arXiv:hep-ph/9303291v1 23 Mar 1993

CERN {TH 6835/93
IEM {FT {70/93

ONE{LOOP ANALYSISOF THE ELECTROW EAK BREAKING IN
SUPERSYMM ETRIC MODELSAND THE FINE{TUNING PROBLEM

B.deCARLOS and JA.CASAS 7/

Instituto de E structura de la M ateria (CSIC),
Serrano 123, 28006{M adrid, Spain

CERN,CH {1211 G eneva 23, Sw itzerland

A bstract

W eexam ine the electrow eak breakingm echanian in them inin alsupersym m etric standard
model M SSM ) using the com pkte one-loop e ective potential V;. First, we study what
is the region of the whole M SSM param eter space (ie. M 1_,;m ; ;:::) that leads to a
succesful SU (2) U (1) breaking w ith an acceptable top quark m ass. In doing this it is
observed that all the one-loop corrections to V; (even the apparently an all ones) m ust
be taken into account in order to get reliable results. W e nd that the allowed region of
param eters is considerably enhanced w ith respect to form er "in proved"” tree level results.
Next, we study the netuning problem associated with the high sensitivity of M ; to hy
(the top Yukawa coupling). Again, we nd that this netuning is appreciably an aller
once the one-loop e ectsare considered than in previous tree levelcalculations. Finally, we
explore the am biguities and lim itations of the ordinary criterion to estin ate the degree of

netuning. A sa result ofall this, the upperboundson theM SSM param eters, and hence
on the supersym m etric m asses, are substantially raised, thus increasing the consistency
between supersymm etry and observation.
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1 Introduction

Precision LEP m easuram ents give a strong support [1] to the expectations of supersym —
m etric (SUSY ) [2]grand uni cation [3]. Nam ely, the two loop calculation indicates that
the gauge coupling constants of the standard m odelseem tobeuni edffatM y = 10° Gev

with a value 1=26, provided the average m ass of the new supersym m etric states lies
In the range [100 G&V , 10 TeV 1.

T his calculation hasbeen re ned in a recent paper by R oss and R oberts [5]in which
the various supersym m etric thresholdds were appropriately taken into account. This was
done iIn the context of the m inin al supersym m etric standard m odel (M SSM ), which is
characterised by the Lagrangian

L =Lsysy + Ler (1)

Here Lgygy isthe supersym m etric Lagrangian derived from the observable superpotential
W ops, Wwhich includes the usual Yukawa term s W y and a m ass coupling HH , between
the two Higgsdoublets H 1, H 5. Lgg at the uni cation scale M y is given by
X 1 x3

Los= m; 3 F SMiz .. @MWy +Bmo HiHo + hii) (2)

a=1

wherem , and M ;_, are the (comm on) supersym m etry soft breakingm asses (atM y ) forall
the scalars and gauginos , ofthetheory,and A and B param etrize the (comm on) cou-—
plings of the trilinear and bilinear scalar term s. In this fram ework the physical spectrum
of supersym m etric m asses depend on the particular choice of the M SSM param eters

mqy;Maqp; A B he (3)

where h. is the top Yukawa ooup]jngﬂ. T herefore, the requirem ent of gauge uni cation
constraints their ranges of variation.

T hese param eters are also responsible of the form of the H iggs scalar potential and
thus of the electrow eak breaking process [6]. R equiring the electroweak scale (ie. M 5 ) to
be the correct one, together w ith the presents bounds on m «,, R 0ss and R oberts further

!1This uni cation does not necessarily require a GUT . In particular, in superstring theories all the
gauge couplings are essentially the sam e at tree level [4 ]even In the absence of a grand uni cation group.

T his also avoids unwanted consequences of GUT theories.
2T hese are the param eters, together w ith the gauge couplings , that enter in the renom alization group

equations for them asses. The in uence of the bottom and tau Yukawa couplings is neglighble in m ost of

the cases.



restricted the allowed space of these param eters. Finally, these authors imposed the
absence of ne{tuning in the value of h; (the param eter to which M ; ism ore sensjtjyeﬁ)
for a successfiil electrow eak breaking, by dem anding [7]c< 10 In the equation

= c—t (4)

where the value of ¢ depends on the values of all the independent param eters listed in
eq.(d) (which also detemm ine the supersymm etric m asses). A s a consequence, they found
my; Mis < 200 GeV (leading to typical supersym m etric m asses < 500 G &V ). In fact,
this tums out to be the strongest constraint on the supersym m etric m ass scale, stronger
than the requirem ent of gauge uni cation.

The analysis of ref.[5] of the electroweak breaking process and the corresponding
hi— netuning problem was perform ed by using the renom alization im proved tree level
potential V, (Q ), ie. the tree level potential In term s of the renom alized param eters at
the scale Q . However, as was shown in ref.[8], one expects the e ect of the one-loop
contrbutions to be in portant. Consequently, the analysis should be redone using the
whole one-loop e ective potential. T his is the m ain goal of this paper.

Tn section 2 we study w hat is the region of thewholeM SSM param eter space (e5.(d))
leading to a correct SU (2) U (1) breaking (thism eans a correct value forM ; and m
w ithout color and electric charge breakdown). The com parison with the results of the
"renomm alization in proved" tree level potentialV, [5]show s that the one-loop corrections
enhance (and also digplace) this allowed region. A sa by {product, we show that the (very
comm on) approxin ation of considering only the top and stop contribution (disregarding
the t, % m ixing) to the onedoop e ective potential is not reliable for analyzing the
electrow eak breaking m echanisn . In section 3 we analyze the abovem entioned ne-tuning
problem , show Ing that, once the one-loop contributions are taken into account, itbecom es
considerably softened. In addition to this, we study the lim itations and am biguities of the
ordinary criterion (@) to estin ate the ne-tuning problem . A lthough in theM SSM it tums
out to be a sensible criterion (which is not a general fact), it should be considered as a
rather qualitative one, thus the upperbound on ¢ should be conservatively relaxed, at least
up to c < 20. A sa consequence of all this, the upper bounds on the M SSM param eters
and on the supersym m etric m asses are pushed up from the "renorm alized im proved" tree
level results. T his is relevant, of course, for the expectations of experim ental detection of

SU SY . Finally, we present our conclusions in section 4.

3T he sensitivity of M ; to other independent param eters has been analyzed in ref.[7].



2 R adiative electrow eak breaking

In the M SSM the part of the treelevel potential along the neutral com ponents of the
Higgs edsata scalk Q isgiven by

VO(Q>=é<gZ+g@> $1.F #,F +mifFemiH.d miEHL+ho) ;o ()
W here
mi=mf + ?; mi=m, B (6)
w ith
mg My )=m} (7)

Tn the usual calculations w ith Jjust the tree level potential Vo (Q ) (as In ref.[5]), thiswas
minin ized at theM ; (orM y ) scale.
T he one-loop e ective potential is given by [9]

ViQ)=Vo+ V4 (8)
w here
" L
V(Q)—1s.t|:M4JoM2 3 9)
1= oa 2 907 3

depends on H,, H, through the treeJdevel squared-m ass m atrix M 2. In the expressions
HBAR) all the param eters are understood to be running param eters evaluated at the
scale Q . They can be com puted by solving the standard renorm alization group equations
(RGE's), whose form iswell known [2], and taking into account all the supersym m etric
thresholds. The supertrace of eg.(J) runs over all the states of the theory. This, in
particular, am ounts to determ ine the elgenvalues of the m ass m ixing m atrices of stops,
charginos and neutralinos. Incidentally, a sin pli cation broadly used in the literature is
to consider just the top (t) and stop (t) contrbutions to (), disregarding also the t, %
m ixing. This can be a good approxim ation for certain purposes (see eg. ref.[10]), but,
as will be shown shortly, it is not when one is interested in studying the SU (2) U (1)
breaking. To be in the safe side the whole spectrum contribution m ust be considered in
e.0).



In order to exhibit the in plications of considering the whole one-loop potential V;
versus V,,we have shown two exam ples (@) and (o) n g.ld. They are speci ed by the the
follow ing initial values of the independent param eters

(@) m,= 120GeV;M 1, = 230GeV;A =B O;he= 0207

®) mo= = 100GeV;M,,= 180GeV;A =B = 0;h.= 0250 (10)

The case (a) corresponds to one of the two m odels explicitly expounded in ref.[5] (where
it was called "X "). A lthough in the V, approxin ation this m odel works correctly, once
the one-loop contributions are considered, we see that it does not even lead to electrow eak
breaking (the sam e happensw ith them odelthatwascalled "Z2"). In the exam ple (b) both
Vo and V; yied electroweak breaking, but for com pletely di erent values of vy HH .1
and v, hH ,i. Tn this case, V; predicts electroweak breaking at the right scale, while
V, does not. The abovem entioned approxin ation of considering just the top and stop
contribution to V ;,which isalso represented in the gure,works better than V., butnot
enough to produce acceptable results. M oreover, it is clear from the gure that only the
whol one{loop contrdbution really helps to stabilize the values of vy ; v, versus variations
of Q (they are essentially constant up to O (h?) corrections). In fact, they should evolre
only via the (very an all) wave function renomm alization e ects, given by

@logvl 1 2 ®
= 395 +
@ ogQ 6a 2%+ 9
@ logv, 1
@ngZ - 2 S (Bgs+ g% 12nf) : (11)

There is a scale, that in ref.[8] was called QA, at which the results from V., and
V, approxin ately coincide. At this scale the one-loop contributions are quite am all, in
particular the logarithm ic factors, so o) represents a certain average of all the m asses.
In the region around $ one expects, due to the sn allness of the logarithm s, that the
evaluation of one-loop e ects ism ore reliable (see also refl[11]).

Tn the exam ple depicted In  g.lb this consideration is not very relevant, for vi and
v, are essentially constant. H owever, there are cases w here v4 (Q ) and v, (Q ) do not show
such a rem arkable stability. T his happens when the averaged supersymm etric m ass is
much larger than M ; , since this leads to the appearance of large logarithm satQ = M 4
(this fact has been stressed in refl.[11]). However, In the region around QA (ie. precisely
w here the calculation ism ore reliable) v; (Q ) and v, (Q ) are always stable. T hus we have
usad the follow Ing criterion: we evaluate v; and v, at the QA scale and then we calculate



v1(Q)and v, (Q ) via eq.) at any other scale. T his is relevant at the tin e of calculating
physicalm asses. In particularM ; is given by

U % Q)+ g%Q) viQ)+ viQ) - (12)

and sin ilar expressions can be w ritten for all the particles of the theory.
Now we are ready to determ Ine how the requirem ent of correct electrow eak breaking
(ie. M P™° = M ) puts restrictions in the space of param eters. "C orrect electrow eak
breaking" of coursem eansM F™° = M &, where M , isgiven by ([[J). In addition, other
physical requirem ents m ust be satis ed. Nam ely, the scalar potential m ust be bounded
from below [2], color and electric charge m ust rem ain unbroken [2], and the top m assm ust
lie w ithin the LEP lin its (100G &V < m, < 160G eV ). Follow iIng a sim ilar presentation
to that of ref.[5], the results of the analysis forA = B = 0 (atM y ) and for vardous initial
valuesof j o=m ,jareshown In g.2. Thevalieof ;3(M ;) necessary to achieve uni cation
of the couplings was calculated in ref.[5] at the two-loop order and is also represented in
the gure. W e have also evaluated the e ect of varying the A and B param eters, as is
flustrated n g.3. The e ect of the one loop contrdbution is to enhance and displace the
region of allowed param eters appreciably. In order to facilitate the com parison we have
reproduced in g4 theV, results [5]and the one-doop results for for the case of g2c (ie.

m.,=,= 1;A = B = 0),which is a representative one.

3 The ne-tuning problem

A swaspointed out In ref.[5], h; isthe param eter to w hich thevalue ofM , ism ore sensitive.
T his sensitivity is conveniently quanti ed by the c param eter de ned in eq.(H). W e have
represented the values ¢ for the representative case of g4. A good param eterization of
the value of ¢ is

1 h i

c’ 1:08M 7, + 0419 m?2+ 2) (13)

M}
The high in uence ofM ;_, on the value of c com pared to that ofm , and , com es from
the fact that scalar m asses can be very high, even if they are vanishing at tree level, due
to the gaugino contribution in the RG E’s, but not the other way round. The tree level
results [5] are also given to facilitate the com parisonf]. T he sensitivity of M , to h, tums

“W e reproduce here the values of ¢ for V, as given in ref.[5], though our calculation gives slightly

di erent values.



out to be substantially sm aller w ith the com plete onedoop e ective potential than w ith
the V, approxin ation. If, follow ing ref.[5], we dem and now ¢ < 10 as the criterion to avoid
the netuning In hy, this selects a region of acceptable SUSY param eters that can easily
be read from g.4. Notice that this region is noticeably larger than the corresponding
one obtained from V,. This is a consequence of the lower sensitivity of M ; to h and the
larger region of param eters giving a correct value of M ; (see section 2) when one uses
the entire one-loop e ective potentialV, . A ccordingly, the one-loop contributions tend to
m ake less "critical” the electrow eak breaking process in supersym m etric m odels.

W e would also like to m ake som e comm ents on the criterion usually followed to
param eterize the ne-tuning problm ,ie.c< 10 n eg.(d). First ofall, to som e extent this
procedure is am biguously de ned, since it depends on our de nition of the independent
param eters and the physical m agnitude to be tted. For exam ple, if we replace M 22
by M, In eg.(), then the corresponding values of ¢ (represented In  g.3) are divided
by two. Second, notice that if for a certain choice of the supersym m etric param eters
(mo;M 1—5; ;A ;B),thevalue of c tumed out to be high form ost of the possible values of
h: (orequivalently M ; ), then we would arrive to the bizarre conclusion that any value of
h: leadsto a ne-tuningf]. This is so because the "standard" criterion of eq.({d) m easures
the sensitivity of M ; to h. rather than the degree of ne-tuning. In order for eg.{@) to
be a sensble quanti cation of the ne-tuning it should be required ¢ 1 form ost of the
h; values. To check this, we have represented in g5 M ; versus h; for a typical exam ple
Mmyo= =Mi,=500GeV;A =B = 0). W e see that, ndeed, form ost of the h, values
the sensitivity of M , to h: is am all. H ence, the param eterization of the ne4uning by the
value ofc in eq.{4) ism eaningful. A naturalvalie forM , under these conditionswoul be
M 5 1Tev ﬁ N evertheless, this show s that it is dangerous to assum e that ¢ is an exact
m easure of the degree of neduning. Tt is rather a sensible, but qualitative one. In fact,
a precise evaluation of the degree of netuning would require a know ledge of what are
the actual independent param eters of the theory and what is the supergravity breaking
m echanisn (for an exam ple of this see ref.[12]).

A 11 the previous considerations suggest that the upper Iim it ¢ < 10 in the m easure
of the allowed netuning should be conservatively relaxed, at least up toc < 20. W e see

SThis would happen, for instance, if the hypothetic theoretical relation between M ; and h; were
My expfC hyg with 1 hyj> 10.

N otice, how ever, that if we restrict the range of variation of hy so that 100G &V < m wp < 160G eV,
then ¢> 10 in the entire "allowed" region of hy.



from g4 that this in plies
Mmy; <650GeV; M, < 400Gev (14)

In order to see what are the corresponding upper lin its on the supersym m etric m asses,
w e have explicitly given them ass spectrum  (Including also the am all contributions com ing
from the electrow eak breaking) in Table 1 for the two "extram e" cases labelled as X ; and
X, In gd. Note that these two cases are close to the c= 20 line and to the upper and
Jower 1 its on the top quark m ass. From these extram e exam ples we see that, roughly
speaking, the bounds on the m ost relevant supersym m etric particles are

G luino M4 < 1100G eV
L ightest chargino M < 250G ev
L ightest neutralino M < 200GeV (15)
Squarks meg < 900Gev
Sleptons m,< 450G eV

T hese num bers are substantially higher than those obtained in ref.[5] from V., and sum —
m arize the threem ain results obtained in thispaper: i) T he region of param eters giving a
correct electrow eak breaking is larger w hen one uses the entire one-loop e ective potential
V; than with V, (see section 2), ii) T he corresponding sensitivity ofM , to the value of hy
is an aller and iii) T he highest acceptable value of ¢ (see eq.()) m ust be conservatively
relaxed for the above explained reasons. The m ost im portant conclusion at this stage is
that the supersymm etric spectrum is not necessarily close to the present experim ental
Iim its, though the future accelerators (LHC , SSC ) should bring it to light. It is also re—
m arkable that the t;, % gplitting can be very sizeable In m any scenarios. Let us nally
note that there are considerable radiative corrections to the lightest H iggs m ass com ing
from the top-stop splitting [11], which have not been included in Tablk 1.

4 Conclusions

W e have studied the electroweak breaking m echanism in the m inin al supersym m etric
standard m odel (M SSM ) using the com plte one-loop e ective potential Vv, = Vo + V3
(see eqs.(EEE). W e have focussad the attention on the allowed region of the param eter
space leading to a correct electroweak breaking, the netuning problem and the upper

bounds on supersym m etric m asses.



A sa prelin inary,we showed that som e com m on approxin ations, such as considering
only the top and stop contrdbutions to V ; and/or disregarding the % m ixing,
though acceptable for other purposes, lead to wrong results for SU (2) U (1) breaking.
Tn consequence, we have worked w ith the exact one-loop e ective potentialV; .

N ext, we have exam ined w hat is the region ofthewholeM SSM param eter space (ie.
the soft breaking term sM 1, ;m ;A ;B plus and hy) that leadsto a correct SU (2) U (1)
breaking, ie. the correct value ofM ; , a value ofm , consistent w ith the observations and
no color or electric charge breakdown. A com parison with the results of the "renom al-
ization In proved" tree level potentialV, [5] show s that the one-loop corrections enhance
(and also digplace) the allowed region of param eters. T his, of course, are good new s for
the M SSM .

O ur follow Ing step has been to analyze the top— netuning problem . A s it has been
pointed out in ref.[5], h: (the top Yukawa coupling) is the param eter to which M ; ism ore
sensitive. U sing the ordinary criterion to avoid ne-suning, ie. c< 10 In the relation

Mi_

= C— M 16

strongly constraints the values of the M SSM param eters, leading to upper bounds on

M 1,;m.; ,and thus on the m asses of the new supersymm etric states (gluino, squarks,

charginos, etc.). This analysis was perform ed in ref.[5] using the in proved tree level

potential V. W e nd that the one-doop corrections substantially soften the degree of
netuning. T his, again, are good new s for the M SSM .

Finally, we have explored what are the lim itations of the ordinary criterion (14)
to param eterize the degree of netuning. W e comm ent on its am biguities and show a
type of (hypothetical) scenarios in which this criterdion would be com pletely m eaningless.
Fortunately, this is not the case for the M SSM and, thus, the ¢ param eter represents
a sensible, but qualitative estin ation of the degree of netuning. A precise and non-
am biguous quanti cation of it can only be done once one know s the supergravity breaking
m echanisn . In view ofall this, we have conservatively relaxed the acoeptable upper bound
forcup toc< 20.

A sa summ ary of the results the one-loop contributions i) enhance (and displace) the
allowed region of theM SSM param eters ii) soften the netuning associated w ith the top
quark (for large values of the M SSM param eters). T hese two facts together w ith the fact
that iii) the upper bound on ¢ should be consarvatively relaxed, push up the upper bounds
on the M SSM param eters obtained from the fom er V, analysis and the corresponding
upper bounds on supersymm etric m asses. This is re ected in Table 1 for two "extrem "



cases and In eg.(I9). Our nal conclusion is that the supersymm etric spectrum is not
necessarily close to the present experin ental Iin its, though the future accelerators (LHC,
SSC ) should bring it to light.
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TABLE 1

Param eters (initial values)

M, GEV) 300 400
m, (Gev) 400 200
Gev) 400 200
h 0618 0254

A ;B 0 0

M asses of G uino, Charginos and N eutralinos (in G &V )

g 837 1124
. 407 376
) 243 226
. 172 169
) 242 371
s 408 236
. 387 255

M asses of Squarks (in G &V )

w7 AL s 785; 789 922; 925
YR Gk 766 888
CENE e 762 885
ey 827,698 1055, 881
s 410 560

M asses of Sleptons and H iggses (in G €V )

£k 476,431 372,256
h°;H ° 91,547 91, 353
553 362
A° 547 353

Table 1: M asses of the supersym m etric states for the two solutions (called X ; and X , in
g4)with m o = 163;109 respectively. A ll the m asses are given at theM , scale.
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FIGURE CAPTIONS

Figl v HH i, v hH ,1 versus the Q scale between M, and 2 TeV (in G&V) for
the cases labelled as (a) and (b) In 3.(10). Sold lines: com plete one-loop results;
dashed Iines: "in proved" tree level results; dotted lines: one-loop results in the
top{stop approxin ation.

Fig.2 Allowed values for the M 1,, m, param eters (n G&V ) for di erent vales of :
jo=m,j= 02;0:4;1;3 In (a), (b), (c), (d) respectively, and A = B = 0. The sold
Iines represent the value of 3 (M ; ) needed to achieved uni cation, as calculated in
ref.[5]. D otted lines correspond to the extram e values ofm ¢, (evaluated at theM ,
scale): m o, = 160;100 G €V .

Fig.3 Thesame as g.2, but fordi erent valuesof A;B: A = 0;0;1; 1,B = 0;1;0;0
n (a), ), (c), (d) respectively, and j ,=m ,j= 1. In case (c), them , = 160 G&V
line coincides w ith the M ;_, = 100 G &V axis.

Figd ThecaseA = B = 0, Joam.j= 02;04;1;3 with the "mnproved" tree level
potential V, (a) and the whole one-loop e ective potential V; (b). D jagonal lines
correspond to the estram e values ofm ., , aswere calculated by Rosset al. in ref.[5]:
m p = 160;100G €V . Transverse Iines .ndicate constant values of ¢, de ned in e3.(4).

Fig.b M, versushy forM 1, =m,= .= 500G&V,A = B = 0. The region of physical

M, amountsa netuning in the value ofh..
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