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hand we have to deal not with one signal but merely with a family of signals corresponding to
invaiiants. Firstly, what we need is an invariant which can be easily computed. On the other
feature of the signal. In fact we need to develop a strategy of choice among all possible

In principle any invariant of this curve (of its point set) can be used to describe a
point in the sample space will describe a curve, the representative curve (Fig.2).
sampling period. Then the shift runs over the interval [0,T]. Correspondingly the representative
whole set of representative points when the shift runs over all possible values. Let T be the
extract a feature of the signal from a representative point we have to look for an invariant of the
representative point depends on the shift between the clock pulses and the signal. If we want to
we take only 3 samples, 5D if we take 5 samples). The immediate remark in this case is that the
space. When sampled, the signal is represented by a point in a finite dimensional space (3D if
function defined over a finite time slot and in this sense it is a point in an infinite dimensional

The mathematical representation of the pulse-shaped signal (Fig.1) is a real valued

Representation of the signal in the space of its samples.

DATAWAVE chip in [3]. Yet a few cotnments in this direction will be made.
implementations (briefly analysed in [1]) nor particular implementations worked out for the
indeed efficient. Because of lack of space, here we shall not discuss neither the possible
described there and presents new examples which support the assertion that the method is

The present paper is complementary to [1] in the sense that it explains the algorithm
scalable and does not have basic restrictions to the linear shaping circuits.
precision and very fast : it uses a very short algorithm, simply to implement. The solution is
described in [1] allows the recovery of the amplitude and of its time instant with a very good
approached over the years in different ways and it is still under investigation. The method
precision and processing speed. The references [4-8] prove that the problem has been
must equal the pulse rate). The actual difficulty consists of the two combined constraints
the concrete examples worked out so far) and to do it in real time (i.e. the rate of computing
(relatively to the sampling clock) with a high precision (we imposed 8 bits for the amplitude in
to find the maximum value (the peak or the amplitude of the pulse) and its position in time
version of the processing chain. Given these samples with an appropriate precision, the task is
the peak (and correspondingly, to the hit instant). This is all what one retains in a full digital
the duration of the pulse, usually 3 - 5 samples equally spaced but randomly shifted relatively to
day devices produce pulses of tens of nanoseconds). By sampling one gets a few samples over
shape, with the peak and time position depending on the hit intensity and its instant (the present
(including the related analog front-end electronics) when hit, produces a pulse of a known
of considerable concern in data processing for future HEP detectors : A detector element

In a previous paper [1] we described a new approach to the following problem [2]

Introduction.

for the next generation of HEP detectors as a real time (i.e. pulse rate) feature extractor.
good precision. It is very well suited for implementation in VLSI chips and is intended to be used
curve. 'I`he resulting algorithm needs a few simple arithmetic-logic operations and yet allows a very
its samples - a curve for 1-D signals - and in finding a set of optimal (hyper-)planes embedding the
samples is described. It consists in developing a representation of the pulse in the vector space of
A new method for fast computing the peak value of a pulse and its position in time, from a few
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A/D conversion. It is this effect we have analysed so far in our examples.
system in mind, we are faced with digital samples affected by round-off errors in the process of
affected by some errors. In fact, with the idea of a full digital version of the data acquisition
value e. The question is how the error will vary when the signal samples themselves are
planes so that the error of the resulting piece-wise linear expression does not exceed a given

Suppose we were able to cover the representative curve with a family of hyper

The robustness problem.

this way the peak finder acts as a (seU-)adaprive piece-wise linear filter.
where kl, kg etc. are defined by the corresponding segments of the representative curve. In

if kgsg < sl < kg sg then use the dot product number 3 etc. (2)

if klsg < sl < kgsg then use the dot product number 2,

If sl < klsg then use the dot product number 1,

usmg comparisons:

changing the dot products) can be defined in terms of quotients of sl and sg or, equivalently,
decreasing one (see again Fig.1). So, the commuting points for the approximation planes (for
shift from 0 (corresponding to the initial triplet) to T, sl will be an increasing quantity and sg a
value accepted as non-negligible (say 1/256 of the maximum possible value) and increasing the
an initial p-tuple (triplet in the examples considered in this paper) for which Sl takes the smallest

In our particular problem of peak calculation things are again simple. Starting with
to be able to characterize in a simple way each segment.
curve remains in an e—neighbourhood of the corresponding plane ; and, concomitantly, we have
shall try to fit a few planes (Fig.2), each on a segment of the curve, so that for each segment the
demand that the whole representative curve must be in an e-neighbourhood of one plane : we

The solution is at hand in the sample space. Indeed, we only need to relax the
the plane if the relative error in v does not exceed e.
unaffected by any noise). We shall say that the representative curve is in a e-neighbourhood of
be just a dot product since the best one gives errors of a few percent (even using samples
simple computation (the demand in [2] was for 8 bit precision). Obviously the soluuon can not
result in itself. Nevertheless a way to drastically reduce the errors is needed while preserving a
would facilitate coplanarity). This can be enough for many applications and it is an interesting
quite different shapes and as many as only 3-5 samples (Increasing the number of samples
representative curve, we realize that the errors in v are quite small (a few percent) for pulses of
Still, interesting enough, if we try to find a plane which best fits all the points of the

Unfortunately, in general the pulses do not possess the property described by (1).
standard pulse : that of a maximum amplitude.
this case — of a linear shaping circuit —— it is enough to analyse the representation of a
holds for any signal in the family and the corresponding v's can represent the peak for them. In

If (1) holds for a signal of the family and the shaping circuit is a linear one then it
form, suited for the fastest computation.
coordinates in the sample space. Then v is an invariant of the curve and it is of extremely simple
where v and ai are constant and Sl (i = 1,...,p) are the samples in temporal order and also the

(1)Zaasa = V

satisfy a relation of the form :
Suppose the representative curve of a signal is a plane curve, i.e. all its points

The piece-wise linear quasi-invariant.

for any signal (any representative curve).
excitations of different intensities ; we would like an algorithm which uses the same invariant
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(5) OCR Outputk=l,2,...,NZbisik = tok

the following linear system
amplitude of the pulse does not hold anymore. Still it can be computed via dot products using

Obviously this parameter is not an invariant to itself and the image developed for the

Computing the time shift.

with powers of 2 as to make it belong to the upper half of the scale.
upper half of the full scale ; the simplest method is to use the biggest sample and to multiply it
variables si. Nevertheless it is preferable to always re-scale the samples so as to work in the
computing the amplitude : the dot products as well as the inequalities are linear in the
pulses of a smaller amplitude and it is obvious that the same expressions must be used for
the coefficients of the dot products. For linear shaping circuits the shape will be the same for

So far we considered the pulse of the maximum amplitude and determined from it

The case of an arbitrary amplitude and the scaling.

with fewer hyper—planes).
difficult conditions for the approximation problem (the representative curve will be covered
the conditions for an average error less than a given value ; obviously this will impose less
not just as an average, for the round-off errors in the initial data. We shall develop elsewhere

It is worthwhile to mention that the error of this "filter" is always less than e, and
coverage but for the moment, discussing the principle, this is not essential.
[0,T] for all possible time shifts is covered (Fig.3). In practice we will need a slightly bigger
first interval [1,N1], repeat the search for N2 , N1 < N2 < N, and so on until the whole interval
further reduction of N1 may also be necessary. After obtaining the desired behaviour on the
with the admissible errors) renounce to the smallest singular value and resume the procedure ; a
samples sik (including the more dense set for the shifts). In case of a big instability (compared
corresponding to N1. Compute again the errors this time using the round—off values for
has a generalized solution which fulfils the error condition on the subinterval for shifts

(4)k=l,2,...,N12aisik=vM

new system

hyper-plane is optimally fitted). Take an Nl , N] < N (try first with N1 = 0.5N), so that the
under 0.2% (and consequently no linear filter will be able of such a performance because the
Consequently the whole interval T cannot be covered with a single hyper-plane for an error
usually, i.e. for different pulse shapes, the range for errors is an interval of a few pecent of vM
only for the time shifts corresponding to the N equations of (3) but also for intermediate values;
generalized solution obtained via singular value decomposition (S VD). Compute the errors not
This is an over-determined system because N >> p ; by its solution we understand the

(3)k= 1 ,2,...,NZagsgk = vM

the k-th value of to (k=l,...,N). Solve the linear system with unknowns ai
the representative curve (discrete points). Let sik be the i-th of the p samples corresponding to
initial second sample — i.e. over an interval T. The p-tuples will describe a discrete version of
bigger) and vary it in small (and equal) steps until the first sample reaches the position of the
approximately 1/256 of the peak value vM( in fact one can take this initial threshold much
Consider the initial time shift so that the first sample is at a minimum threshold value, say
position between a time referential tied with the pulse and another one tied with the sampling).
time between the first sample and the instant of the maximum (in principle a measure of relative
the pulse with p equidistant samples. Let T be the sampling period and lg the "time shift" — the
a given pulse-shaped signal of a maximum amplitude and a sampling procedure which covers

Let us sketch the design steps for this ad-hoc filter or "feature extractor". Consider
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with a surface. Anyway we hope new application results in the near future.
linear one. The slight nonlinearities can be handled easily : instead of a curve we have to deal
worked out any example for nonlinear case but the method has no intrinsic restrictions to the
real interest lies in chips specially designed to incorporate the algorithm. 6. We have not
and with two instruction per sample (62 MHz sample clock) were elaborated. Nevertheless the
Intermetall ; two variants, namely with one instruction per sample (i.e. 125 MHz sample clock)
digital implementation was already simulated [3] for the DATAWAVE chip announced by I’I'I`
construction. 5. Implementation of the algorithm in VLSI is straight forward (see also [1]). A
embeddings of the representative curve ; using the hyper-planes is, in a sense, the simplest
pulse from 3 or 4 samples with a precision of 8 bit. 4. In [1] we mentioned other possible
more in [1]. 3. We have shown implicitely that no linear filter can recover the amplitude of a
extraction for 2-D signals). 2. Here is only shown one example. The interested reader may find
any other feature of the signal. In fact the method has applications in image processing (feature
method developed for solving it is of a broader interest because, in principle, it can be used for

1. The problem analyzed in this paper is important for future I·IEP detectors. The

General remarks.

"look up table" (LUT) of 7 bits is enough.
demanded for the time shift becomes important : for the case of a final precision of 5 bits a
u=vM/v . This means a division by v which we want to avoid. Here the lower precision
amplitude, v, is determined the normalization means simply a multiplication by the factor
same for pulses of smaller amplitude. So, we need to normalize the samples. Once the
amplitude calculation, this time the proportionality does not hold : the time shift must be the
dot product i.e. a linear filter.The trouble is that in contrast with what we encountered for
and a precision of 0.5-1 ns will be completely satisfactory. So we shall be able to use a single
shall judge with LHC parameters 2 the sampling period will be of a few nanoseconds,up to 15,
This time the task is simpler because the necessary precision is much smaller : 4-5 bits. We
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Fig. 3 UIC amplitude errors of the peak Finder
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Fig. 2 The pulse representation in the space of its samples

ns:

100

mu

gm
Sm \ h ii

. ,_ ..;_ r

"°°
-.,, --·— -... `—20¤4 l' l ii

··. l J

u, I .*'• ( ··· ;5 -"·1Ft·§:-.-;-7;?Tga;E;·?i—2.,£ *5
§ 400 ~1 ‘j%w
a Mi

um Q

Fig. 1 The temporal representation of the pulse.
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