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We study four-dimensional systems of global, axion, and local strings. By using the path integral for-
malism, we derive the dual formulation of these systems, where Goldstone bosons, axions, and massive
vector bosons are described by an antisymmetric tensor field, and strings appear as sources for this ten-
sor field. We also show how a magnetic monopole attached to a local string is described in the dual for-

mulation. We conclude with some remarks.

PACS number(s): 98.80.Cq, 11.10.Lm, 11.15.—q, 47.37.+q

I. INTRODUCTION

The four-dimensional field theories of a complex scalar
field and other fields with an Abelian symmetry are
known to have topological defects, such as global, axion-
ic, or local strings in the broken symmetry phase. We
derive the dual formulation of these theories by using the
path integral formalism. The dual formulation has been
extensively used to study the phase structure of these
theories [1] and the dynamics of cosmic strings and
superfluid vortices [2—7]. But the dual formulation of
strings has been derived usually by using field equations
[4] or canonical transformations, [5] making the whole
situation somewhat unsatisfactory.

On the other hand, the dual formulation of the theory
of a complex scalar field has been derived in the path in-
tegral formalism without including vortices [8]. Recent-
ly, the dual formulation of three-dimensional systems
with vortices has been derived in the path integral for-
malism to study the dynamics of vortices in Chern-
Simons Higgs systems [9]. Here we extend the idea of
Ref. [9] to get the dual formulation of four-dimensional
systems with vortices and strings. While there has been a
large body of literature about the dual formulation, we
feel our work is somewhat new and could be used to
study quantum features of the vortex and string dynam-
ics.

There are several advantages of the dual formulation of
cosmic strings. As the interaction between strings and
other fields is more explicit, one can understand the
string evolution more clearly. A cosmic string or
superfluid vortex moving on a background charge density
would feel the so-called Magnus force. This Lorentz-type
force can be seen directly in the dual formulation [6,9].
When the length scale of a string motion is larger than
the string core size, one can obtain an effective action
which describes the string dynamics and its interaction
with low-energy modes.

The plan of this paper is as follows. In Sec. II we study
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the theory of a complex scalar field with a global U(1)
symmetry. In the dual formulation, a global string ap-
pears as the source of an antisymmetric tensor field,
which represents the Goldstone boson. In Sec. III we
study the dual formulation of a theory where global
strings appear as axionic strings. As shown in Ref. [10],
the electromagnetic charge is not conserved in this theory
without taking into account the chiral fermion zero
modes on the string. In Sec. IV we study the Maxwell
Higgs theory where there appear Nielsen-Olesen vortices
[11]. We derive the dual formulation where the gauge
field is integrated out and is not explicit. The antisym-
metric field has a Higgs-like coupling, becoming massive.
Magnetic monopoles attached to local strings are also in-
cluded in this dual formulation. In Sec. V we conclude
with some remarks.

II. GLOBAL STRINGS

We consider the theory of a complex scalar field
¢=fe'9/V'2, whose Lagrangian is given by
L=1Q,fP+1f43,0—U(f) . 2.1)

As the theory (1) is invariant under a global transforma-
tion, 6— 6+ const, there are a conserved current

ju=r%,0 2.2)
and the corresponding global charge
Q= [d’ f2,0 . (2.3)

The ground state of the energy functional lies in a broken
symmetry phase because of either the potential or a back-
ground charge density.

To understand the quantum aspect, we use the generat-
ing functional

Z=(Fle ™T|1)
= [ (£ df1[d6]¥ exp [ifd“x,é ]w, , (2.4)
where [ f1=]], f (x) is the Jacobian factor for the radial

2493 ©1993 The American Physical Society



2494

coordinate of the scalar field. The initial and final wave
functions W ; give the necessary boundary conditions.

A given field configuration in the path integral could
contain strings, around each of which the value of the 8
field changes by 27 times an integer. We can in principle
split the 6 field into two parts:

o(t,t)=0(t,r)+n(tr) , (2.5)

where 0 describes a given configuration of vortices and 7
represents single-valued fluctuations around the vortex
configuration. The energy density and the complex scalar
ﬁeld ¢ should be single valued, or equivalently 9, 0 and
% should be so. Each elementary string is descrlbed by
parametrlzed positions q,(o) or covariantly gl(t,0),
where 0*=(7,0) is the string world sheet coordinate.
We choose o so that 0 increases by 27 when one wraps
the string in the direction of increasing o with the right
hand.
For a straight string along the z axis, we know that
(0,0,—0,0, )0=2m8%p). By covariantizing it, we get
the antisymmetric tensor vortex current

K*(x)=€""7"9,3,0
=273 [ drdo(gte, —qlq)

X8 xP—ql(1,0)), (2.6)

where the dot and prime indicate the differentiation by 7
and o, respectively. K*¥ is independent of the
reparametrizations of 0% up to a sign and satisfies the
conservation law 3,K#”=0. From Eq. (2.6), we can get

_ 5 KO1,s)
aie(t’r) l]ka fd 4 |r—‘Sl

2.7
8,3(1,r) = € d; fd3 KXt,s)

8rlr—s|

by using a time-independent Green’s function. By in-
tegrating Eq. (2.7), we get

eié(t,rlzexp [l fr:dS'Vé(t’S) ] ’ (2'8)

where 1 is a reference point. The exponent at the right-
hand side of Eq. (2.8) is multivalued, but the exponential
is single valued.

The measure for the 0 variable becomes

[d0]=[d06][dn]=[dq]ldn], (2.9)
which means that we sum over single-valued fluctuations
around a given configuration of strings and then sum
over all possible string configurations. A typical string
configuration would have the creation, annihilation,
crossing, overlapping, and exchange of strings, making
the Jacobian factor from [d @] to [dg/] rather complicat-
ed. The periodicity of the 6 variable affects only the
quantizations of both global charge and vorticity, due to
the gradient term (3,,6)* in the Lagrangian.

In the generating functional Z, we can linearize the 6
kinetic term by introducing an auxiliary vector field C#:
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exp

i [ d*x[4%3,071 |

= [[f *dCHlexp

i [ d* [—#(cw%c#aﬁ

+CHI,n 2.10)

As 7 is single valued, one can integrate over 7 in the
standard way, leading to

[ tanlexp i  d*x ca,m | =8(3,") . (2.11)

Now we introduce the dual antisymmetric tensor field
B, to satisfy

[ 1dcr153,01) - - -

= [[dC*][dB,,]8(C*—L1e""P"d B ) (2.12)

and the dots denote the rest of the integrand. There
would be an infinite gauge volume which can be taken
care of later, but there is no nontrivial Jacobian factor as
the change of variables is linear. By using the fact that

€*°(3,0)3,B,, =K"'B,, (2.13)

up to a single-valued total derivative, we can integrate
over CH#, resulting in the dual Lagrangian

1

2_ 2 v
SR+ 12f2 Hl,+ B K", 214)
where H,,,=9,B,,+3,B,,+3,B,, is the field strength

of B,,. Note that the kinetic term for B, has the stan-

dard normalization, e.g., (3,8, /2, with a coupling

constant f2. The dual Lagrangian (2.14) is invariant un-

der a local gauge symmetry, B,,—B,,+09,A,—3,A,.
The resulting path integral becomes

z=[[f"

ifd4x.£

*df1[dq}')(dB,, ¥ exp Py,

(2.15)

The gauge volume in dB,, could have been divided
without making the above derivation complicated. The
initial and final states should be rewritten in dual vari-
ables. The Goldstone boson is now described by B, and
strings appear as a source for B,

The mass of vortices arises from the cloud of the f, B,
fields surrounding them. The variation of B leads to
Gauss’s law

—3, %HOU +K%=0, 2.16)

which dictates the field cloud around vortices. When the
string of vorticity n is lying on the z axis, the f field
would vanish at the string as one approaches from the x-y
plane like f~p”, where p is the radial distance on the
plane. This can be seen directly from the f equation in
the original formulation or from the f and B/, equations
in the dual formulation. The classical relation between
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the original fields and dual fields can be found from the
field equations from the Lagrangians at each step of the
transformations. They are related to each other by

f#0=1e"""’H,,,, . (2.17)
Let us consider now the string dynamics briefly. In the
original formulation, the string motion is determined by
the field equations for f,0. In the dual formulation, there
seems to be an additional equation of motion for strings
derived directly from the variation of ¢¥(7,0). From the
dual lagrangian (2.14), we get, from the variation of 8¢2,

8L,=3 5 [drdo H,, (4, dbe)~d}al8af .

(2.18)

We know that f Zaﬂe vanishes at the string, and then Eq.
(2.17) implies that the above variation vanishes. Thus the
dynamics of strings is again determined by their sur-
rounding field in the dual formulation. This is consistent
with the picture that the kinetic energy of vortices origi-
nates entirely from the field cloud around them.

This leads naturally to the question of whether there is
a low-energy effective action in terms of string positions
which describes the string dynamics. As Goldstone bo-
sons are massless, the effective action should describe
both strings and Goldstone bosons. Here we are interest-
ed in physics whose energy scale is much less than the
mass of the f field. Their assumption cannot be valid all
the time as strings will annihilate each other. The
effective action is usually given as the Nambu action for
strings and the action for the antisymmetric tensor field
[2-7]:

Ser= 3 po [ d?o,V =y

1 2
2H

4
+fdx 1o 1vp

+B,, K" |, (2.19)

where v is the asymptotic value of f, u, is the bare string
tension, and ¥, is the determinant of the induced metric
on the string,

995 994y
d0® do’
where v is the vacuum expectation value of f. The bare
string mass per unit length p, comes from the string core
region of a size 1/m,. There is a logarithmically diver-
gent term coming from the 6 or B, field. Note that the
f field does not approach exponentially to its vacuum
value at spatial infinity. For a straight string lying along
the z axis, one can see, in the cylindrical coordinate
(p,p,2),

yaaﬂz ’ (220)

fov— 2.21)

as p—> .

In addition, the action should be modified when there
is a background charge density. The reason is that at low
energy there is a sound wave of speed v, rather than
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Goldstone bosons. There would be an effective action for
sound waves and strings when strings move slower than
the sound speed. In addition, there is a Magnus force on
the string from the background charge. It would be in-
teresting to see what happens when strings move faster
than the sound speed.

III. AXIONIC STRINGS

Let us now consider the case where the scalar field de-
scribes an axion field. Here the theory is QED-like with
an additional neutral scalar field and electrons get the
mass via a chiral coupling. The global Abelian symmetry
is broken. When the fermion is very massive, integration
over a fermionic field introduces an effective interaction
between the gauge field and the phase of the scalar field.
For simplicity, we will consider the case where the gauge
symmetry is Abelian. (Detailed aspects of anomalies,
chiral zero modes, and bosonization ideas in the follow-
ing discussion have appeared in Ref. [10].) The resulting
interaction between an axion and two photons is given by

L = —

L €POF,F,, . (3.1)

3272

This effective action is multivalued and not well defined
at each string as 0 loses its meaning.
The Lagrangian to consider is

_1 2,1 2 2_ 1
.LA—E(B,J) +—2—f (aye) U(f)—EFW-FZ“a#O ,
(3.2)
where the Chern-Simons current is
1
Zy:g—ﬂlfﬂvpoAvapAa , (3'3)

satisfying 9,Z#=(1/327)e""?°F,, F,,. While the La-
grangian (3.2) is single valued, it is not gauge invariant as
Z* is not. The current from the Lagrangian (3.2) is given

by

1 1 v
Jﬁ:—'s—w—z'@uwaavero+§7;zK“ A4,, (3.4)
which is not conserved,
— 1 v
aﬂJﬁ—— o K* F,, . (3.5)

When the string lies along the z axis, K%=278%p) and
69,9:1 in the cylindrical coordinate. The current (3.4)
becomes
FOz 1
Jﬁ:_4—17'2;, Jf‘:—EAOSZ(p) .
For a uniform electric field along 2, there is a radial
current moving to the string.

Chiral zero modes on strings should be taken into ac-
count to maintain the gauge invariance or the current
conservation. The effect of these chiral zero modes can
be seen more directly by the bosonization [10]. With the
string metric ¥°? and the antisymmetric tensor field €7,

(3.6)
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the Lagrangian for the chiral boson (o) on a string is
given by

2
1
X 2‘/A

xe*Pa, A,

2\/7r

1

+(yP—eP)r, |0px— Sy s (3.7)

where the gauge field is evaluated at the string. The
chiral Lagrangian is not invariant under the gauge trans-
formation §y =2V'wA and 8 4 ,=3,A. (While it is trivial
to introduce the world sheet metric on the string, we use
the Cartesian coordinate.)

Let us put the string on the z axis and define the light
cone variables on the strmg, xT=(1/V2)(t+z) with
g+_=g_,=¢€,_=—¢€" " =1. The field equations from
Eq. (3.7) with t =7, z =0 imply that A, can be chosen to
be zero and that

(3.8)

where 4, =(A,+A4,)/V2. The electric current due to
the chiral bosons is then

1 1 1

g = L =——= —A4,, 39
T 47TA_’ Tx \/7ra+X+ 47 39
which is not conserved:
3,J0=-L casy 4 (3.10)
aJX— 477_6 «Ap - .

For the axionic string lying along the z axis, the sum of
currents from Egs. (3.4) and (3.9) becomes

JP=———"F

472 p 0z
JT=0, (3.11)
JT= —\/_a+x+ L A, |8%p),

which is conserved due to the field equation for y. Note
that this current is chiral on the string. The combined
action from Egs. (3.2) and (3.7) is then gauge invariant.

Let us consider the dual formulation of this system.
We take similar steps as in Sec. II. We first split 0 into 8
and 7, introduce C¥, and integrate over 7 to get

Jtanexp [i [ atx(crtzma,m | =83, (Ch+2)) .

(3.12)
We again introduce B/, to solve the § function:
8(3,(CH+ZH))
= [[dB,,18(C++Z+—1eP73,B ) (3.13)

Integrating over C* leads to the dual Lagrangian
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Lip=5 @ PV (=P +—lom,
2 12f
+ ;BWK*” (3.14)
where H wvp =H 1y, —€,,,0Z°. Even though the Chern-

Simons current is not gauge invariant under the transfor-
mation 84 ,=9,A, the field strength H wvp €an be made
to be so if the B , field is also transformed as

_ 1
8B,,=——AF

ST A, - (3.15)

The dual Lagrangian (3.14) is not invariant under this
gauge transformation due to the last term.

We have also a chiral boson ), and a Lagrangian mul-
tiplier A,, with a Lagrangian ‘an for each string gq,.

When we add the action from Eq. (3.14) and actions for
chiral fields on strings, the resulting action is gauge in-
variant. The generating functional has become

Z= [ [f%df dB,,dg!1[dX.d M)

Xexp |i {fd4x,£AD+2fd20 oLy } (3.16)

The conserved electromagnetic current (3.10) in the dual
formulation is given by

1
167 2f2

aﬁ+€aﬁ

H=

H"F,,

1 1
X ‘/—7; 6/3)(,,4- AB(qa)

(3.17)

The relation between original fields and dual fields out-
side strings is given as

frre==Lte"’H,,, , (3.18)
and Gauss’s law from the variation of B,, becomes
szo,J +K%=0. (3.19)
Gauss’s law from the variation of 4 is given by
3,Fy +J°= (3.20)

The dual formulation of axionic strings has been used to
study their interaction with the electromagnetic field [10].
There is an axial symmetry in the theory (3.2) coming
from the shift of 6, which is broken by the anomaly. The
gauge-dependent but conserved current is given by
5 — 2 — vpo

Ju=f70,0+Z,=1€rH,,, (3.21)
The total chiral charge Qs= [d’xJ3= [d’x H,y; is
gauge invariant and well defined, say, if we put the sys-
tem in a periodic box. Originally, there is a fermion con-
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tribution {p—yﬂySw to the axial-vector current (3.20) and so
there will be a contribution from the fermionic zero
modes on axion strings. Naively, their contribution to
Qs is proportional to the sum of winding numbers,
3. f do d,X,, and conserved separately until strings ex-
change, cross, or annihilate. We expect also that axionic
strings would feel the presence of the axial-vector charge
via a magnus force, even though the charge density is not
gauge invariant. It deserves further investigation.

IV. LOCAL STRINGS

Let us now consider the dual formulation of the
Maxwell Higgs systems. Some aspects have been studied
in Refs. [12,13] and the last two papers of Ref. [6]. The
Lagrangian is

j— 1 )\’ vpo
,LM——Z?FZ + Seﬂp F F,,+ A,J%
+ 1, P+ LfX3,0+ 4, ~U(f). .1

We assume that there are magnetic monopoles. The
gauge field can be split into the monopole part Z and
the single-valued rest A ,. Magnetic monopoles are de-
scribed by A with a Dlrac string or equivalently by the
Wu-Yang constructlon However, 3,0+ 4, is gauge in-
variant and well defined except at f =0. Suppose that
there is no point around a monopole where f =0. Then

€;10;(3, 60+ A4, )=B™" without a Dirac string, which is
impossible. There should be a Dirac string for 38,0+ 4,
attached to the monopole along which f is zero and 6
changes by 27 when one goes around it. This is exactly
J

1 k

_ 1
£1—5‘(3J)2—U(f)—ml’ﬁv+ 3 ext
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the cosmic string. In other words, the magnetic field
from a magnetic monopole is shielded by the Meissner
effect and is channeled to the spatial infinity by a cosmic
string.

The Dirac string of 9,0+ 4, becomes a real local
string attached to the magnetic monopole. The con-
served string current is now

€°79,(8,0+ A4, )=KGg, + 3" PTF " 4.2)
where the monopole field satisfies
€PI FEt=mt 4.3)
where
dsf
m“(x)=§b‘, ZWIdT?S“(x —sp) s

with monopole trajectories sf(7), and the string current
K4y is given by Eq. (2.6) with an end point o of the
internal coordinate, satisfying g!(7,0y)=s/. This string
current K49 is no longer conserved. By applying 9, to
Eq. 4.2), we get 9, KLY =—mt. Here we consider
monopoles of the minimum charge allowed by the Dirac
quantization. For each magnetic monopole, there will be
an attached string. If the magnetic monopoles are
present in the system, strings in the configuration space
can be closed, half-open with a monopole attached at one
side, or open with monopole and antimonopole attached
at each end.

After some steps similar to those in Sec. II, we get a
Lagrangian

f ,uvp (va+1 ,uvpaFmon)B +1 uvpaa}[ﬂvaa ,

(4.4)

where the string currents describe both open and closed strings and we dropped the interaction term between the mono-
poles and the external charge. In order to integrate over the single-valued gauge field A, we introduce an antisym-

metric tensor field NV, so that

v — (3, A, —3,A4,)—Fm")= [[dN,,Jexp fd“

Integration over A, leads to a & function, implying

1779 (N ,, —B ) —J %, =0,

po —Boo (4.6)

which is consistent only if 3,J%,, =0. If J{, has a dynam-
ical origin so that it is not conserved identically, we can-
not integrate over 4, without getting multivalued N, oo

With ;€*P?9, V50 =JL,,, we can solve the & function (4.6)

with
Ny,=B,,+V,,+Viy, 4.7)
where V,, V,—o,V,. A point external electric

charge appears as a magnetic monopole in the VZ’:} field.
When there is a uniform background charge density, we
can, for example, choose the gauge Vyez’“=2xJ 9 or

— €N, (4.5)

Fo,—(3,A,—0,A,)—F;"

Vixt=2rJ0,. We change variables from N,,,
then [dN,, 1=[dV,].
Now we can integrate over F,,

to V#, and

and get the dual La-

grangian
Lap= L3P U+ L e g
MD o wf 12£27 B 414224
Ae? = =
- o g B
8(1+A2*) wvee
+ 1B, (KF+ LetPoFmon) (4.8)

where B,,=B,,+V,,+Viy. Note that the dual La-
grangian is invariant under the gauge transformation
8B,,=d,A,—9d,A, and 8V, =—A,. Here the conserva-
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tion of the tensor (4.2) is crucial. One can see the above
derivation is not affected even when the couplings e, A are
depending on spacetime, for example, describing axionic
domain walls. When there is no Higgs field, we can just
drop f,B,, from Eq. (4.8) and get a dual formulation of
the Maxwell theory, where magnetic monopoles and elec-
tric charges have exchanged their pole. The generating
functional is now

z = [[f3df)ldB,,]dg!)[dV,1¥,

Xexp ifd4x,£D v, . (4.9)
The massive vector boson is now described by B,,. We
could include a kinetic term for magnetic monopoles.
Gauss’s law from the variation of By, is given by
1 e? ~ ret ~
~O | o }+ I+ 22 D0 (14 a2 Pk
+ 1€ FRO"+K%=0.  (4.10
Gauss’s law from the variation of V|, leads to
2 4
e = Ae ~
9;By;, — €:49;B; =0, 4.11)
TH+A% 7% a(14a%et) KT

which is a consequence of Eq. (4.10). The constraint
(4.10) should be satisfied by the field configuration around
strings and monopoles. The classical relation between
the original variables and dual variables is given by
fUHO+ AM)= € H ),

(4.12)

Fo4Fmon——€ o g e’ g
W T (T A2t o 124 W

When there is a nonzero external background charge J2,,,

the lowest-energy configuration would be such that this
external charge is shielded completely by the Higgs field.
In terms of the dual fields, there will be nonzero
Hpy=fU0+ Ag)=—J

There are two mass scales m rsm 4 when there is no
background charge. When m,>>m,, we expect an
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effective action for strings and the massive vector bosons,
which would be given trivially by a simple generalization
of Eq. (2.19). When there are magnetic monopoles, the
effective action should include open strings with massive
end points. When there is a nonzero background charge
density, local strings would feel the Magnus force.

V. CONCLUSION

We found the path integral derivation of the dual for-
mulation for various theories of strings and vortices.
Goldstone bosons, axions, and massive vector bosons are
described by an antisymmetric tensor field of rank 2,
while cosmic strings appear as the source for this tensor
field. While the dual formulation has been extensively
used before, our derivation puts the dual formulation on
a better footing and we hope this leads to a better under-
standing of the string or vortex dynamics. In addition,
we should note that it is trivial to generalize our dual for-
mulation in curved spacetime and Euclidean time. (In
Euclidean time, there is a subtlety related to the con-
served charges. See the second paper of Ref. [8].)

However, there are many questions arising as we have
a more precise formulation to start with. While many
low-energy effective actions for strings and vortices are
known, it would be interesting to derive them from the
dual formulation systematically. We may use the dual
formulation to study the quantum dynamics of vortices.
Some investigation of quantum fluid dynamics along this
direction has been launched in Ref. [14]. While the dual
Lagrangian does not look renormalizable, it should be so
in a way if the original Lagrangian is so. How we can
show this is not clear at this moment as the dual La-
grangian may lie in a strong-coupling regime. When
magnetic monopoles are present around axionic strings, it
has been known that there are interesting phenomena,
such as electric charge transfer from monopoles to strings
[15]. Chiral charge could be violated by magnetic mono-
poles, making the whole system quite rich. It would be
interesting to study the interaction between magnetic
monopoles, chiral charge, and axionic strings.
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