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ABSTRACT

We discuss radiative corrections for interactions in the SSC environment. Based on the

theory of Yennie, Frautschi and Suura, we develop appropriate Monte Carlo event generators to

compute the background electromagnetic radiation. Our results indicate that multiple-photon

effects must be taken into account in the study of SSC physics such as Higgs decay.
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1 Introduction

The Superconducting Super Collider (SSC), which is scheduled to begin operation in a few

years, will probe a new frontier in high energy physics. New physical processes are expected

to be discovered. We then need to determine whether these processes fall within our present

understanding of particle interactions (Standard Model); otherwise a new theory will have to

be developed. Thus, before the SSC is constructed, we ought to extract predictions as precise

as possible from our current theory, in order to maximize the discrimination between signal

and background. This amounts to calculating the higher-order radiative corrections on SSC

processes.

We have embarked on a calculation of the multiple-photon(gluon) radiative effects in the

SSC environment. Here, we report on the progress we have made to date. The basic tool in our

study is a Monte Carlo event generator algorithm which was developed by two of us (S.J. and

B.F.L.W. [1]) for high precision Z0 physics at LEP/SLC. The algorithm relies on the theory

of Yennie, Frautschi and Suura [2], who have obtained expressions for scattering cross-sections

that are explicitly free from infrared divergences to all orders in the electromagnetic coupling

constant. We utilize these expressions to calculate scattering amplitudes for SSC processes

with multiple photon production. So far we have concentrated on initial-state electromagnetic

radiation [3]. For a complete study of radiative effects, one needs to include final-state radiation

as well as the production of gluons. We shall report on progress in this direction soon [4].

We consider the scattering of two fermions, f1f2 → f ′
1f

′
2 +nγ, where n photons are emitted

from the initial fermions, f1 and f2. Our discussion is organized as follows. In section 2 we

review the YFS theory. In section 3 we discuss how the YFS expressions can be combined with

Monte Carlo methods to develop an event generator (YFS2) that calculates multiple photon

emission with arbitrary detector cuts [1]. In section 4 we extend YFS2 to the SSC domain,

arriving at the event generator SSCYFS2 [3]. In section 5 we present sample results and

comment on their significance. Finally in section 6 we discuss our conclusions.
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2 The Yennie-Frautschi-Suura theory

Even though Green functions in quantum electrodynamics are not in general infrared finite, as

shown by Yennie, Frautschi and Suura [2], all cross-sections that can be experimentally observed

are finite to all orders in perturbation theory. The divergences arising from the infrared region

of loop diagrams are canceled by the effects of the undetectable soft photons. To understand

how this occurs, consider scattering of two fermions,

f1(p1) + f2(p2) −→ f ′
1(q1) + f ′

2(q2) , (1)

where pµ
1 , p

µ
2 (qµ

1 , qµ
2 ) are the momenta of the incoming (outgoing) fermions, respectively. To

lowest order in the QED coupling constant α, the cross-section is the Born cross-section dσB. To

first order in α, the cross-section can be written (we only consider initial-state renormalization)

dσB(1 + 2αReB), where

B(p1, p2) =
i

8π2

∫
d4k

k2

(
2p1 − k

k2 − 2p1 · k
− 2p2 + k

k2 + 2p2 · k

)2

(2)

is infrared divergent.

Now consider the same process where a soft photon is emitted from one of the incoming

fermions (bremsstrahlung). By integrating over the momentum kµ of the photon, where k0 <

ǫ
√

s/2, s = (p1 + p2)
2 being the invariant squared mass of the incoming state, we obtain the

cross-section dσB(1 +
∫ d3k

k0 S̃), where

S̃(p1, p2, k) = − α

4π2

(
p1

p1 · k
− p2

p2 · k

)2

(3)

is infrared divergent. The parameter ǫ that separates hard from soft photons is arbitrary and

is chosen appropriately to match detector capabilities.

It can easily be seen that the divergences of B and S̃ cancel each other. Thus the experi-

mentally observable cross-section

dσ = dσB

(
1 + 2αReB(p1, p2) +

∫ d3k

k0
S̃(p1, p2, k)

)
(4)

is infrared finite.
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As was shown in [2], this cancellation of infrared divergences occurs to all orders in α. The

resulting expression for the cross-section is manifestly infrared finite. It can be written in the

form dσ = exp{δY FS}dσ0, where

δY FS(p1, p2, ǫ) = 2αReB +
∫ d3k

k0 S̃(p1, p2, k) (1 − θ(k0 − ǫ
√

s/2))

= α
π

(
2(ln(s/m1m2) − 1) ln ǫ + 1

2
ln(s/m1m2) − 1 + π2/3

)
,

(5)

m1, m2 being the masses of the incoming fermions. The exponential form factor exp{δY FS} is

the soft-photon contribution summed to all orders in perturbation theory. We can implement

such expressions in event generators, in order to calculate the effects of radiation to arbitrary

precision.

3 The Monte Carlo generator YFS2 Fortran

In this section, we discuss how one can utilize the exponentiation of soft photon effects to

develop Monte Carlo event generators that estimate the effects of radiation. Specifically, we

review the key ingredients in the Monte Carlo event generator YFS2 Fortran [1] that was

developed for e+e− → f f̄ + nγ, f 6= e, in the Z0 energy regime.

We wish to use Monte Carlo methods to calculate the cross-section of the process

e+(p1) + e−(p2) −→ f(q1) + f̄(q2) + γ(k1) + . . . + γ(kn) , (6)

where we sum over the number of photons and integrate over their momenta. Thus we include

both soft and hard photons. As outlined in the previous section, the differential cross-section

takes the form

dσ = exp{δY FS}
∞∑

n=0

dσ(n) , (7)

where dσ(n) is the contribution of n hard photons. It can be expressed in terms of the YFS

hard-photon residuals [2] β̄i(k1, . . . , ki) (i = 1, . . . , n), which are free of all virtual and real

infrared divergences to all orders in the QED coupling constant α. We obtain

dσ(n) =
(
S̃(k1) · · · S̃(kn)β0 + . . . + βn(k1, . . . , kn)

)

× 1
n!

δ4 (p1 + p2 − q1 − q2 −
∑n

i=1 ki)
d3q1

q0

1

d3q2

q0

2

d3k1

k0

1

· · · d3kn

k0
n

.
(8)
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We shall discuss these residuals shortly.

Events are generated as follows. First the complicated cross-section dσ is replaced by

dσ′, so that the integral
∫

dσ′ is simple enough to calculate. We should emphasize that, for

efficient event generation, it is always desirable to generate a background population of events

according to a distribution which embodies all of the general features of Eq.(8), but which

removes unnecessary details. In addition, several changes of variables are used to make the

background generation simpler and more efficient from the standpoint of CPU time.

The variables in dσ′ are then generated according to this distribution. For each set of values

(event) we calculate the weight

w =
dσ

dσ′
, (9)

and then reject events according to their weights (9). The exact total cross-section is

σ =
∫

dσ′〈w〉 , (10)

where 〈w〉 is the average weight. This procedure is very complicated due to the large number of

variables in dσ′. In fact, even the number of variables, which is the dimension of phase space,

is not fixed and needs to be generated.

After several simplifications [1] we arrive at the result

σ′(n)
(s) =

∫ vmax

ǫ

dv

v
J0(v)

1

(n − 1)!

(
2α

π
ln(s/m2

e) ln(v/ǫ)
)n−1

σB(s) , (11)

where J0 is a certain Jacobian, and v = 1 − s′/s, s′ = (q1 + q2)
2 being the squared mass of

the outgoing state, measures the fraction of energy carried away by radiation. σB(s) is the

total Born cross-section. Thus we see that the number of hard photons ought to be generated

according to a Poisson distribution with mean

n =
2α

π
ln(s/m2

e) ln(v/ǫ) . (12)

The variable v is generated according to the above integral (11) with the help of a one-

dimensional Monte Carlo generator. Once v and n are determined, the phase-space variables

q1, q2, k1, . . . , kn are generated analytically. It is then straightforward, albeit cumbersome, to

compute the event weight (9).
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We now turn to a discussion of the hard-photon residuals [2] β̄i(k1, . . . , ki). They contain the

physics besides QED effects and are therefore model dependent. For YFS2, only the residuals

β0,1,2 are used, as two of us have explained in Ref. [1]. We should emphasize that β2 has only

been included in the second-order leading-log approximation because we have checked [5] that

the exact result does not affect the results of the program beyond the quoted 0.1% accuracy

of the program. The residuals are linear combinations of Born cross-sections whose arguments

are defined in a reduced phase space. This means that in the YFS2 Monte Carlo, some choice

must be made for the reduction of the n-photon +f f̄ phase space to the j-photon +f f̄ phase

space (n = 0, 1, 2, . . ., j = 0, 1, 2, n ≥ j), which is involved in the definition of the residuals

βi (i = 0, 1, 2). We call this choice the reduction procedure R and the exact YFS result (7) is

independent of it, if it is done according to the rigorous YFS theory. The map R is such that

momentum is conserved in the reduced phase space. It cannot depend on the individual photon

momenta and has to reduce to the identity in the limit of vanishing photon momenta, but it is

otherwise arbitrary. This freedom can be exploited to minimize the weights and therefore the

error for a given number of simulated events. Our choice for R is explained in [1].

In this way we have realized the YFS theory for e+e− → f f̄ + nγ with β0, β1, and β2.

Next, we discuss how we extend YFS2 to more general processes, as well as the modifications

needed to make the program applicable in the SSC energy regime.

4 Going from YFS2 to SSCYFS2

An extension of the YFS2 Monte Carlo algorithm described in the previous section to particle

interactions at SSC energies involves the introduction of new physics (mainly through a modifi-

cation of the βi, which we will currently achieve via the Born cross-section), numerical problems

(due to the very high energies involved, care is needed for the accuracy of the formulas), and

certain technical problems associated with the Monte Carlo weight rejection method.

We begin by discussing the modifications made to introduce the new physics at SSC energies.
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The new program, SSCYFS2, computes the cross-section for the scattering of two fermions ♮

f1(p1) + f2(p2) −→ f ′
1(q1) + f ′

2(q2) + γ(k1) + . . . + γ(kn) . (13)

The mass parameters mq used for the quarks are the Lagrangian quark masses. We have in

mind that the overall momentum transfer in the interactions will be large compared to the

typical momenta inside the proton. In fact strictly speaking, these quark mass parameters

should be running masses mq(µ), where µ is the scale at which they are being probed. Such a

running mass effect is well-known and is readily incorporated in the program, as the accuracy

one is interested in may dictate. Thus, with this understanding, further explicit reference to

the running mass effect is suppressed.

The interactions realized by YFS2 (Eq.(6)) involve only an exchange of γ and Z0 in the s-

channel. Since SSCYFS2 realizes the more general interaction (13), one needs to introduce γ, Z0

and W± exchange in the t- and u-channels, accordingly. This is done by generalizing the Born

cross-section to include the additional channels. Moreover, in the case of quark interactions, a

gluon exchange was added in all three channels. The running strong coupling constant

αs(µ) =
12π

(33 − 2nf ) ln{µ2/(ΛMS
nf

)2}
, (14)

was used, where nf is the number of quark flavors below the energy level µ. In our case, nf = 6,

and therefore the QCD parameter ΛMS
6 is used. It can easily be related to the experimentally

measured parameter ΛMS
4 = 238 MeV :

ΛMS
6 = ΛMS

5



ΛMS
5

mt




2/21

, ΛMS
5 = ΛMS

4



ΛMS
4

mb




2/23

. (15)

The masses of the top and bottom quarks were set to mb = 5 GeV and mt = 250 GeV,

respectively, but the results are little affected by their precise values.

Certain numerical problems arise at very high energies, because of the very small value of

all ratios m/
√

s, where m is the mass of any interacting particle, and
√

s = 40 TeV is the

energy of the incoming fermions in their center-of-mass frame. Certain formulas had to be

♮At present, the program cannot handle third-generation fermions.
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rewritten so that such small numbers would not be ignored by the computer when they should

not be; if one is not careful, ratios of the form 0/0 appear at various places. Working at SSC

energies, however, has the advantage that all terms of order m2/s or higher can be dropped.

The error is negligible and leads to a considerable simplification of formulas, and consequently

to a reduction in computer time.

Next we discuss the event-generation procedure. In simplifying the exact cross-section dσ

in YFS2, the residuals βi (i = 1, 2) where set to zero, whereas β0 was replaced by a constant.

In the present case, this is no longer possible, because of the presence of the t-channel. The

cross-section has a singularity at t ≡ (p1 − q1)
2 = 0 of the form 1/t2. To account for the

singularity, an angle cutoff θ0 = 100 mrad is introduced. This is in accord with current detector

capabilities, and can be changed at will. In the crude cross-section dσ′ the residuals βi (i = 1, 2)

are still set to zero, but β0 takes the form

A +
B

t2
, (16)

where the constants A and B depend on the interaction. ‡ When a u-channel also contributes, a

similar term of the form 1/u2 must be added to account for the singularity at u ≡ (p1−q2)
2 = 0.

Finally, we comment on the choice of the reduction procedure which is needed for the

definition of the arguments of the YFS residuals βi (i = 0, 1, 2), as explained in section 3. The

reduction procedure is more delicate in the presence of the t-channel, due to the singularity

at t = 0. One has to make sure that the weights (9) do not become uncontrollably large.

This is managed by making t as large as possible after the reduction. It is not always possible

to increase the reduced t so that the weight (9) remains below the maximum weight. The

object of this exercise is to minimize the error originating from the tail of the distribution of

weights above the maximum weight, which can be changed at will. This is accomplished by

a somewhat involved reduction procedure, which is an adaptation of the similar procedure in

BHLUMI1.xx [6].

This concludes our discussion of the modifications in the YFS2 program which are necessary

in order to realize interactions at SSC energies.

‡A fictitious photon mass cutoff was also tested, but it turned out to lead to a large weight rejection rate.
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5 Results

We now present some results on the effects of multiple-photon initial-state radiation on the

incoming qq and qq̄ “beams” at SSC energies using our YFS Monte Carlo event generator

SSCYFS2 Fortran. Our objective is to determine the size of these effects with an eye toward

their incorporation into SSC physics event generators. For definiteness, we will illustrate our

results with q = u, d, where we use mu = 5.1 × 10−6 TeV, md = 8.9 × 10−6 TeV, and view
√

s = 40 TeV as our worst-case scenario. The results are similar in the more typical [7] case of

center-of-mass energy
√

s ≈ 1
6
40 TeV ≈ 6.7 TeV. For these respective input scenarios, we shall

discuss the following distributions: the number of photons per event, the value of v = (s−s′)/s,

and the squared transverse momentum of the outgoing nγ state. These distributions give us

a view of the effect of this multiple-photon radiation on the incoming quarks and in the SSC

environment, where one is really interested in pp → H + X, where H is the Standard Model

Higgs particle.

Considering first the number of photons per event, we have the results in Fig. 1. There, we

show that for the uu incoming beams, the mean number 〈nγ〉 of radiated photons is 0.85±0.92.

This should be compared to the dd incoming state, where 〈nγ〉 = 0.21 ± 0.45. For reference,

we recall [1] that at LEP/SLC energies, the corresponding value of 〈nγ〉 is, for the incoming

e+e− state, ∼ 1.5± 1.0. Hence, we see here one immediate effect of the high energy of the SSC

incoming beams: the initial uu-type state will radiate a significant number of real photons,

with a consequent change in the observed final-state character. In particular, the issue of how

much energy is lost to photon radiation is of immediate interest. This energy is unavailable for

Higgs production by uu (or dd) and, further, it may fake a signal of H → γγ if we are unlucky.

Accordingly, we now look at the predicted distribution of the variable v. If only one photon

is radiated, v is just the energy of this photon in the center-of-mass system of the incoming

beams (in units of the incoming beam energy).

What we find for v is shown in Fig. 2 for the uu → uu + nγ case (the dd → dd + nγ case is

similar). We see the expected shape of v from Ref. [1], and its average value is 〈v〉 = 0.05±0.09.

Hence, ∼ 10% of the incoming energy is radiated into photons; this energy is not available for
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Higgs production and it is therefore crucial to fold our radiation into the currently available

SSC Higgs production Monte Carlo event generators [8] and to complete the development of

our own YFS multiple-photon (-gluon) Higgs production Monte Carlo event generator, which

is under development.

Given that we know that in the SSC environment we have significant multiple-photon

radiation effects, the question of immediate interest is how often the transverse momenta of

two photons are large enough that they could fake a H → γγ signal. We will answer this very

important question in detail in the not-too-distant future when our complete Higgs production

YFS Monte Carlo event generators are available [4]. However, here we can begin to study this

question by looking into the transverse momentum distribution of our YFS multiple-photon

radiation in, e.g., uu → uu + nγ. This is shown in Fig. 3, where we plot the total transverse

momentum distribution of the respective YFS multiple-photon radiation. What we find is that,

for
√

s = 40 TeV, the average value of this total transverse momentum is (in the incoming uu

center-of-mass system)

〈p⊥,tot〉 ≡ 〈|
n∑

i=1

~ki⊥|〉 = (0.0184 ± 0.0129)
√

s , (17)

where ki (i = 1, . . . , n) are the four-momenta of the n photons. Hence, for the SDC acceptance

cut of 1
2
| ln tan(θ/2)| ≡ |η| < 2.8, or θi > 122 mrad, this means that there may be some possible

background to H → γγ for, e.g., mH ≈ 150 GeV.

6 Conclusion

To summarize, our initial study of multiple-photon radiation in the SSC physics environment

shows that any Monte Carlo event generator which hopes to achieve an accuracy of order 10%

in the SSC physics simulations must treat the respective effects in a complete way. We have

computed these effects for incoming quark-(anti)quark states at SSC energies using the Monte

Carlo event generator SSCYFS2 Fortran based on our original YFS2 Monte Carlo in Ref. [1].

We found that for an initial uu state, the mean number of radiated photons is 0.85 ± 0.92,

so that the multiple-photon character of the events must be taken into account in detailed
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detector simulation and physics analysis studies. Furthermore, the mean value of v = (s−s′)/s

is 0.05± 0.09 and the average total squared transverse momentum 〈k2
⊥,tot〉 is (0.025± 0.002) s.

Hence, the impact of these event characteristics on Higgs production in general and on the

H → γγ scenario in particular must be assessed in detail.

At the moment, we can say that the initial platform for precision SSC electroweak physics

simulations on an event-by-event basis using our YFS Monte Carlo approach [1] has been

established. A lot of work remains to be done. We need to assess the effects of gluon radiation.

We also have to include final-state radiation and more physics. This will allow us to perform

a detailed study of processes of interest, such as Higgs production. On the technical side, a

more efficient algorithm is needed that utilizes a less cumbersome reduction procedure. We

enthusiastically look forward to the complete development of our program.

ACKNOWLEDGMENTS:

One of the authors (G.S.) thanks the Organizers of the XXXII Kraków School of Theoretical

Physics for inviting him to participate in their conference. In addition, two of the authors (S.J.

and B.F.L.W.) thank Profs. C. Prescott and J. Ellis of SLAC and CERN respectively for the

kind hospitality of their Groups, wherein part of this work was performed.

10



References

[1] See, e.g., S. Jadach and B. F. L. Ward, Comp. Phys. Comm. 56 (1990) 351;

[2] D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (NY) 13 (1961) 379; K. T.

Mahanthappa, Phys. Rev. 126 (1962) 329. Phys. Rev. D40 (1989) 3852; ibid. 38 (1988)

2897, and references therein.

[3] D. B. DeLaney, et al., preprint UTHEP-92-0101, 1992.

[4] D. B. DeLaney, et al., to appear.

[5] S. Jadach, et al., Phys. Rev. D42 (1990) 2977.

[6] S. Jadach and B. F. L. Ward, Phys. Rev. D40 (1989) 3582.

[7] See, e.g., E. Eichten, et al., Rev. Mod. Phys. 56 (1991) 579.

[8] See, e.g., F. E. Paige and D. Protopopescu, in Snowmass Summer Study 1986, ed. R. Don-

aldson and J. Marx (American Physical Society, New York 1988) p.320; H.-U. Bengtsson

and T. Sjostrand, Comp. Phys. Comm. 46 (1987) 43.

11



5.000 10.000 15.000 20.000
0.000 · 105

1.000 · 105

2.000 · 105

3.000 · 105

4.000 · 105

5.000 · 105

Fig.1: Histogram of the photon multiplicity in uu → uu + nγ for |η| < 2.8,
√

s = 40 TeV.
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Fig.2: v-distribution for uu → uu + nγ, where v = (s− s′)/s and s′ = (q1 + q2)
2 is the squared

final uu invariant mass. Here, |η| < 2.8,
√

s = 40 TeV.

13



2.500 · 10−1 5.000 · 10−1 7.500 · 10−1 10.000 · 10−1
0.000 · 105

1.000 · 105

2.000 · 105

3.000 · 105

4.000 · 105

5.000 · 105

6.000 · 105

Fig.3: Total squared transverse momentum distribution of the photons in uu → uu + nγ for

|η| < 2.8 in units of s,
√

s = 40 TeV.

14


