The "farm"approach to the second level triggering

for future HEP detectors

Vasile Buzuloiu
Institutul Politehnic Bucuresti and CERN/LAA project

1. Introduction.

1.1. The assumption about the data stream.

) In the following analysis it is supposed, as usually speaking about the second level
triggering [1], that the amount of the data from dete_ctoré) - of the order of 1 Mbyte per
bunch crossing - is reduced by the first level triggering to a rate of 10us and to a volume of
about 2 kbytes i.e. only so called regions of interest pointed b%he first level triggering machine
are further sent to the second analyzing /deciding machine. These two parameters, combined,
give the main characteristics of the input : 200 Mbytes/s which is at the limit of what the

stems under development for other applications handle today; still we must be aware of the
act that the supposed reduction factor of about 5*10° by the first level triggering - from 1
Mbyte every 15 ns to 2 kbytes every 10 us -could be smaller and these 200Mbytes/s must be
thought as a minimum.

1.2. General remarks on data (signal) processing functional bricks.

Our signals are complex ones (the events are very complex), their appearance intuitively
leads to characterize them as images and what we look for are patterns which we have to
distinguish by their features (themselves difficult to choose - to define). The general
Ehiloso hy, borrowed from image processing techniques, is to concentrate a feature in a point
by applying transformations to the input data bulk. Usually these transformations are split up
in sequences of simpler ones : linear integral transformations and point nonlinear
transformations. For the last ones the nowadaf' technology allows a very fast implementation
when the values are in a reasonably (not ver¥1 arge) range, namely the “look-up table" (LUT)
techniques. For the former ones the core is the "dot product" operation : an expression of the
form Yx.y, which is used for convolution.

e need of fast multiplying has led to supplementing the processor’s ALUs with
(integer) multipliers or (floating point) coprocessors. In this respect the image processin
architectures went further : There are true convolution units (convolvers) for standard TV real-
time which accept nuclei up to 15x15.

The algorithms tested so far for future detectors data (mostly simulations) mainly enter
in the class just described. Hence the advantage of un:fe processing systems in building second
level triggering machine. Nevertheless the commercial image processing systems do not have
neither the speed nor the flexibility we need in the second level tri&g
are intended for standard image processing tasks. Concerning the fle
to modern microprocessors.

ering machine because they

xibility they give precedence

1.3. About possible structures of the machine.

It was recognized the basic distinction between decision rate imposed to the machine (10
us) and latency (the period needed to process the bulk of event data from the input instant to
the decision or, equivalently, the run period of the trigger algorithm)[2]. The later can exceed
the former by a large factor and, in fact, this is the only way to reach the necessary decision
rate: to allow enough latency. This means either a single stream of data jumping serially into
the cells of a long chain of pipelined processors, or a multitude of parallel streams passing
thrqugh one processor which accomplishes the entire processing job in a longer-than-decision

eriod.
P These two solutions can be implemented in different ways :
a) A dedicated architecture (fully custom designed) optimized t%r a class of algorithms.
b) A commercially available general purpose massively parallel supercomputer.
c¢) Commercially available pipelined image processing systems.
Semi-custom designed systems.

We shall put the "farm" in the last category for we envisage not simply a farm of
workstations (what was called "brute force"); we think to a farm of processors adapted to the
peculiarities of our task and built around a powerful microprocessor.

The first way can produce the fastest machine for precisely defined problems, though it
is the most rigid. The second one is very flexible, very expensive, and not fast enough (not yet).

255

The third could manage the data stream also as a small farm of such systems working in parallel;
still the inherent restrictions in flexibility are the same. In all cases tsﬁ,e need for interfacing the
second level triggering machine with the first level triggering one is the custom job. Multiple
HIPPI interfaces will be used [2].

1.4. The comparison criteria to be taken into account.

As pointed out in [2], the technical performances to be considered are : the decision rate
and latency for benchmarking algorithms or quiyalent ones; also degree ot;f)arallelism and
complexity of the machine, and flexibility (the ability to be acfapted to other algorithmic tasks
and Invariance to the input data format and output data format). There are also factors like the
estimated developing time, and the cost - prototype and machine - which will decide the
advantage of a given solution with respect to others.

2. The Farm.

2.1. Why a farm can be the right choice.

One of the main assumptions about the data made so far is that they come ordered in
time to the triggering machine, i.e. all the data pertaining to a bunch crossing are in the same
stream (this time-ordering could not be trivial in machines 20 m long and a few meters in a
diameter if we take into account that the light speed is only 30cm/ns and the bunch crossing
rate is 16 ns; but this is a task of the front endp electronics). So, the successive "images" are
uncorrelated and every set of data can be and will be processed independently.

This fact, implicitely accepted in any approaclf so far, is essential for the opportuneness
to use just a "farm". We have to build the processors so that each has enough computing power
to accomplish the job for an event, or only for a region of interest, within a reasonab%e time.
That is possible with a well balanced structure which contains less than a full image processing
system and at the same time is enough flexible.

2.2. The block diagram.)

Fig. 1 depicts a block diagram of a farm fed through a HIPPI interface. Each block of
data, corresponding to an event 1s fed into (the memory of) a processor. The next block is fed
into another processor. Consequently a commutator is needed at the input of the machine and
a controller for it, so that always the new data block reaches a free processor. One must only
make provision of enough computing power (number of processors) as not to overload the
machine when biggest blocks would come one after another.

The data blocks are not necessarily equal because the regions of interest of successive
events can vary in number and size; so, the computing time for different events will differ and
the machine will work in a macro-asynchronous regime. It is the controller of the commutator
which distributes the successive jobs to the processors, having as its input the information about
the working state from all processors.

Whatever algorithm machine will run, we know that the decision about an event is short
i.e. the result of processing the 2 kbytes or more will be contained in a few bytes. So the output
of any processor does not put any hard problem of communication comdpare with the input. As
the machine has an unique output for the externa] world, a global decision processor (or a
decision manager) must collect every particular decision from farm members and further process
them. Apart from a possible processing at a higher level (comparison of region of interest
decisions and the dialogue with the external world) the task of this last processor is to re-order
the flow of decisions due to the fact that having various processing times results in changing the
time-order of the decisions.

Finally, the processors are to be defined. It is the peculiarity of signal processing
algorithms which must be considered. The benchmarkinialgorit ms used so far show once more
that the main macro-operation is the dot product and the gain in speed depends essentially on
a fast implementation of it.

2.3. The input commutator and its controller._)

Suppose a processor has just finished its current task. The actions to be done by it are:
send the decision to the global decision processor and inform the controller of the commutator
that it is ready for the next task. The controller can be simply a FIFO initially containing the

rocessor numbers in natural order. Every 10 us a step forward is made. €n a processor
?inishes a task it sends its number as a new input to the FIFO. If the tasks are too time
consuming, or the number of processors is too small, the FIFO will become empty and the new
input data will be lost; that must be acknowledged. But this situation has to be avoided from
designing phase. As the machine is fully scalable, more processors must be snlépphed to the farm.
The commutator is controlled straightforward by the output of the FIFO (Fig. 2).

256

2.4. The re-ordering of the decisions.

The result of the event data processing sent to the global decision processor contains also
the labels of data (the event number, regions of interest position). According to the event
number, the results will be stored in the processor memory, naturally ordered. This allows the
simplest recovery of the order (Fig. 3). The global decision processor outputs a decision eve
10 ws. On the average, its inputs (coming from the processors of the farm) are of the same sma
volume as the outputs are, with a rate of one every 10 us - or at most a few - (depending of
the distribution of tasks: one region of interest per processor or one full event per processor).
This allows enough time for supplementary computation at hi%her level (above the level of the
farm processor task). The supplementary computation might be the comparison of the results
for various regions of interest of the same event.

2.5. The processors.

e envisage the use of modern fast RISC microprocessors or DSPs as the core of the
processor. It means a 32 bit engine which executes most instructions in a single machine cycle
and whose integer arithmetic precision is sufficient for most needs of our signal processing tasks.
It must also be a chip for which the developing tools are rather well known. Around the core
a special hardware must implement the functions mentioned above.

2.6. On the algorithms and programs which implement them.

Contrary to the usual situation during the development phase, the algorithms are
maintained unchanged for long periods - let be only days - when running in real experiments;
they run repeatedly every 10 ws. They must be unglemented to achieve the fastest run and it is
worthwhile to write them in assembler language if the gain in speed is significant.

3. The processor.

The flexibility we demand from the processor imposes a general purpose microprocessor
but the fact we have a specific operation - the dot product - means we need a special facility
for fast implementation of it. In general this dot product is just a step in computing a
convolution so, in fact, a very fast convolver must be attached to the general purpose
microprocessor. From the architectural point of view this means more than a coprocessor
because the memory has to be accessed in a highly parallel way and a battery of multipliers is
needed. Fig.4 shows a rather general structure w})\,ich allows in the limit one dot product per
machine cycle. The products - the intermediate results - can also be stored back in the
memory if the needed outcome is a vector gF_ig.S). The proposed architecture also grovides fast
pointwise transformations. The Annex explains the %gcessor structure (Fig. 4 and 5).

Let us analyze a rather complex benchmarking algorithm from the point of view of
computing power it needs : the al%%nthm for electron-pion separation in Spacal (the algorithm
and the program in [3], Annex). There are 8 sums (trivial dot products) and 2 non-trivial dot
products over the entire field (256 pixels) plus 5 scalar divisions, 4 scalar multiplications, and
a set of 3 operations over the entire field (vector operatlonsz : a comparison, a multiplication,
and a nonlinear function (logarithm). The fastest way for the last operation is a LUT technique;
to read and store the log we need once more the time to input the data. Suppose the degree of
parallelism for the comparison and multiplication is the same as for the dot product. So the
number of equivalent dot ;t)lroducts rises to 13. Let consider the hypothesis that a battery of only
16 multipliers constitute the convolver (as we mentioned , there are TV real-time convolvers
much bigger than 4x4). Then every operation on the 256 J)ixels field will be done in 16 steps.
The total number of equivalent dot products amounts to 198. The machine must compute a J)ot
product of 16 terms every machine cycle. An overhead of a few cycles must be added for every
§roupn?f 16 terms products, let it be 50%. Then the total number of machine cycles amounts to

00. The scalar division needs about 30_c¥lcles, 1.e. 150 cycles are necessary for 5 divisions. We
can suppose these operations (accomplished by the microprocessor) are done in parallel with
the dot products. The same for LUT operations. Instead, we shall supplement a communication
time estimated of the same order as the total computing time. Approximately 600 cycles result
for the whole algorithm. Hence, the order of magnitude for the run time of this algorithm, with
the slowest version of modern RISC microprocessors, 20MHz, is 600*50 = 30000 = 30 us.
Suppose the 10 us between two events at the input of the second level triggering machine are
fully used for input data. This means the total time - input 1%lus processing - necessary for one
region of interest of an event is about 40 ws in this example. Now suppose all the data pertaining
to one event, 5 region of interest at most (as estimated in [2]) are fed in the same processor.
It results 5*30+ input time = 160 us. It means that at least 16 processors are needed in the farm.

We merely have done a coarse estimation of the needed number of processors. An
extended analysis to other algorithms will be done to prove that, indeed, for the second level

257

triggering demands, a farm of 20-30 such processors will be always sufficient. Nevertheless the
scalabililty of the machine insures the possibility to add more processors if necessary. We believe
that with nowaday faster chips the number of processors could be even less than '10.

4. Conclusions.

One may sum up the reasons for the farm solution : The general purpose
supercomputers cannot be used as a second level triggering machine because they do not have
enough speed and the prices are extremely high. The massively parallel machines developed in
the last decade show a firm evolution Irom the one bit processor to powerful many bits
processor per node. The fit of the architecture to the computing needs is essential for an e]%cient
solution; in our case the unit for processing is the processing of one region of interest, and
actually there is little correlation between two successive units. Optimizing the processing at the
level of a region of interest would need to eggloit any kind of para]le]fsm. e solution to
surround a powerful microprocessor with special coprocessors and dedicated hardware fitted for
the identified computing needs, appears far more efficient than simply multiplying the
microprocessors constituting the "processor” (on the farm). Also developing the software for
super-processors containing microprocessors is much more difficult than using existing software
for the machine with two coprocessors.

Annex.

The architecture shown in the system block diafgram of the processor suppose a multiple
parallelism at the level of the processor blocks, namely :
a) A DMA-type LUT operation : memory LUT memory;
b) A multiple product/dot product operation;
c) A floating point operation,;
Any other internal IU operation. .)

The parallelism can be achieved with modern circuits. Some key features in this respect
are: a) the possibilir%r of concurrent operation of master unit, coprocessor and floating point unit;
b) the existence of dual port _memolrz chips; ¢) the existence of fast 16*16 programable
multipliers and fast large memories (64K). As an example (only), the multipliers, fast access large
memories, dual port memories, and SPARC RISC family from Cypress Semiconductor were

taken.

The LUT is simply a 64K memory (e.g. two chips of 64K*8) and the MACs are also
standard high speed chips. As for microprocessor we shall quote from DataBook [4]: "The
CY7C601 integer unit supports a tightly coupled floating point interface and coprocessor
interface that allows concurrent execution of floating point, coS%rocessor and integer instructions”;
"The CY7C601 is the primary processing engine in the SPARC architecture, executml%Pall
instructions except for specific floating point and coprocessor oBeratlons. The CY7C602 FPU
does its floating point calculations concurrently with CY7C601 IU. The architecture also allows
for concurrent operation throu;,h the use of an optional second processor" (from User’s Guide
[5](?. Re§arding the CY7C130/131 dual ports memory: "Two ports are provided permitting
independent access to any location in the memory".) .

The configuration aims at balancing the needs in all types of operations (LUT,
vector/dot product, floating point) at the level of a "region of interest” and pushing the
parallelism of the system (processor blocks) to its limits bearing in mind the chips’
characteristics.

References

1. RK. Bock et all. Draft 3 RD-11 Status Report : Embedded Architectures for Second-level
Triggering (EAST) EAST note 92-05, 21 Feb. 1992.

2. gK.Bock et all. R&D Progosal Embedded Architectures for Second-level Triggering in LCH
Experiments (EAST) CERN{l RDC/90-56, 30 Oct. 1990

3. J.Badier, RK.Bock, C.Charlot, 1.C.Legrand Benchmarking Architectures with Spacal Data
EAST note 91-10, 25 Nov. 1991.

4. DATACUBE MaxVideo User’s Manual.

5. CYPRESS SEMICONDUCTOR BiMO.Z/CMOS Databook.

6. CYPRESS SEMICONDUCTOR SPARC RISC User’s guide.

258

Data from the first
level triggering

HIPPI
Interface

L

Commutator 4——-J Control (FIFO)

AR

iR = 4 R =
Decision

— 1] —-1 e

decision lines concentrator \natyrally

ordered

sequence
of decisions

Fig. 1

259

initial FIFO state

after serving the first job

NS[N-2|N-') N after seving N-4 jobs

N-SIN-2)N-1| N | S after the first finished
was announced
Fig. 2
data plock number Decision Concentrator
& decision to the address corresponding to data
block number
: | ! ordered
K 20 synchronous
decisions
——‘ 4>
—_ 103
(say)

data block number becomes the memory address for
storing the decision message

Fig. 3

260

DMA Co-U ;gster FP-U
A f A A A
v ADDR. BUS
—)
Y y
,1 ,)
i T i i | DATA BUS
| ' vy
DUAL
I LUT PORT 0
$ MEMORY
3% ...
¢ 4 ! —)) ADDR.BUS
\
X see MACS

Fig. 4 System block diagram.
Floating point operation (through FPU)
Dot product/parallel products (through Co-U-MACS)
and LUT operations (through IU or DMA)

are done in parallel

) ADDR. BUS
{y) DATA BUS
chipl - chiplé
-‘T — |
¢ N ADDR. BUS
A | 1 4
™ MaC | MAC
-~ ‘] .~ ad

Fig.

Connecting MACs in the system

261

