to the s-channel correction in the gg-annihilation and the gluon
fusion is given in terms of the following form factors:

3
Ff(5,me Ms) = (3 epep) [-(mf +m) Co 4 208 — 2 4 5C5 + (4m] - 5) G5
—{c? = cpcl) 2mem! Cy + 828 (m?) (A.9)
FE(5,mi,Ms) = (E+ cpch) 4mE [-CF +2CF] — (¢ — ¢, cp) 4m'my Cl . (A.10)

Analogously, the gauge boson contribution is given by:

5
Fi(3,me, My) = (g +9%)2[(3m2 - m” )co--+2c'° 2(4ml - 5)Cf

+(4m] — §) Cf +8C7]+62F(m3) (A.11)
Fip(3,me, My) = (g% + g%)8m?[Co — 3CT + 205
~(9% — 94) 8mgm’ [Co - 2CT 1, (A.12)

where m,; = m, has to be taken in case of the final state contribution and m, = my, my,...
for the initial state of the gg-annihilation subprocess. The explicit expressions for the functions
[Co,CF, CY~](5, m!, m', Mg y) are given in [12].

A.3 Coefficients of the standard matrix elements

The t-channel electroweak next-to-leading order gluon fusion matrix element is given in terms
of the following coefficients of the standard matrix elements M; Vit (only non-zero terms and

coefficients of M:”t, which contribute even after the interference with the Born matrix element,
will be given explicitly):

e the vertex correction:

HY = 2(3+ cpcp) [Bo(0, m', m') - 2CF — (m? + m’? — M2) Co + (£ — m?) C})]
—4(c? - cpcy) mum’ Co + 2 §2F (mh)
HY* = (-2)(E+cpc) (F—m?)[CF 4+ CF+ OF
Hﬁ’" - 2 (cf + cpc;) [26'3 — Bo(0,m/,m") + (£ + m? — Mg) Co+ (f - mf) 011]
t
+2(c? = epey) —— (i + m?) Co ~ 2825 (m})
my
HY = 2(2+cyeh) [Cf + CP+C} + CE + 2047
‘+‘2( — CpCyp ) [Cl + Cl]
HY = -4HY (A.13)

and

Gr* = 4(gh+gh) [(2md — m" + M} +1) Co - 208 + Bo(0,m', m) -

o=
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+(3mg +1) Oy + 2(f + mf) CF] + 262§ (m})
Gy' = (-9 (gh +43) (E-md)[Co+ Cl+2C2+C2 +C1Y
- 1
G}”f = 4(g%+gi)[—(2t—m'z+mf—M&)C’o-}—?C’g—Bo(O,m',m')—}--z-

—2(t +m}) Cl - (3 4+ m2) CF) — 2625 (m?)
Gl = 4(gt +g3)[2Co+3C! +3C2+ C} + C2 + 2012

ml
-8 (g} — g4) p— [Co+ Cf + CF)
Gl = -4GY}, | (A.14)

where the C-functions C7 (£, m/, m!, Mg y) are expressed in terms of two-point functions
and the scalar three-point function Cy(£, m’, m/, Mgsyv) as it is described in App. C.2.

e the {-channel self energy contribution:

(H.G)* = —[(f+mf)z‘:"(““"")a+z A0
(#HG)y = 2iny¥ (f)+(t+mt)z““(t). (A.15)

where Z] ( ) denote the coefficients of the finite f-channel top quark self energy according
to the decompomtlon of Eqs. A.1, A.2 (with § =p3— #):

BV = —(c2+ o)) By(i, m!, Ms) + 628 (m)
S0 = (- a8) 1 B Me) + L _5zf(md) (A9
and
BP0 = 200h+93) - Bulh,m', My) — 1]+ 526 (m)
2HGE = (91%'—Qi)4%[—30(f,m’,Mv)+%]+6::?~F5Z§(mf). (A.17)

e the box diagram contribution:

Hi' = (cd+ cpcl) [Co+ (ME — m? — m) Do+ (m' — m?) D? — 619
~t (2D + D2) - 2 (f + m?) (D3 + DY)
—6D3 - 2m}D}? + (5 — 2m?) D3%

+(CE - cpc;) [—2m'm, Dy

Hy* = (¢ + cpcp) [-2D) - 2D

Hy' = 2+ pep) [(mf — m™) (D} + DY) + 208 + m} (2D} + 2D + D})
+(E+m) D} + (£ + 5m]) D} + 2(D§* + 2D)
+t D} + (i 4 3m?) DI? + (3¢ + 2m?) D!
+(3m} — 3) D3* + (f — 5 4 3m?) D1

Hg" = 2(c2 +c,ct)[D3+ 2D} + D3 + 2D? + 4D 4 2D1%]
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Hy" = (=2)(c] + cpep) [Co+ (M§ ~ m™) Do + (£ + 2mf — m') D]
+(f + m?) (D; + D3* + D}* + D3®)
+£(D2+2D12 DI 4 218
+6D3' + m? D} - (§ — 3m}) D3]

H

m N
(el = epey) - (m™® + m? — M) Do - 2(é + m?) D} - 2D} - C

I

H' = 4(2+cpel) (DY +2DJ + DP) + 4 (2 ~ cpcl) % DY
Hi' = 2(E 4 cpel) [le + D} + 2D} + D2 + 4D4? + 2D
+2(c? - cpcp) 2D1 + DY

Higt = (—4)(32+ cpcp) [4.01 +2D% 4+ 3D% 4+ 12D1% + 2D} + D?
+6 (D% + D%3+ Déz_*_ D +D21 +D123)]

)
—4(? — cpct) % [4D! + 2D? + 2D} + D% + 4D + 2D} (A.18)
. t

and

Gr" = 20gf +98) [=Co+(Bmi +m" - 5~ My) Do - 2(3 - 4m}) D}
—(8+ m"™ — 5m]) D} + 6D) +£(2D3 + D3)
+2 (£ 4+ m}) (D3* + D3') + 6D§? 4 2miD3® — (5 — 2m]) D3%]
+(g% — g) [~8m'm; Dy
Gyt = 2eh +9%) [~Co+ (m] +m"? - M) Do — (m” — m}) D}
+4D§ +£(2D% + D3) + 2(f + m?) (D}* + D2y
+4D9 + 2m?DL? — (5 — 2m?) D}
+(g% — ¢4) [-4m'm, Do]
Gyt = 4lgh +9%)[Co+ (M +mi - ’2) Do + (5my — m™ - 3) D)
+(t + m?) (D} + DI + DI — 4DY
+(i+mf - 8) D3? - (3 - 2m}) (D} + D3%)
+2(D§ — D) + m] D} + i D! + (3m! - §) D§®
(¢% + g%) [2D? + 6D1% + 3D} + D? + 2D} + 4D2 + 2D1%
(9% + 92) [Co — (m} + m” + & — M}) Do - (i + m™) Dj
+{f+m?) (D3 + DP¥ + D3* + D}®) + t (2D} 4 D3!
-2D% +6D5' + m} (D3 — Df) — (3 - 3m{) D3%

Gg' = 4
4

!
mo .
+(g¥ ~ 94) 2 -5+ 2m? + 2£) Dy

Gy = (—4)(a¥ +¢2) (M} +m] — m"™) Do + Co + 2( + 2m] — m™) Di +
+(2f + m} = m?) D} + 2({+ m?) (D + DI3) + 2 (3{ + m?) D}?
+t (2D} + D3+ 8D +4DP + 2m§ D} + 2(t 4+ 2m?) D}?
+2(2f + m?) D3 4 2(3m? - 8) DI + (4m? ~ 5+ 20) D}¥
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!
+gh — g) 4 (M} + m} ~ m?) Do +2( + m?) D} + 26 D} + Co — 4D§)]
4
Gl = 4lgh+¢%)[2Dy+2D} + D} - DL — D2 — 4D}? — 2D13]
2 _ 2 - E,
+(gv —9a) [ Bmt Dy}

GL' = (-8) (¢} + ¢4)[4Do+ 12D} + 6D% + 6D} + 3D} + 12D} + 6D}13
+2Dj + 6D3% + 6D§° + D} + 6D3 + 6D}%)]

m.-
+16(g% — ¢%) —([2Do + 4D} + 2D} + 2D} + D2 +4D}* + 2DJ%],  (A.19)
t

where the three- and four- pomt functions are denoted by Cy = Co(§, m',m’,m") and
[Dg, DJ] [DO,DJ](t m',m!, m/, Mgy}, respectively. The decomposition of the four-point
integrals is given in App. C. 3

e and the s-channel-Higgs-exchange diagram (7 = 4mi —+) (13]:

Hi5(8, M) = 2[5 - M,? — M, T,l4[1-(1-7) 2 Col3, my, my, my)] (A.20)
with X
5 Col, ey e, my) = 7 log Yl — el (A21)

The standard model Higgs boson decay width I',, in lowest order perturbation theory is
given in [14].

Appendix B

B.1 The standard matrix elements

The t-channel standard matrix elements of the gluon fusion are given by:

MY = ) da(Fi- #a) fall,vs} ()
M{VA}f = TU(p2) (Pa— #3) {1,775} v(p1) €ae3
Ms{VA},f = u(py) (daespa— faeapa) {1, 75} v(p1)
M = 1) (faeapi— freaps) (1,95} 0(p)
MEPAY = a()) (e #a) {1,798} v(p1) eaps e3pa
M = w(ps) (Ba— #) {1, 75} o(pr) eapz eamy
M = ulpg) (Fa— #s) {178} v(p1) (eaps eap1 + capa €apa) (B.1)
MY = up) g g {175} v(py) me
Mg/-’i}'t = "(p2) {1, 75} v(p1)eaca m;
MEAY = ) (fe breapat Ba 3 eams) {1, 75} v(m1) M
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gy

= U(p2) (fs Paeapit Pz #3 €apa) {1, v5} v(p1) ms
MY = a(pa) {1, 75} v(p1) eaps e3pa my
My ™ = up2){1, 75} v(p1) capr eapy me
M;[;['A}'t = %p2) {1.7s} v(p1) (€aps €3p1 + €42 €3ps) ™4 (B.2)

The u-channel standard matrix elements M,»{V’A}'u follow from M,-{V‘A}’t by the substitutions:

P3¢ ps and €3 > g4 .

B.2 Interference with the Born matrix element

The gg — tt cross section to O(aa?) is given in terms of the factors M(t:4) (i, }i=1,...,17,
7=1,2,3), which describe the required interference of the electroweak next-to-leading order
matrix element with the Born matrix element according to Eq. (3.40). For the gauge choice
according to Egs. (2.12), (2.13) these factors have been obtained as follows:

M'(1,1) = —4[m{-i*[m] - 4)/5
MY (1,2) = 2[8mfi—Tm{f? +2m?f 4 amfi — 20miia + 12m2 %4
=33 % — m{ 4% 4 6m? £a2 — £a%)/[8% (£ — m2)]

M'(1,3) = 2[m{~ fa)[4m] - 2m} (£ + &) + (& - £)*]/[5* (& — m}?)] (B.3)
MY 2,1} = 4[m]—{][m}- /s
MY2,2) = [Am{ —amii+2ml e — 8mfa+8ml i - 4% 4+ 2m? 02)/[5 (f — m2)]
M'(2,3) = [4m{-2ml& — 12mfi+4mlsa

+12m] 4% — 454% — 44%)/[3 (4 — m?)] (B.4)

M'(4,1) = 2[i-{][m? - fa)/s
mf—f‘

Mi4,2) = 2] ] [4mf — 44f + 51 + 28% — m28]/[8% (£ — m?)]
M'(4,3) = 2[mf-ia]{10m? - 5m?f — Tmli
+£2 + 247 — 4] /[8% (@ — m2)] (B.5)
MH6,1) = —2[m]—{][m] - a][m} - af]/s?
MY8,2) = [-2m®+mdi-mEf +5mPa—2mbin+omif®a

+mifn - mba? - Bmif o2

+ami 4% - 3847 4+ m2ia® + £20%)/[8% ({ - m3)]

MH6,3) = [2m°-smfit mPi? —mia4ombia+emiita
—m? 4 4 mé 4 — 2mit 4’
—4m £ 4% — 207 — m}{a® 432 8%/[5 (4 - m2)] (B.6)

MY 11,1) = 2m?{f-4)/s
MY 11,2) = 2mi[-2m] —2m?§+ 3% + 4m?i — 282)/[5(f — m?)]
M'(11,3) 4md{-mf +14)/[5(2 - m?)] (B.7)

26



MY12,1) = 2ml[i - 4}/3
MH12,2) = m

2
t
M*12,3) = mi[-d4mi-2mls+ S +8mlia-250~-44%/(s(a-m))]  (B.8)

Mt(14,1) = 0
MY(14,2) = 2m?[uf — mi]/(f - m?)
M'(14,3) = 2m?[af — m{)/ (2 — m?) (B.9)

M'(16,1) = md—{[m; - af]/3’

MY16,2) = m2imi - i4)[8md — 2m2f 4+ £2 4 om?a — 8fa — 42)/[2 8% (f — m}))
M'(16,3) = m2[m} - #0)[8md+2m?s - & - 16mlc
+651 + 84°%)/[2 8% (& — m?)] . (B.10)

Since M*(i,7) = 0 for ¢ = 3,5,7,13, 15,17, the coefficients of the concerned standard matrix
elements do not contribute.

The interference of the u-channel contribution to the gluon fusion matrix element with the
Born matrix element leads to the factors M¥(4, j) according to Eq. 3.40. They are derived from
M*(4,7) by using the following substitutions:

M¥(3,1) = M, 1)(f— 4)
M¥(i,2) = M'Yi,3)(f— @)
M“(3,3) = M'Y(3,2){(f— 4). (B.11)

B.3 The colour factors

The summation (average) over the colour degrees of freedom in the course of the derivation of
the parton cross sections leads to the following colour factors:

(1) = 3 (fabeTH) (T3 faba)" =3 bea Tr{T°T?} = 12
a,ga,ac; c,d

1) = Z_ (iT5nTh) (T fabe)* = —c*(2) = —6

Cu(l) = Z (1T_,?m ::.I) (chlfabc)‘ = -—(_‘"(3) = 6

a.bc;
ER

H2) = Y (T5Th) (T3 Th) = *(3) = -

a,b,c;
i

H(2) = Y (T TR) (~iT3Th)" = ¢(3) = 5 - (B.12)

a,b,e;
ik
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Appendix C

C.1 The two-point integrals

The dimensional regularisation enables the extraction of the UV-divergency in the scalar and
vectorial two-point integrals By ;:

D .
(Bo: 5 B1) (0, m!, M) = =2 (d i (Li ) 1)

1672 2m)P 2= m?] ((k + )7 = 7] |

so that they can be written as follows [12]:

1 2.2 2 2 _ 2 7,
Bo(p?, m/, M) = A—f do log TP Pt m 2 M7) +m” — e (C.2)
0 p
1 ml? M2
2 ' - - 2 e 2 -
B(p*,m' M) = o [m"(A ~ log e +1) - M*(A - log e +1)
+H(M? —m” - p?) Bo(st m', M)]. (C3)
The divergency is conventionally expressed by A = ;=5 — v5 + log 47 with vz being the Buler
constant.
C.2 The three-point integrals
In the course of the calculation of the vertex correction A( 142) to the gluon-top-vertex in the

t-channel of the gluon fusion the following D-dimensional three-point integrals occurred:

dPk (1 k. kuk,)

y Ry

(2m)P A; Ay A

(C.4)

16 2(0010 C )= 4D/

with
ML=k~ M?, Ay =(k-p)*—m?, Ag=(k+p1 —p3)? - m?.

For its derivation a decomposition according to [15] has been used (C7 = C’J(t m!,m!, M)):
Cu=—P2uC1 + (pr - P3)u O (C.5)

C,uv = P2uPw Czl + (pl - pS),u(pl - p3)u C22 + Juv Cg
—(p2u(p1 — Pa)u + (P1 — P3)upa) CL2 (C.6)

with the coefficients (By(0) = Bg(0, m', m')):

(f—m32Cl = ({4 md) Bo(m?, M, m") — 2 By(t, M, m')
+(f - mZ) [(M? - m™ — {) Gy + Bo(0)] (C.7)
(f" m?)? 012 = (£+ mtz) BU(Ev M, m’) - 27’”’3 BO(mf: M, ml)
+(E = m}) [(m” — M? + m}) Co — Bo(0)] (C.8)
C.9)
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2C; = M?Co+ %[(M2 +m! —-m?) Ci

+(M?+i-m?)CE+ 1+ By(0)) (C.10)
(f-mH2Ch = 4C)+{f+m)) Bi(mi, M,m")

(i = mD) (M7 = m? )}~ £ Bo(0)] (C.11)

- 1 . . 1
(t - m?)z 022 = 4m3 Cg + = 2 {(t - m?)z [Bi(t! M, m’) +35 BU(O)
t+ my 2

F(m? — m2 — M?) C2] + 2m? [2m? Bi(mi, M, m')

HE - md) (M2 = md = ) G - 5 Bo(0)]} (©12)
(E-miPCy = —2miBi(mi, M,m")] - 2({+ m;) C3
(= m3) [(M? — md ~m™) G} - 5 Bo(0)]. (C.13)

C.3 The four-point integrals

The calculation of the box diagram contribution requires the derivation of the four-point inte-
grals given by (Ag = (k+p)? — m’®):

i B (1; ks kb bkuk,)
—  (Do; Dy Do: Do) = i Bl B p) .
Ton? (D03 Dui Dyavi Do) /(27r)4 Ap D g B (C.14)

According to [15] the vectorial and tensorial four-point integrals have been reduced by the
following decompositions:

D, = —p2. D!+ (1 — p3)u D} + p1, D} (C.15)

Dy, = p2upaw DY+ (91— pa)u(ps — p3)y D} + prupre D} + 9,0 D}
_(pZu(pl - p3)v + (pl - P3),up2u) Dé2 - (p2,up1v + plup2u) D%S
+({p1 — P3)uP1e + Pru(p1 — p3)s) D3 (C.16)

Dup = —poupavpro D3+ (p1 - pa)u(p1 — P3)u(p1 — P3), D3 + Prupuvpr, D3
—(gup2p + cyel) DI + (guu(p1 = pa)p + cyel.) DY + (guprp + cycl.) DS°
+((p1r — p3)uPawpas + cycl.) DY — (p2u(p1 — p3)u(p1 — Ps)p + cyel.) D!
+{(p1upavprp + cycl.) DY = (p2uprupr, + cyel.) D3
+(Pru(p1 — Pa)u(P1 — P3)o + cycl.) D + ((p1 — p3)uprup1, + cyel.) DY |
—(p2u(pr — Pa)up1, + perm.) Dy, (C.17)

where cycl. and perm. denote cyclic commutation and permutation of the indices, respectively.
The contraction of the four-point integrals with the tensors built up of the external momenta

leads to a linear equation system for the coefficients D]. Its solution is explicitly described in
[15].

29



References

[1]

(6)

7]

[14]

[15]

DO CoLLABORATION, talk presented by S.Protopopescu at the XXVIIIth Rencontre de
Moriond: Electroweak Interactions and Unified Theories, Les Arcs 1993
CDF CoOLLABORATION, talk presented by B.Harral at the XXVIIIth Rencontre de
Moriond: Electroweak Interactions and Unifled Theories, Les Arcs 1993

G.Rovanpi, CERN-PPE/92-175 (1992), to appear in: Proceedings of the XXVI Interna-
tional Conference on High Energy Physics, Dallas 1992

M.GLUckK, J.F.OweNs, E.REva, Phys. Rev. D17 (1978), 2324
B.L.CoMBRIDGE, Nucl. Phys. B151 (1978), 429

J.BaBcock, D.SiLvERS, S.WOLFRAM, Phys. Rev. D18 (1978), 162
K.HAGIWARA, T.YOSHINO, Phys. Lett. 80B (1979), 282
L.M.JoNEs, H.WYLD, Phys. Rev D17 (1978), 782

H.GEORGI ET AL., Ann. Phys.(N.Y.) 114 (1978), 273

U.BaUR, A.D.MARTIN, Phys. Lett. 232B (1989), 519

P.Nason, S.Dawson, R.K.Evuis, Nucl. Phys. B303 (1988), 607
G.ALTARELLI, M.DiEM0oz, G.MARTINELLI, P.NasoN, Nucl. Phys. B308 (1988), 724
W.BEENAKKER, H.KuuF, W.L.vaN NEERVEN, J.SMITH, Phys. Rev. D40 (1989), 54

V.Fapin, V.KHoZE, JETP Lett. 46 (1987), 525
V.FapIN, V.KHoZE, T.510STRAND, Z. Phys. C48 (1990}, 613

W.BEENAKKER, W.HoOLLIK, Phys. Lett. 269B (1991), 425

W.BEENAKKER, W.HoLLIK, S.vAN DER MARCK, Nucl. Phys. B365 (1991), 24
R.J.GuTH, J.H.KUHN, Nucl. Phys. B368 (1992), 38

A .DeNNER, R.J.GuTH, J.H.KUHN, Nuel. Phys. B377 (1992), 3

R.K.ELLIS BT AL., Nucl. Phys. B152 (1979), 285

R.K.ELLis, W.J.STIRLING, in 'Precision Tests of the Standard Model at High Energy
Colliders’, Proceedings of XVIII International Meeting on Fundamental Physics and XXI
G.L.F.T. International Seminar on Theoretical Physics, Santander 1990, eds. F. del Agui]a,
A. Méndez, A.Ruiz, World Scientific, Singapore 1991

P.N.HarriMAN, A.D.MarTIN, W.J.STIRLING, R.G.ROBERTS, Rutherford Appleton
Laboratory Preprint RAL-90-007, Jan. 1990

G.PASSARING, M.VELTMAN, Nucl. Phys. B160 (1979), 151
W.HOLLIK, Fortschr. Phys. 38 (1990) 3, 165

Z.KunszT, W.J.STIRLING, in Proceedings of Large Hadron Collider Workshop Vol. II,
CERN 90-10, eds. G.Jarlskog, D.Rein, Aachen 1990

J.F.GunioN, H.E.HaBer, G.KaANE, S.DawsoN, 'The Higgs Hunter's Guide’, Addison-
Wesley 1990

T.SacK, Ph.D. thesis, Julius-Maximilian-Universitit Wiirzburg 1987

30



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

