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Abstract

The hadronic lineshape of the Z has been analyzed for evidence of

signals of new, narrow vector resonances in the Z-mass range. The pro-

duction rate of such resonances would be enhanced due to mixing with the

Z. No evidence for new states is found, and it is thus possible to exclude,
at the 95 % con�dence level, a quarkonium state in the mass range from
87.7 to 94.7 GeV.
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Introduction

The measurement of hadron production in high-energy e+e� collisions was �rst pro-

posed and implemented at Frascati [1] with ADONE. The classic example of such

a situation is the � � ! interference [2] in the vicinity of 780 MeV. The search for

narrow vector resonances is of great interest because they would correspond to the

bound states of new heavy quarks or to new gauge particles. We have searched for

narrow resonances produced in the reaction e+e� ! hadrons.

The production of a narrow vector resonance is strongly enhanced due to mixing

with the Z if the resonance mass (MV) is within the Z mass range, that is if

jMV �MZj �< �Z.

Both vector (JPC = 1��) and axial vector (1++) resonances can mix with the Z. If

the new resonance is a quarkonium of SU(3) colour quarks, such as the the top or a

fourth generation b0, its mixing with the Z can be calculated using potential models

developed for lower mass quarkonia. It can be shown that the decay width of the

resonance is increased by approximately two orders of magnitude due to the mixing.

This enhancement makes our search sensitive to such resonances over the full mass
range we study, in spite of the coarse sampling of center-of-mass energies in the data.

We report here on a search carried out over the mass range 87 < MV <

95 GeV with the L3 detector at LEP, using a total e+e� luminosity of 18.2 pb�1

accumulated in the period from 1989 through 1991. This search is also sensitive
to resonances formed of constituents with new quantum numbers provided that the
resonance couples to the Z so that mixing can take place.

Searches for narrow resonances produced in radiative decays of the Z have been

reported by the L3 Collaboration [3] and others [4].

The L3 Detector

The L3 detector covers 99% of 4� [5]. It consists of a central tracking chamber
(TEC), a high-resolution electromagnetic calorimeter composed of bismuth germa-

nium oxide (BGO) crystals, a ring of scintillation counters, a uranium and brass

hadron calorimeter with proportional wire chamber readout, and a high precision
muon spectrometer. These detectors are located in a 12 m diameter magnet which

provides a uniform �eld of 0.5 T along the beam direction. Forward BGO arrays, on
either side of the detector, measure the luminosity by detecting small angle Bhabha

events.
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The hadronic cross section

The cross section for e+e� ! hadrons , �h, measured at 24 center-of-mass energies,

is presented in Table 1. The details of the analysis have been reported in previous

publications [6, 7]. In addition to the statistical error shown in Table 1, there are

systematic errors associated with the selection of hadronic events and the acceptance.

The systematic error for hadrons at the Z peak is estimated for each of the three

running periods in 1989, 1990 and 1991 to be 1.0 %, 0.3 % and 0.2 %, respectively. The

systematic errors at di�erent center-of-mass energy points are partially correlated.

We conservatively treat this as a point-to-point error in the following analysis. In

contrast, the systematic error in the luminosity, which is evaluated to be 2.0 %, 1.0 %

and 0.6 % for the same three periods, is independent of beam energy and, therefore,

is not considered further in this analysis.

p
s (GeV) �h (nb) Period

p
s (GeV) �h (nb) Period

88.231 4.53�0.11 1990 91.278 30.30�0.62 1989
88.279 5.45�0.40 1989 91.529 29.62�0.59 1989
88.480 5.17�0.09 1991 91.967 24.51�0.24 1991
89.236 8.50�0.14 1990 92.226 21.78�0.26 1990

89.277 8.76�0.41 1989 92.280 20.82�0.79 1989

89.470 10.08�0.12 1991 92.966 14.36�0.16 1991
90.228 18.12�0.18 1991 93.228 12.36�0.16 1990
90.238 18.60�0.25 1990 93.276 12.56�0.55 1989
90.277 19.77�0.70 1989 93.716 10.02�0.13 1991
91.030 30.41�0.74 1989 94.223 8.20�0.14 1990

91.230 30.38�0.12 1990 94.278 7.17�0.54 1989
91.222 30.26�0.13 1991 95.036 7.04�0.86 1989

Table 1: The measured cross section, �h, for e
+e� ! hadrons. Quoted errors are

statistical only.

The experimental cross section is compared to the Standard Model prediction
to search for the signal of a new resonance. We use only the lineshape of the Z
resonance predicted by the Standard Model and ignore the absolute normalization.

The Standard Model cross section is calculated using the ZFITTER program [8] with

four adjustable parameters: �s; MZ; Mt and MH. The last two parameters are the
masses of the top quark and the Higgs particle, respectively. The strong coupling �s
is constrained to the range 0:124� 0:005 which has been determined from a study of
hadronic Z and � decays [7]. The other parameters must be �t from the data.

In order to make the overall �t to the Z resonance insensitive to a possible narrow

resonance, the �t value of the Z resonance curve at each center-of-mass energy, Ei, is
calculated using all data except those points within the interval [Ei� 0:75] GeV, and
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the Standard Model parameters are determined from the remaining data. The re-

sulting cross section, �SM(Ei), is compared with the omitted data points in order to

determine local deviations from the Standard Model lineshape. This procedure is

repeated for each group of data points.

The uncertainty in the theoretical cross section is estimated by repeating the �ts

with extreme values of the parameters within the ranges given below:

�s = 0:124 � 0:005;

MZ = 91:195 � 0:007 GeV;

Mt = 45 � 200 GeV;

MH = 50 � 1000 GeV:

The changes in the predicted cross section are found to be limited to the range �0:2
nb for all energies Ei in the data. We therefore assign a systematic error ��SM = 0:20

nb to the Standard Model cross section.

We derive upper and lower limits (��) on the cross section (�V) for a new res-

onance which is observed either as an enhancement or as a reduction over the Z
lineshape predicted by the Standard Model. For the 95% C.L. bounds �V > �� and
�V < �+ we obtain:

�+ = (�h + 1:64��h)� (�SM � ��SM)

�� = (�h � 1:64��h)� (�SM + ��SM)

where �h is the measured cross section with a standard deviation ��h obtained by
summing in quadrature the statistical and the systematic errors.

Fig. 1 shows �+ and �� versus
p
s. For each data point a bar is drawn between

�+ and �� representing the allowed range of the deviation of the measurement of
the cross section at that energy from the Standard Model �t. For the data points
with high statistics �� lie within the band �0:5 nb, which corresponds to �1:5% of
the cross section at the peak of the Z resonance. We do not observe any signi�cant

deviations from the Standard Model lineshape that could be interpreted as the signal

of a new resonance.

Limits on resonances

We use the experimental limits on the deviation of the hadronic cross section from the
Standard Model lineshape to set limits on the production of new narrow resonances.

The production cross section of a narrow vector resonance in the Z mass region is

proportional to the strength of its mixing with the Z [9, 10]. Following the formalism
of Ref. [10], this mixing is parametrized by the o�-diagonal mass term, �m2, in the

2� 2 mass matrix of the Z�V system. The resonance acquires a decay width, �V,
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which is proportional to (�m2)
2
and which can be expressed as:

�V �
(�m2)2

M2
Z�Z

for the case where MV � MZ. To the extent that �V � �0V, where �0V is the

bare width of the resonance, the resonance will decay essentially as a Z. The Z

resonance parameters, however, are not signi�cantly modi�ed by the mixing. The

narrow resonance signal consists of an interference e�ect in the Z production cross

section at the center of mass energy
p
s � MV.

In Fig. 2 we show the predicted deviation of the hadronic cross section from the

Standard Model value for �ve resonance masses. We use the value of �m2 = 18 GeV2,

which is applicable to a toponium state in this mass range with �V � 16 MeV.

However, the interference e�ects that are produced are general and apply to any

resonance mixing with the Z. The characteristic features are a dip in the cross

section for the case MV = MZ and a dispersion shaped interference pattern for other

values of MV. The sharp features of a resonance signal are smeared further by the

intrinsic energy spread of the LEP beams. This e�ect has been included in the plots
of Fig. 2 by convoluting them with a gaussian of � = 50 MeV [11].

We use the predicted interference signal to calculate an upper limit on the param-
eter �m2 as a function of MV. For each value of MV, incrementing in 10 MeV steps,
the predicted deviation in the cross section is compared to data while varying �m2.

The resulting 95 % C.L. upper limit on �m2 is shown in Fig. 3. The upper limit is in
the range 10 - 30 GeV2 for resonance masses in the interval from 88 to 94.5 GeV.

The mixing parameter for quarkonium of u-type quarks is given by:

�m2 = 2
p
3j (0)j

q
MV

�
e(1� 8

3
sin2�W)

4 sin �W cos �W

�
;

where e is the positron electric charge and  (0) is the wave-function of the Q�Q bound
state at the origin, which can be calculated from potential models. We plot in Fig. 3

the expected value of �m2 for ground-state quarkonia of u-type and d-type quarks

with j (0)j2 � 64 GeV3 [12]. The upper limit on �m2 rules out, at the 95 % C.L.,
new resonances of d-type quarks in the mass range 87:7 < MV < 94:7 GeV, while

resonances of u-type quarks are excluded in the mass ranges 87:9 <MV < 88:7 GeV
and 89:1 < MV < 94:3 GeV. These limits are valid for the ground state quarkonium.

This search is less sensitive to the radial excitations of the ground state and to the

1++ state, whose mixing with the Z is suppressed by a smaller j (0)j.
The limits on the resonance mass can be translated to limits on the quark mass,

MQ, through:
2MQ = (MV + Eb)

where Eb is the binding energy. Assuming that Eb = 1 GeV [13] we exclude the mass

range 44:4 < MQ < 47:8 GeV for d-type quarks and the range 45:0 < MQ < 47:5 GeV
for u-type quarks, without any assumptions about their decay modes. These limits
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extend the model-independent limits of Mb0 > 45 GeV [14] obtained from the width

of the Z and Mt > 45 GeV [15], obtained from the width of the W, both at the 95 %

C.L. Model-dependent mass limits have been reported in Ref. [16] and [17].

Our search is also sensitive to resonances formed of constituents with new quantum

numbers. Even if the resonance does not couple to ordinary fermions, its mixing with

the Z, via virtual loops, would produce a signal in the Z mass range. The upper limit

on �m2, shown in Fig. 3, applies to such a resonance as well and can be used to

constrain the coupling of its constitutents to the Z, subject to assumptions about

j (0)j.
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Figure Captions

Figure 1: The 95 % C.L. limits �+ and �� versus center-of-mass energy. Each bar
represents the interval outside of which a uctuation in the cross section due, for
example, to an interfering narrow resonance is excluded. The limits are shown for
the data taken in 1990 and 1991 (see text).

Figure 2: Predicted deviation of the hadronic cross section from the Standard Model
value due to the presence of narrow resonances mixing with the Z. Resonances with a
mass of MV�MZ = (�2; �1; 0; +1 and +2) GeV have been simulated, including
the e�ect of the energy spread of the LEP beams. The value of the mixing parameter
is chosen for a quarkonium state of charge 2/3 quarks.

Figure 3: Limits on the mixing parameter �m2 as a function of the resonance mass.
We exclude, at the 95 % C.L., values of �m2 above the histogram (shaded region).
The value of �m2 expected from a potential model is plotted for quarkonia of d-type
(dotted line) and u-type (dashed line) quarks. Resonances whose mixing with the Z
is larger than the limits shown on �m2 are excluded by this search.
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