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DETERMINATION OF COUPLED-LATTICE
PROPERTIES USING TURN-BY-TURN DATA

G Bourianoff, S. Hunt, D. Mathieson, F. Pilat, R. Talman
SSC Laboratory, Dallas, TX, USA
G. Morpurgo
CERN, Geneva, Switzerland

ABSTRACT

A formalism for extracting coupled betatron parameters from multiturn, shock
excited, beam position monitor data is described. The most important results are
nonperturbative in that they do not rely on the underlying ideal lattice model.
Except for damping, which is assumed to be exponential and small enough to
be removed empirically, the description is symplectic. As well as simplifying the
description, this leads to self-consistency checks that are applied to the data. The
most important of these is a “magic ratio” of Fourier coefficients that is required
to be a lattice invariant, the same at every beam position monitor. All formulas
are applied to both real and simulated data. The real data was acquired June,
1992 at LEP as part of decoupling studies, using the LEP beam orbit measure-
ment system. Simulated data, obtained by numerical tracking (TEAPOT) in the
same (except for unknown errors) lattice, agrees well with real data when sub-
jected to identical analysis. For both datasets, deviations between extracted and
design parameters and deviations from self-consistency can be accounted for by
noise and signal processing limitations. This investigation demonstrates that the
LEP beam position system yields reliable local coupling measurements. It can
be conservatively assumed that systems of similar design at the SSC and LHC
will provide the measurements needed for local decoupling.



1. Introduction

The formulas in this report come from. and expand upon, those in a paper

by Ta.lman,[u which generalizes formulas of Courant and Snyder. el Except for
rectifying a couple of unfortunate choices of symbols, or where new quantities
are introduced, the notation is the same as in those papers. Formulas needed
for this report are copied without proof. Also various explanations from those
papers are assumed to be understood or are repeated only cursorily.

Only free oscillations following a transverse beam kick are analysed. Descrip-
tion of the equally important case of steady state response to a sinuisoidally-
shaken beam would be essentially similar, though the likely simultaneous pres-
ence of both transient and steady state responses is likely to complicate that
situation in practice. The analysis is heavily dependent on tune domain analysis,
both for isolating eigenmotions and for noise suppression.

There is no discussion of methods that use adjacent BPM’s to determine tra-
jectory slopes, or of other methods that rely heavily on the ideal lattice model
in the analysis. This also makes the formulas applicable to the analysis of feed-
back systems that sense beam properties at a single point. For the same reasons
we defer multiplying the horizontal and vertical signals by factors 1/1/8; and
v/1/By respectively, even though, to the extent these quantities are unperturbed,
that “normalizes” the geometry appropriately, as will be shown. Some results
can only be obtained by feeding in information from the lattice model, but they
are inherently perturbative, and we judge it valuable to see how much can be
extracted in a model-independent way. The data is analysed in terms of eigen-
modes. The motion in one, nominally horizontal mode labeled 4, wobbles around
the horizontal z-plane. The nominally vertical mode is labeled D. (The letters A
and D come from the Courant—Snyder[Z]
of the lattice transfer matrix.)

notation for the block diagonal elements

It is assumed that the BPM (beam position monitor) data acquisition system
is perfect, so that digital values of the horizontal coordinate z and the vertical
coordinate y correctly reflect the beam centroid every turn, for at least several
hundred turns. Nonlinear amplitude response of the BPM’s is assumed absent
or compensated for and it is assumed that all BPM’s have accurate calibrations
that make the length scales equal at all lattice locations and in both planes.

The analysis assumes betatron amplitudes sufficiently small for the motion
to be purely linear though, emphasizing the tune domain as it does, the method
may be somewhat tolerant of nonlinearity. The lattice functions 8z, By, a;, and -
ay of the (presumably decoupled) lattice are known and are available for use in
perturbative calculations, but such use will be deferred as long as possible.
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Much of this report is devoted to deriving and using relationships among
three “representations” of the motion:

o Coefficients extracted by Fourier analysis from the lists of displacements
(z,y) measured at all BPM’s. There are six independent coefficients at
each BPM. Directly derivable from these are

o transfer functions relating the z and y motions at each BPM, for each of
two independent “modes”. Each transfer function is parameterized by an
amplitude ratio and a phase.

e Coordinates of successive turns at each BPM are related by the sixteen
matrix elements of a once-around transfer matrix. Especially because only .
coordinates z and y are measured, while slopes p and ¢ are not, not all
matrix elements are uniquely derivable from the data.

In oversimplified terms, the two mode-tunes v4 and vp are obtained by lo-
cating peaks in Fourier spectra, the two mode-emittances ¢4 and €p are obtained
from magnitudes of Fourier coefficients, and three of four off-diagonal transfer
matrix elements are determined by ratios of Fourier coefficients. An important
off-diagonal determinant (equivalent to the minimum tune split) constrains the
Fourier coefficients but appears not to be derivable from turn-by-turn data at a
single BPM in a model-independent way. As well as v4, vp, €4, and €p, the other
parameters that are extracted in a model-independent way are 84, Bp, one of the
off-diagonal matrix elements, R412, and the “magic ratio” R,, (which is equal to
ep/ea). This ratio is deserving of the name magic because it is (or should be) a
lattice invariant, even in the face of the nasty uninvited effects, coupling in the
betatron motion and noise in the actual BPM system.

2. Application of the Formulas to Realistic Data

In this report, formulas useful for measuring lattice parameters are tested
on two data sets. Each of these data sets consists of nominally horizontal free
oscillations yielding measured (z,y) pairs for 1024 turns at each of 504 BPM
detectors of LEP. One data set, labeled 14-18, was acquired during a June, 1992
run on the nominally decoupled LEP accelerator. The other was obtained by
TEAPOTE! tracking for the same LEP lattice with the strengths of skew error
elements having been increased until the coupling badness (defined below and in
the accompanying report) was approximately equal to that of the actual data.
The skew elements introduced to do this were random quad rolls (r.m.s. roll angle
= 2mr) and a (relatively unimportant) systematic skew quadrupole multipole in
all dipoles (a; = 0.01 “units”. “units” refers to the SSC convention of parts per
10* at 1cm.) For both real and simulated data, even though excitation of the
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“wrong-plane” eigenmotion was unintentional, there is enough signal to extract
the most important parameters of both eigenmotions.

In almost all cases in the following the analyses of simulated data and actual
data are completely parallel and remarkably similar. For that reason and to save
space because there are a large number of figures, all plots are given in pairs,
with simulated data on top and measured data on the bottom.

The first such pair, in Fig. 1, shows superimposed, Poincaré (z,y projection)
plots at two adjacent BPM'’s. This particular pair of BPM’s was chosen because of
the near equality of their lattice function values: f; = 59m and By = 64 m. These
BPM'’s are symmetrically placed 14 m from an intersection region. Being equal-
beta points, the transverse distributions can be regarded as “natural” without
either axis having been magnified or demagnified by the lattice optics. Though
the motion was intended to be purely horizontal and the lattice was “globally
decoupled” (as will be reviewed below), it can be seen that vertical amplitudes
are comparable to horizontal, and the orientation of the plane of oscillation can
change rapidly. These deviations are great enough that a purely perturbative
description of the cross-plane coupling is likely to be inadequate. With the much
greater coupling strengths expected in the SSC or LHC (because of the much
smaller magnet aperture and longer circumference) this will be all the more
true for those accelerators. That is one reason the present non-perturbative
description was developed.



4 T l T g T
= BPM 378:bx=59m,by=64m < : ,
E_ 3 FBPM 379:bx=5%m,by=64m + -
— ,
[ 2 — hn
o
o
o 1rp -
-
o
0, O o QW Ty Ry R Sl
o 4
5 11
-
t: -2 £ 7
-3 ! L ! 1 l
-6 -4 -2 0 2
Horizontal position, x(mm)
400 T, T 1 ] l ] i I .
BPM 378:bx=59m,by=64m © + !
> 300 | BPM 379:bx=5%m,by=64m + | i
; + +# t i
o +, + +, ;
S 200 4
o) — +
S 100 .
—
3 [0 [ T O gy -
-
-100 | ' -
> 8% @ 18
~200 ! ! | i 18 1 1%

-400-300-200-100 0 100 200 300 400 500
Horizontal position, x (arb. units)

Figi.u*e 1. Two superimposed Poincaré plots (z,y projections) at adjacent BPM’s
for which B; and B, are roughly equal. This shows what would be observed on
a (nondestructive) phosphor screen inserted at those points. Like all figures in
this report the upper figure shows simulated results and the lower figure shows
measured results.



3. The Once-Around Transfer Matrix

The column vector of coordinates z = (z, p, y, q)T represents small transverse
deviations from the reference orbit. Evolution of a vector z from longitudinal
coordinate sg to s is described by a transfer matrix M,

z(s) = M(s,s0)z(s0) (1)

A 4 x 4 transfer matrix M is assumed to give an adequate description; effects of
longitudinal motion are ignored. Using the matrix

0 -1 0 O
1 0 0 O
o 0o 0 1) @)
0 0 1 O
the symplectic condition M must satisfy is
MTSM =S. (3)

“Symplectic conjugation” of any matrix A is defined by
A=-54Ts (4)

For a 2 x 2 matrix with non-vanishing determinant

_ fa b d -b
A=<C d):(_c a):A‘ldetlAl (5)

2 x 2 elements of the partitioned 4 x 4 matrix M and its symplectic conjugate

are defined by
A B i, A C
M= ;s M= _ _ (6)
C D B D

Because M is symplectic

M=M" . (M)
The eigenvalues X of M satisfy det |[M — AI| = 0. The combination
. A+A B+C trd E
M+M=M+M7"= _ = (8)
C+B D+D E trD

turns out to have simpler properties than M, where the off-diagonal matrix E
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and its determinant £ are defined by
(e f |
E=C+B=( h); det |[E|=eh— fg =€, (9)
g

This matrix M + M1 exploits the fact that the eigenvalues of M come in recip-
rocal pairs so that its eigenvalues are two doubly-degenerate real values, of the
form A = XA+ A~!. These sums are real even though the individual eigenvalues A
are complex. The eigenvalue equation is

(ttA=A)  E

=trAtrD — (trA+ttD) A+ A* - £ =0 (10)
E (trD — A)I

whose solutions are

Aap = (trA+trD)/2 % \/(trA — trD)*/4 + €, (11)

where A(D) goes with the +(—) sign if trA — trD is positive and vice versa.
This choice assures, for weak coupling, that A will correspond to = (this will be
called the “nominally horizontal” eigenmotion) and D will correspond to y (the
“nominally vertical” eigenmotion.) The eigenvalues satisfy simple equations

Ags+ Ap =trA+trD

12
AgAp =trAtrD — €. (12)

In the physically important case, the magnitudes of the eigenvalues of M do not
exceed 1, so that there are real angles p4 = 27v4 and pp = 27vp satisfying

Aa= Mg+ 1/A4 =exp(ipa) +exp(—ipa) = 2cos g

. . 13
Ap = Ap +1/Ap =exp(ipp) + exp(—ipp) = 2cos up. (13)

In the special uncoupled case, for which B and C vanish, these angles degenerate
into the horizontal and vertical phase advances y; and g, which satisfy

Ag,p =trA,D =2cos iz y = 2cos g p. i (14)
The determinant £ has special significance since an accelerator is “globally de-
coupled” if and only if £ = 0. This is achieved operationally by adjusting skew

quad correction elements so that the two eigentunes can be made to coincide as
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nearly as possible when (trA — trD) is scanned through zero using erect quads.
That this will work can be seen by manipulating Eqgs. (12) and (14) to get

1
(cospq —cosup)? = Z(trA —trD)? + €. (15)

The left hand side is small close to either “sum” or “difference” resonances. The
former case must be avoided since in that case it turns out that £ < 0 and the
motion is unstable; in the latter case £ > 0 and the tune separation (or rather
the squared difference of cosines) cannot be less than €. The minimum tune
separation is given by

VE

n(sinpg + sinup)

(16)

lvD = vA|min =

The routine accelerator operation called global decoupling consists of adjusting
skew quads (typically wired in two families) to minimize this minimum tune
separation. This operation was performed on LEP just before the data. set labeled
14_18 was acquired. :

4. Determination of the Eigenvectors

To determine the eigenvectors of M + M ™! it is useful to represent a dis-
placement within the z phase space by xT = (z, p) and similarly ¢T = (y, q). For
eigenvalue A it is easy to check that the vectors

E
X A—trAE)
X = ; Y = (17)
( ‘A-b;rDX> ( §

satisfy the equations
(M+MNHX =AX; (M+MHY =AY (18)

for either eigenvalue A and arbitrary x or £. By picking A4 in defining X and
Ap in defining Y, the nominally horizontal motion labelled A is close to pure
motion, and the nominally vertical motion is close to pure y motion. Toward this
end we define 2 X 2 matrices R4 and Rp by

E E
Ra= RD“AD—trA

Ag —trD’ (19)



in terms of which independent basis vectors can be written as (proportional to)

X:( X >; ¥ = (‘RAE) (20)
Rax §

where a result that follows from Eq. (12),

has been used.
5. A Digression Concerning Data Processing Strategy

The ideal goal of this analysis would be to extract all 16 elements of M from
the turn-by-turn data, but it will not be possible to do this completely. One
reason for this is that only coordinates (z,y) are measured; the slope variables
(p,q) are either unknown or must be inferred indirectly. Certain functions of the
matrix elements, such as tunes, traces, or determinants, may be obtainable more
directly than individual elements, but the introduction of such quantities at least
temporarily increases the number of parameters to be determined. It is sensible to
work to eliminate redundant variables, in order to identify a minimum set, and to
develop optimal extraction procedures for those. In this spirit Eq. (21) has been
used to eliminate Rp. It will be shown below that three, but not all four, of the
elements of R4 are directly measurable. The fact that, in preparation for taking
the data the lattice was globally decoupled, implies that the determinant det |R 4|
is expected to be small at every BPM location. But it would be “cheating” to
exploit that in determining the fourth element of R4; it would violate the spirit of
this analysis. Rather we reserve this as a potential consistency check. Obtaining
the elements of matrix E can be regarded as an especially important goal since,
by Eq. (9), they are directly related to matrix elements of M whose determination
is our main purpose. From Eq. (19) it can be seen that matrix R4 is proportional
to matrix E. Unfortunately the constant of proportionality will not be obtained
directly from the data, and for that reason neither Ry nor E will be eliminated
in favor of the other for the time being.

The eigenvalues A4 and Ap are the most directly and accurately obtainable
parameters. By Eq. (13) they are simple functions of the eigentunes, and can
be found by locating peaks in the Fourier tune spectrum (as well as by another
method to be described below). With no coupling, or even if there is coupling
but & =0, by Eq. (12), trA and trD would be equal to A4 and Ap respectively.
As above we decline (at least for the time being) to “cheat” in this way.
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Future equations are somewhat simplified by introducing a parameter
Ayx=Ap—Ag _ (22)
and a “small” parameter (. When ( is negligible, all formulas simplify greatly.

trd =A A
r A+ (AL (23)
trD =Ap — ( Ax.
In terms of these variables we have
£ =¢(1-¢)A}
S
det |RA| =1= C
|AA trDl
= 24
=\ Tha=hp V! (24)
E=—-Ap1-()R4y or
e=—AN1—-()Ran; f=-AA1—-()Ra12 and

g=—AN1=CRa2; h=-AA(1~-C()Raz

where G, used below, replaces a different symbol that was multiply defined in
ul

reference

6. Transformation To An Eigenbasis
In order to define Twiss parameters in a coupled lattice it is necessary to
perform a linear transformation from the x,y basis to an eigenvector basis.

In a two component space basis vectors can be expressed as

— 1 . Y O 2
= 0)7 X2 = 1 ( 5)

These can be used to define an x,y basis in the four component space.

= (K)o (%) o (0, oo ) (26)
0 0 X1 X2

Similarly, from (20), a basis of eigenvectors is

) R A R G NI s
\ Rax1 Rax2 , R %2

(27)
where G is a numerical factor yet to be determined. These bases are related by

<>
o
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a linear transformation
™ = Gt (28)
where summation is implied. A general vector can be expressed in terms of either
basis, yielding the equality
zii® = X, ¥ = X;. Gy (29)

and from this the coordinates are related, in component and in matrix notation
by

. zi=XiGri; =GTX (30)
By substituting from Eq. (27) into Eq. (28) one obtains
I Rp
GT = 31

The value of G given above in Eq. (24) is such as to make det |GT| =1,

. I —Rp

G 1l=g , 32

(&) (_ I ) (2)
and

which shows that G is symplectic.
In the z,y basis the one turn map relating turns ¢ and ¢ + 1 is given by
Tyl = Mz, (34)
Substituting from Eq. (30) one gets
GTX,.1 = MGTX, (35)

which means that the transfer matrix in the transformed basis is

M=(GTyimeT =g L TRP) (4 B (1 Rp) (40
o —Ry I ¢ DJ\Ra I )/ \0o D
(36)

from which it follows that
A=G¥A+BRs— RpC — RpDR,)

2 (37)
D =G(-RsARp — R4B+ CRp + D),

From A and D the Twiss parameters in the eigenbasis can be extracted. The
determinants det |A| and det |D| must both be unity since they are equal to the
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product of eigenvalues, which is one. As a result 4. for example, can be written
in “Twiss form”

(éu Ay ) _ (COS pA+apsinpg Basinpg ) (38)

4y Ax —YAsinpa cospq — aasinpg
where
pa = arccos(tr4d/2) (39)

It is assumed here that any sign ambiguity has already been resolved in Eq. (11).
In Eq. (38) the Twiss parameters are obtained from element-by-element compar-
ison; they are :

Ba=Ajp/sinpa; ya=—Ay/sinpa; as= (4 — Ay)/(2sinps), (40)
and similarly for D.

There is a quadratic form which is invariant under the application of the
transfer map Eq. (1). Defining (X,P,Y,Q) = (X1,X2,X3,X4), it and its D
counterpart are given by

" ea=74X? +2a4XP + B4 P>
ep =vpY? +22pYQ + BpQ®

which are the generalizations of the Courant-Snyder invariants. They could be
called eigeninvariants or eigenemittances, with the former to be preferred because
it tends less to perpetuate the confusion between a single particle parameter and
a beam parameter that comes from the use of the symbol e for both purposes.
Because both names are so ugly we will use the term mode invariant instead.
A given vector z will, in general, have non-vanishing components in both of
the eigenbases. The corresponding mode invariants can be evaluated using the
inverse of Eq. (30) to obtain X, followed by substitution into Eq. (41).

Finally we wish to characterize each of the eigenbases by a spatial orientation.
The points in a Poincaré plot (z,y projection) are not restricted to a single line;
rather they moves along an elliptical trajectory. It is reasonable to characterize
the orientation of the A-eigenbasis by the angular deviation, 64, of the major
principle axis of the ellipse, away from the z-axis, and similarly for D.

(41)

Observing at a fixed point in the lattice where the lattice functions are 84
and .a4 the eigenmotion can be described in the “pseudoharmonic” form

X = \/Baecacosiy
P = \/Baea(sinpg — agcostps)/Ba.

Here ¢4 advances by an angle equal to —p 4 on each turn, and eventually, modulo

(42)
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27, takes on all values between 0 and 27. The factor /Ba€4, (which was not

included in the corresponding equation of reference,)m can initially be regarded
as an inessential common factor, but it will be of importance both in combining
A and D eigenmotions and in comparing signals at different BPM’s. Substitution
into Eq. (30) permits the motion to be expressed in the form

z =G/ Baeacoshy

(43
y=Geav/Bacacos(a + d4) )

where .
e} = [Ran1 — (@a/Ba)Rar2)* + (Ra12/Ba)’
Ra12/Ba (44)
Ran — (c«a/Ba)Rarz

$ 4 = —arctan

It can be shown that the angle of orientation of the ellipse is given by

_ 2(Ran1 — (aa/Ba)Raia]
ten204 =12 [Ra11 — (aa/Ba)Ra12]? — (Ra12/Ba)*

(45)

The orientation of the other mode axis can be found similarly. In general, the
two axes are not orthogonal. Normally, since ideal behaviour would have the
eigenaxes exactly horizontal and vertical, the deviations of these angles from
zero can be regarded as a measure of the seriousness of the coupling.

When two oscillatory quantities are related as z and y are in Eqs. (43), it is
natural to relate them by a “transfer function”. Since they oscillate at the same
frequency, their relationship is completely specified by a ratio of amplitudes, in
this case e4, and a phase difference, in this case 4. The term transfer function is
appropriate because the two functions are causally related (otherwise they would
not have the same frequency), but one need not “cause” the other. Because
the two signals are coherent, the signal-to-noise ratio of their ratio can probably
be improved by averaging measurements made at different times. The transfer
functions will be obtained by Fourier series analysis in a later section.
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7. Difference Equations Satisfied By the Motion

Using the fact that M ™! can be used to propagate backwards in time, relation
(8) can be used to obtain four third-order, coupled difference equations that relate
the coordinates on three successive turns (labeled —, 0, +):

T4+ —trAzo + z- =hyo — fqo
P+ —trApo +p- = —gyo +eqo
Y+ — trDyo + y— =ezo + fpo
9+ — trD qo + g- =gzo + hpo.

(46)

It is possible to uncouple these equations. Start by squaring Eq. (8);

tr2A + £ Aq + Ap)E
r’A+ (Aa D)).(47)

MM W =MM+2I+ MM = _
(M + ) + (Aa+Ap)E tr2D + &

From this one obtains fifth order equations linking five successive turns

Tit+ + (2 tr’A = E)zo + z—— =(Aa + Ap)(hyo — fqo)
P4+ + (2 —tr’A — E)po + p—— =(Aa + AD)(—gv0 + eqo)
Y4+ + (2 — tr’D — E)yo + y—— =(Aa + Ap)(ezo + fpo)
@4+ + (2 = tr’D — E)qo + g =(Aa + Ap)(g70 + hqo).

(48)

Substituting from Eq. (46) into Eq. (48) and keeping only the equations for the
measured quantities z and y yields

Totr+T———(Aa+Ap)(z4+ +2-)+(24+ AsAp)zo =0

Y++ +y—— — (Aa + Ap)(y+ +y-) +(2+ AaAp)yo =0. (49)

What makes these equations truly remarkable in that, in full generality with
arbitrary coupling, and with coefficients that are lattice invariants, the same at
every BPM, they constrain the output of each plane of every BPM. Since any
spurious superimposed signal will not satisfy this constraint, these equations can
give a measure of the importance of noise or distortion due to nonlinear electronics
in the signal processing or distortion due to nonlinear motion. Eqgs. (49) generalize
the following difference equations for uncoupled motion

2y —ANzo+2z-=0 (50)
Y+ — Ayzo +y- = 0.

It can be shown that with no coupling Eqgs. (49) and (50) are consistent. The first
of Egs. (50) can be regarded as a “trigonometric” identity relating, in 2D(z,z')
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phase space, projections of a radius vector that advances through a constant
angle p; each turn. Egs. (49) relate similar projections in 4D phase space.

If there were no noise or distortion, and if the z and y measurements were
arbitrarily accurate, Egs. (49) could be used to determine both eigentunes to
arbitrarily high accuracy from as few as five turns worth of data.

The eigentunes can be obtained by applying Eq. (49) to actual data. Define
the expectation value < f > of N samples f; by Y7 fi/N. Multiplying the
two equations of (49) by zg and yo respectively, taking expectation values, and
rearranging to express as equations for A4 and Ap yields

<(x++:r_)a:o>.—<zﬁ> Aa+Ap
<<(y++y-)yo> —<y§>)( AaAp ) (51)
< (T4p+T-)T0>+2<22 >
='( < (y4+ +y--Jvo > +2< y3 >> .

When this equation is used to extract eigentunes for the simulated data, the val-
ues agree well with peak locations obtained from Fourier analysis: v4(diff.eq.) =
v 4(Fourier) % 0.00005; vp(diff.eq.) = vp(Fourier) £ 0.003. The equation is less
accurate when it is applied to measured data : v4(diff.eq.) = v4(Fourier) +
0.001; vp(diff.eq.) = vp(Fourier) & 0.004. It is not suprising that the accuracy
for vp is not as good as for v4, since vertical oscillations should by design not
be present at all. The fact that the accuracy is better for simulated data than
for actual data is due to noise or signal processing distortion. While Fourier
analysis yields optimal filtering, the difference equation estimates are likely to be
biased by noise signals. Our analysis procedure is to use the difference equation
to obtain tentative tune values. From this an improved value is obtained by
obtaining Fourier amplitudes at points on a fine nearby grid and interpolating
to find the maximum. Tunes determined in that way are shown in Fig. 2. The
way error bars are determined will be described below. In most cases in these
plots they are too small to be visible. These tune values were used in evaluat-
ing the Fourier coefficients defined in the next section. Most relationships will
be expressed in terms of Fourier coefficients since that tends to incorporate the
benefits of filtering in the frequency domain.
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Figure 2. Mode tunes v4 and vp, as determined at all 504 BPM’s. Upper figure
is from simulation, lower figure from measured data.
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8. Extraction of Fourier Coefficients

In complete generality linear z and y motions can be expressed as super-
positions of A-type and D-type motions. The simplest possible description is
in “normalized eigencoordinates” X = (X,P,Y, Q)T for which the phase space
motion is circular

X = €/? cos pat; P =é/%sin At
A HAL, A H (52)

Y = e})/z cos ppt; Q = elD/2 sin ppt.

Here, and wherever it appears in this report, the symbol ¢ can be regarded either
as time, measured in units of the revolution period, or as a turn index that
increments by 1 each turn. In laboratory z,y coordinates the motion manifests
itself in the form

z¢ =Agcos ppt + Dy cos ppt + Dzgsin ppt 53

yt =Dy cos upt + Ayccos pat + Ayssin pat. (53)
Here the subscript = or y distinguishes between z or y motion, subscript ¢ or s
goes with the cos or sin function, and the capitalized symbols distinguish between
A and D eigenmotions. It is assumed that 4 and pp are incommensurate (i.e.
not rationally related; i.e. non-resonant) which means there is a time at which
the nominally dominant coordinate for the two eigenmotions are simultaneously
maximum. Such a time origin has been chosen in (53) (different in general from
that in (52)) so that the sin term is missing for z in the A eigenmotion and for
y in the D eigenmotion. For that reason the subscript ¢ has been left off 4; and
D,. Also we can assume A; and D, are positive without loss of generality.

All six of the coefficients in Eq. (53) are easily and accurately extracted from
the turn-by-turn data by Fourier analysis.

For brevity we also define coefficients

Ay = V Agzlc + Ags; Dt = D?:c + D:%'s’ ’ (54)

In terms of these coefficients, the transfer function ratios and phases of
Egs. (44) are

A,
eA=ﬁ; ®,4 = —arctan =
i v - (55)
ep = & $p = —arctan ==
Dy’ b DIC.

It has been implicitly assumed that there is no damping. In fact, for the
actual LEP data there is damping with damping decrement § (fractional loss per
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turn) of a few parts per thousand. Furthermore it is found that the damping is
different for the two modes. Because of damping, the coefficients A and D, which
would otherwise be constant exhibit time dependence

A(t) =A(0)e %4t

(56

D(t) =D(0)e~2t, )
For the LEP data set 14_18, with ¢ = 1 revolution,
=64 =0.9982 + 0.0002

) - (57)

e~%2 =0.9970 + 0.0003.

The fits of the form (56) are not perfect, and the error assignments in (57) are
only rough, but since the damping is so weak it seems legitimate to simply divide
the Fourier coefficients by the exponential factors in (56) and then proceed as if
there were no damping. That is what has been done and we have chosen to do
it implicitly rather than cluttering the equations of this report with explicit e~5
factors. ! 7

Because the damping in the D mode is appreciably greater than in the A mode
(the reason is not known, but the result is consistent with “head-tail damping”
that would be expected to be greater in the vertical than in the horizontal plane),
and because the D amplitudes are initially smaller than the A amplitudes, the
D/A ratio has become really very small after 1000 turns. For this reason the entire
analysis reported here is restricted to the first 600 turns. In order to estimate
errors for the various parameters these 600 turns were broken into 4 sets of 150
turns each. Identical and completely independent analyses were applied to each
150-turn set; values and errors quoted or plotted are the means and r.m.s. values
of the four sets. These errors indicate the variation of these four determinations;
they do not indicate the measurement error of the best parameter determination
that could be extracted from the data sample.

The transfer function parameters listed in Egs. (55), evaluated from the coef-
ficients defined in Egs. (53), with errors calculated as just described, are plotted
in Figs. 3-6. Though these functions are rather jerky and discontinuous, it will
be seen below that appropriate combinations of them are much more regular.

18



OUT-OF-PLANE/IN-PLANE RATIO; NOMINAL HORIZONTAL MOTION‘

1.4
1.2
1
< 0-8 1
® 0.6
0.4 (el ’1[ Jl""' it
I ‘ i :,[
“ i il a
0.2 > ‘iJ" li M" M “i!!!'--
0 ;o et , XS SEX 1 ' L ' i l
0 100 200 300 400 500
‘ BPM NUMBER
2.5 T T T T |
e A {o—
2 F Y o
Lo
<
Q

200 300 400 - 500
BPM NUMBER

Figure 3. A-mode transfer function amplitude ratio e4 evaluated at every BPM.
Upper figure is from simulation, lower figure from measured data.
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Figure 4. A-mode transfer function phase shift ®4 evaluated at every BPM.
Upper figure is from simulation, lower figure from measured data.
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Figure 5. D-mode transfer function amplitude ratio ep evaluated at every BPM.
Upper figure is from simulation, lower figure from measured data.
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9. Relations Between Fourier Coefficients and Matrix Elements

(Some formulas in this section have already been given at the end of Section 6.
They are repeated here because the simultaneous analysis of both A and D modes
is essential.)

The normalized eigencoordinates X introduced in the previous section are
related to the eigencoordinates X = (X, P,Y, Q)T of Eq. (30) by a transformation

B! 0 .
X= L)X (58)
0 Bp

A - ' - - .

A

where

and similarly for D. Combining these with Eq. (31) yields

I —-Ra\ (B' 0,
= X.
z.’y g (RA I ) ( 0 BBI) (60)

Substituting from (52), (58), and (59) into (60) yields

z: =G \/,BA_eA cos pat

+G(ﬂ11;/2RA22 - aDﬁB,ll 2RA12)€})/.2 cos upt + gﬂf)l/ 2RA12€})/2 sin ppt
y+ =G~/Bpep cos upt

+g(,3}1/2RA11 - aAﬂZI/ZRAlg)e}‘{Z cos puat + gﬂ;l/ZRAlzeh/z sin pu gt

We are now in a position to evaluate selected matrix elements from the measured
Fourier coefficients. By identifying coefficients of Eqgs. (61) with those of Eq. (53)
we obtain A-relations ‘

(61)

Aye a A 1
% = Ran — == Raya; ¥ = —Rap
Ag Ba A Ba (62)
A A A
Ravy = ys . ~ fye ys
A12 = Ba 2, Ran A, +a; A,
and D-relations
Ic aD / Dzs 1 !
=—Rp — ——Ryyy; =
D, = B A2 D, ~ fp A12 3

D D D
R = T3 Raoy v — =22 _ zs
A12 ﬂD—Dy ; A22 D, ay D,

where the equations for R4;; and Rga2 are indicated only as approximations,
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reflecting the fact that the replacements ay — a; and ap — ay, valid only
perturbatively, have had to be made since we will not succeed in extracting a4
and ap from the data. (One could hope for the terms containing a4 and ap
to be small, but unfortunately in general the two terms of R4;; and R49; have
comparable numerical magnitudes.) A prime has been added to R, in the
D-equations to indicate that, although in the formalism it is the same as R4,
its determination from data using Eqs. (63) is independent of its determination
using Eqs. (62). Until 84 and Bp have been extracted this redundancy check is
not quite ideal since they have to be approximated by the ideal values 8, and j,.
In a later section 84 and Bp will be obtained directly from the data in an almost
model-independent way and we will use those values for the present analysis. It
is possibile for both R/;;, and R4;2 to vanish or be small, and at such points the
ratio is indeterminate or poorly determined. For that reason, in Fig. 7, paired
values of R412 as abscissa and R/y;, as ordinate, are plotted. In this plot the
redundancy check reduces to the requirement that all points lie on a straight
line. Simulated data is in the upper figure, measured data in the lower. There is
near-perfect agreement for the simulated data, nicely satisfying the redundancy
check. The ratios also ¢luster around the best-fit straight line for the actual data;
deviations could perhaps be used for estimating the errors in the matrix element
determinations.

The equations of this section partially substantiate the statement made pre-
viously that three of the four elements of R4 are directly measurable, but that
R421 is not. The determination cannot be completed in a model-independent
way until the perturbed Twiss functions are determined. Unfortunately, since
slope variables p and ¢ are not measured, we will not succeed in extracting a4
and ap. Also the presence of noise could cause the derived values of 84 and Bp
to be even less valid than 8; and B, but, “planning for success”, we hope this is
not the case.
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lower figure from measured data.
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10. Determination of Mode Invariants and the “Magic Ratio”

As in Eq. (43), the measured displacements (z,y) can be be expressed in
terms of the mode invariants defined in Egs. (41) and the measured transfer
function parameters of Egs. (55).

zy1 =G+/Baeacospat + Gepr/Bpep cos(upt + @ pz)
yt =Gea/Baeacos(pat + ®4y) + G+/Bpep cos ppt,

where the two newly-introduced phases will not be important. These equations
are the same as Eqs. (53) except for the symbols used for coefficients. We equate
the coefficients, explicitly indicating now that the Fourier coefficients and the
B-functions depend on longitudinal coordinate s while the mode invariants €4
and ep do not;

(64)

- _As(s) - _ _Dy(s)
‘f"“g\/ﬂA(s)’ Ve Gv/Bo(s)’ | (69)

or expressing these as formulas for the unknown S-functions,

A? (s) Dz(s)

Bae) =G )= Gr (66)

We are now in position to derive the advertised “magic ratio”. Consistency of
Egs. (62) and (63) requires R4;2 = R/y;, or

44y3

Ba—=— = ,BD (67)

which can be used to determine the rat1o Ba/Bp- Setting this equal to the ratio
of Egs. (66) yields the invariant

Rm=—= (68)

where the ratio Rm, none other than the ratio of mode invariants, is “magic”
because it is the same for all BPM’s and is directly obtained from readily and
accurately measurable Fourier coefficients.

There is a tiniest of potential blemishes on this attractive form. The denom-
inator factor Ay;A; is capable of vanishing, which can make the ratio at best
indeterminate and at worst divergent. Analytically the ratio is indeterminate
but for actual data the presence of noise or other distortion makes it possible
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for the ratio to become very large. The ratio has no practical use at positions
where this indeterminacy is serious. For this reason, in Fig. 8, we plot numerator
factor D;sDy versus denominator factor AysAz, and make a linear regression fit
to the resultant dot plot. The simulated data is almost perfectly consistent with
the constancy of R;,. The actual 14_18 data is also nicely consistent with the
linear fit. Except in the indeterminate region near the origin, deviations from
constancy of Ry, are mostly less than 20%. The superiority of this fit compared
to the R,/ Ra12 fit of Fig. 7 suggests that the assumption of unperturbed g-
functions was unjustified there.
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Once R, has been made available as the slope of a linear fit in Fig. §, it is
possible to write the formulas of Eq. (66) in an improved form with only a single
unknown common factor (G%e4)™!;

) 1 1 .,
Ba(s) = e AN Bo(s) = =D} (69)

To this point lattice functions 84 and Bp have been unknown and, in a pure
sense, they still are because the factor (G%€4)~! is not yet known. But it is so
valuable to know the perturbed S-functions that we now reduce our standards
slightly and assume (A4; being better determined than D)

Az(s)
Gell? =< (70)
()
Taken with Eq. (69), this is similar to assuming
: < Byl >=<B7 > (71)

i.e. the average inverse S-function is unperturbed, which is based on preserving
the equality of [ ds/Bz(s) and the full (integer part plus fractional part) tune of
the lattice; that tune is almost surely unperturbed to any relevant accuracy. But
relation (71) is compromised by the fact that the BPM distribution around the
ring is not uniform. This is especially true for the actual LEP data being analysed,
since LEP’s BPM’s are intentionally placed at points in the lattice where 8y is
maximum. Also < ,B;{l > can be strongly biased by a single bad BPM that yields
an anomalously small value of 4 because A; is small. Anyway Eq. (70) is at
least as good as any perturbative relation, and we adopt it tentatively. In any
case an error here causes only an overall distance scale error.

Plotted in Fig. 9 are f-functions determined this way. In this case the sim-
ulated data (top graph) and real data (bottom graph) are processed somewhat
differently. For the simulated data, since the true perturbed functions are known
we plot \/B4,0/B4,p(true). For the measured data the perturbed S-function is
unknown and we plot \/f84,p/fz,y(s). The deviations from 1 are much greater
for the actual data than for the simulated data. It is not known whether that is
due to noise or to true deviations of the A-functions.
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11. Attempted Further Parameter Determination

We substitute all presently known parameters into Egs. (60) and (53) to
obtain

Tt 1 0 %j‘ + az)%‘j ) Bage )
Dt —¢ .A 0 ) ];4 Ramn —A: - OtA—-A’f-
Yt TEtaag Bazs 1 0
qt Ran D 1/2 1/20 0.
A €4 cos pgt
—a, ,BAI/Z 1/""cosl.t t+8, 1/2 eA/zsinpAt
ﬁ;)ﬂegz cos i Dt

"OtDﬂDl/2 })/' cos upt+ ﬂD eD/2 sin ppt.

Az cos pat + Dgccos ppt + Dyzgsin ppt

k4

Dy cos ppt + Ayc cos pat + Ayssin pat.

(72)
One can check that these equations for z; and y:, as well as not depending on
R 421, are identically satisfied independent of a4 and ap, and hence cannot be
used to determine those quantities. This should perhaps not be suprising for
the following reason. A coordinate transformation, z — z,p — p' = p — £z,
transforms M to

1 0 cos 4 + asin sin 1 0
M = porasmp Bsinp . (73)
A —ysinp cosp — asiny £ 1

which is equivalent to replacing a by a + £{A. Since only the unmeasured “mo
mentum” or “slope” components p and ¢ are influenced by the o parameters,
those parameters cannot be inferred by measuring only z and y. (As stated in
the introduction we are intentionally refraining from inferring slope coordinates
by using adjacent BPM values.) It can be shown that the transformation (73)
leaves £ = det |C + B| (but not e, f,g and A) invariant.

Should one tentatively attempt to exploit this invariance to simplify the equa-
tions by setting a4 = ap = 0 one obtains from Eq. (72), expressions for the
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unmeasured components

Py —gl@Al/ 5.4/ sin p 4t +QRAo1ﬂD eD * cos ppt — -G ycﬂ_l/“ },/2 sin upt

D - 2 . 2
q =QRA21[3A 5A/~cosyAt—gD_ﬂA1/26}4/ sm,uAt+gﬂD/ ID/ sin ppt,
y

(74)
where the primes indicate that p} and g; are not necessarily even approximately
equal to the “correct” slope coordinates that might, for example, be obtained
from processing adjacent BPM outputs. Having obtained expressions for p; and
g}, one can substitute into the Egs. (46) in the forlorn hope of obtaining the as-
yet-undetermined quantities trA and trD. This yields sixteen equations: 2(trig -
functions) times 2(tunes) times 4(equations). Since all these equations turn out
to be satisfied identically, they cannot be used to determine any other parameters.
For checking these identities one needs to use the result

TCCDyAz = Achzc + (.BARA21)Ay3Dy- (75)
It can be shown using? Egs. (24) that this is simply equivalent to the condition
det|R4| = (/(1—(). This can be used to determine { from R 42; or vice versa, but
they are not determined independently. The expense of having checked Egs. (46)
can be charged against the QA (quality assurance) account, since self-consistency
has been tested. Should we choose to trust that the global decoupling operation
performed just before the data was obtained, we would substitute { = 0 to obtain

Achzc

if and only if £ = 0). 76
A4,.D, ( y ) (76)

BaRpa = —

It seems that the best that can be done to derive the slopes p; and ¢; from
the measurements at a single BPM is to expand the second and fourth rows of
Eq. (72) using o and ay in place of a4 and ap and using Eq. (76) for R49;.

12. Quantifying the Degree of Local Coupling

The ultimate goal of our investigation is to “locally decouple” accelerator
lattices. A practical algorithm for achieving this is described in the accompanying
paper. Here we contemplate two candidate definitions of local coupling, justify
the particular choice adopted, and supply qualitative interpretation. As part of
the discussion it is necessary to define the degree of local coupling in order to be
able to specify a limit that separates acceptable and unacceptable local coupling
and to define a global r.m.s. average coupling.
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The angle 64 defined in Eq. (45), when evaluated at local position s has
a clear geometric interpretation as the major axes of the ellipse that would be
visible on a (non-destructive) phosphor screen placed at s, when only the A-
mode is excited. In TEAPOT documentation this is known as the A-eigenangle.
Its deviation from zero is a candidate for use in quantifying local coupling. For
example, this angle might be required to be small, say less than 0.1. However,
this quantity has an undesirable feature. Because of the alternating gradient
optics, the beam profile is strongly distorted as s varies. At vertical focusing
quads the vertical axis is stretched and the horizontal compressed. This has
the effect of magnifying tan 64, proportional to the stretch ratio \/8y/Bz. The
distortion is reversed at horizontally focusing quads. Requiring 64 to be less than
0.1 at a vertical focusing quad location requires it to be much less than 0.1 at
a horizontal focusing quad, which is probably more conservative than intended.
To compensate for this effect one can define

B=

normalized A-eigenangle = 644/— (77)

By

Plots of this quantity are shown in Fig. 10. All this discussion can be repeated for
the D-mode. The factor \/fB;/By has the desired effect of moderating the varia-
tion with s, but it is ad hoc and the normalized eigenangle cannot be expected
to behave gracefully for large eigenangles, because of its definition in terms of a
transcendental function. :

The decoupling algorithm in TEAPOT quantifies coupling by the quantity
BC€(A), called the local coupling badness, where

\/BC(4) = GA\/% (78)

and e4 is the out-of-plane/in-plane ratio defined in Eq. (43). The same discussion
as in the previous paragraph can be used to motivate the inclusion of the square
root factor. Because ey is a simple y/z ratio, Eq. (78) correctly compensates
the scale distortions described there. This choice is further supported by the
following argument. In what might be a highly coupled lattice, consider a short
sector that contains only ideal components with no skew elements. Where it
enters this ideal sector the A-eigenmotion can be decomposed into (z,z’,y,y)
components. Though we are describing nominally horizontal motion, it is possible
for the y amplitudes to be comparable to or even greater than, the z amplitudes,
because of strong coupling elsewhere in the lattice. Through this ideal sector
these amplitudes propagate according the standard two dimensional formalism.
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In particular, the Courant-Snyder invariants ez(A) = 72> + 2a;zz’ + 3;z'% and
its y counterpart e,(A) are conserved quantities. Realizing from Eqs. (43) that
ea = y(max)/z(max) it can be seen that BC(A) is conserved in sectors that

contain no coupling elements. Note that \/8:/By rather than \/B4/8p is the
factor that correctly gives this conservation. Plots of /B€(4) are shown in
Fig. 11. The angle \/f:/B,04 can have either sign. When it is much less than 1
radian its magnitude is approximately equal to \/BC(A).

13. Conclusions

* We consider the agreement between theory and observation to be good, simul-
taneously validating the data, the codes, and our understanding of the situation.
The measured magic ratio data of Fig. 8 could not fit so well without the theory
being essentially correct and the beam position measurement and data acquisition
system yielding more or less what they were supposed to. The good agreement
between two determinations of R4;2 shown in Fig. 7 gives independent model-
independent corroboration of the inherent self-consistency of the procedures. The
fact that this agreemerit is better when measured values §4 and Bp are used says
that their deviations from §; and S are meaningful and have been reliably (if
not accurately) determined. Naturally the simulated data, being free of noise
and distortion, gives cleaner results, but they are qualitatively similar. They are
indicative of the quality of results which can, in principle, be obtained with an
ideally functioning BPM system. It does not seem unreasonable to anticipate
data of this general quality in the near future at LEP since all the data analysed
in this paper were acquired in ten minutes without having expended much time
at optimizing conditions.

This investigation was undertaken largely to anticipate the performance of
beam position data acquisition designs of future colliders SSC and LHC. This
investigation has shown that a system like that at LEP will reliably yield the
coupling information needed for locally decoupling these large colliders. At LEP,
coupling measurements are available only at every second half-cell. The SSC de-
- sign calls for similar instrumentation, with 10* turn, z,y digitized pairs available
for readout, on demand, at every fifth half-cell. Since cross-coupling effects are
expected to be somewhat more serious for SSC than for LEP, the possibility of
instrumenting every quadrupole should perhaps be considered.
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