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Abstract

We review the results of large scale simulations[1] of noncompact quenched

QED which use spectrum and Equation of State calculations to determine

the theory’s phase diagram, critical indices, and continuum limit. The re-

sulting anomalous dimensions are in good agreement with Schwinger-Dyson

solutions of the ladder graphs of conventional QED and they satisfy the hy-

perscaling relations expected of a relativistic renormalizable field theory. The

spectroscopy results satisfy the constraints of the Goldstone mechanism and

PCAC, and may be indicative of Technicolor versions of the Standard Model

which are strongly coupled at short distances.

INTRODUCTION

What is the simplest, most elementary yet

physical example of anomalous dimensions?

Perhaps it is the relativistic hydrogen atom,

a subject we all learn long before field the-

ory. In the Dirac theory the ground state wave

function behaves at short distances like r(γ−1)

where γ−1 = (1−Z2α2)1/2
−1 = −Z2α2/2+....
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The unscreened Coulomb attraction has made

the wave function more singular than pre-

dicted by the Schrodinger equation. Consid-

ering scale transformations, we see that the

interaction has changed the scaling dimension

of the electron field and an anomalous dimen-

sion η = γ − 1 has appeared. The anomalous

dimension vanishes in the Schrodinger descrip-

tion of the hydrogen atom because the kinetic

energy p2/2m dominates the interaction e2/r

at short distances. The electron wave func-

tion has “canonical” or free field dimensions
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in this case. However, in the Dirac equa-

tion the relativistic kinetic energy is p which

scales in the same fashion as the potential and

the interaction can not be neglected at short

distances. QED with massless fermions can

be solved in the ladder “approximation” and

much of the same physics emerges in a rela-

tivistic setting[2]. The appearance of anoma-

lous dimensions which depend continuously on

the bare charge is confirmed. In fact, the

physics is very rich, complete with chiral sym-

metry breaking, a Goldstone mechanism, etc.

Again, we are not dealing with a real field the-

ory but the ladder approximation is a step in

that direction and it is thought to be a good

approximation to a class of Technicolor theo-

ries [3].

QED in the ladder approximation also

poses a challenge to lattice gauge theory which

should eventually solve strongly coupled QED

including fermion vacuum polarization. Can

lattice simulations of the quenched theory

formulated on the lattice and simulated by

first principle methods yield chiral symmetry

breaking and anomalous scaling laws in agree-

ment with the continuum formulation? In this

report we shall answer this question in the af-

firmative, although the lattice approach has

not mapped out the full parameter space of

couplings available to the continuum formal-

ism. We shall also see how lattice spectroscopy

calculations can be used to find anomalous di-

mensions and uncover the non-triviality of this

not-so-simple model.

THE MODEL

The lattice QED action SQED in its non-

compact formulation reads:

S = SS + SSB (1)

where

SS = 1/2e2
∑

µ,ν,n

F 2
µν(n) +

Figure 1. Chiral equation of state for βc = 0.257,

δ = 2.2 and βmag = 0.833

Figure 2. Equation of state for the ρ mass. Mρ/t
ν is

plotted versus m/(βc − β)δβmag for ν = 0.67, βmag =

0.84 and δ = 2.2



1/2
∑

µ,n

ψ̄(n)ηµe
iθµ(n)ψ(n + µ)

+h.c. (2)

SSB = mψ̄ψ (3)

θµ are the gauge variables – oriented, real

numbers ranging from −∞ to +∞–, Fµν is the

field strenght tensor, ψ are the fermionic fields,

η the staggered phases. S is thus controlled

by two bare parameters, β = 1/e2, e being

the electromagnetic coupling, and the fermion

mass m. By using staggered fermions SS has,

for any value of the lattice spacing a, a contin-

uous chiral symmetry which is spontaneously

broken at a finite (i.e. non zero) value of the

coupling βc. The mass term SSB is an explicit

symmetry breaking term which is required by

technical difficulties connected with the chiral

extrapolation. We thus sample the critical re-

gion, at small, but non-zero m. In this region

(β → βc, m → 0) the fundamental tools are

the Equation of State (EOS) and the scaling

laws : by exploiting them we will be able to

get information about the singularities occur-

ring at β = βc, mq = 0 by working at finite

values of m and βc − β. This is similar to the

study of critical phenomena on finite systems:

because of the finite size the system is always

in the symmetric phase, thus in both cases (fi-

nite size/finite mass) we deal with single phase

systems, and in both cases appropriate scaling

laws tell us the physics of the phase transition.

THE EOS AND THE SCALING LAWS

The response of the system in the critical

region to an external symmetry breaking field

is expressed by universal functions of reduced

variables: this is the general fact which allows

the computation of the critical coupling, and

related exponents. In our case the symmetry

breaking term is the mass term mψ̄ψ in the la-

grangian: the response functions we consider

are the chiral condensate itself (the natural or-

der parameter for the chiral symmetry), and

the meson masses.

EOS for the chiral condensate

The EOS for the chiral condensate, in full

analogy with a ferromagnetic system [4] (just

replace m with an external magnetic field,

and ψ̄ψ with the spontaneous magnetization),

reads:

m/ < ψ̄ψ >δ= f(t/ < ψ̄ψ >1/βmag) (4)

(Here and in the following t = βc − β.) Its

usage is demonstrated in Fig.1 where all our

data are plotted and nicely fall on a universal

curve when δ = 2.2, βmag = 0.833 βc = 0.257.

The universal behaviour is in principle unique

to the correct parameters, but the errors on

the data broaden the choice. Thus one has to

check the persistence of the (apparent) univer-

sal behaviour when adjusting βmag, δ, βc: the

errors on these indices are determined by this

procedure.

EOS for the masses

Once we assume that the critical behaviour

of the system is controlled by only one macro-

scopic (diverging) scale length, the equation of

state for the masses easily follows:

Ma = tνGa(m/t
δβmag) (5)

Ma is any meson mass (different of course from

the Goldstone boson) whose reciprocal 1/Ma

is to be identified with the correlation length

of the system, times an irrelevant constant. In

complete analogy with the EOS for the chi-

ral condensate, we can determine βc, δ and ν

(Fig.2).

The check of the crucial hypothesis that

the critical behaviour is controlled by one di-

vergent length scale (apparently a hopeless

task) is done a posteriori by verifying the hy-

perscaling relations among the critical expo-



Figure 3. ψ̄ψx versus Mρ

nents and indeed in this case proved to be cor-

rect (Table 1, to be discussed later).

The scaling laws

The EOS’s for the chiral condensate and

for the masses can be, in some sense, combined

to give the following scaling law:

< ψ̄ψ >= CaM
βmag/ν
a = CaM

d/2−1+η/2
a (6)

whose most noticeable characteristic is the de-

pendence on just one parameter, the anoma-

lous dimension η. So, eq.(6) offers the possi-

bility of a simple test of trivial vs. non-trivial

behaviour: ψ̄ψx (x = ν/βmag) plotted versus

m gives a straight line (including the origin)

for the correct value of x. Recall that in four

dimensions η = 0 if the system is described by

mean field behaviour, which thus corresponds

to x = 1. In Fig. 3 we experiment with differ-

ent x values: the x corresponding to the best

fit (solid) coincides within errors with the ratio

of β and ν from independent determinations

(this method gives the most precise estimate

Figure 4. log Mπ vs. log m for β =

(0.245, 0.250, 0.255, 0.260, 0.265) (top to bottom). The

straight line superimposed are fits to the relations

Mπ = Amx. In the strong coupling region x is consis-

tent with the PCAC prediction of 0.5.



Table 1. Critical indices and hyperscaling relations

Index Result from the simulation Result from HS MF

βmag 0.86(3) 0.86(6) 0.5

γ = βmag(δ − 1) 1.00(5) 1.0

δ 2.2(1) 2.16 3.0

η 0.5(1) 0.5 0.0

ν 0.675 0.68(3) 0.5

−4ν + 2βmag + γ 0.1(1) 0.0 0.0

(2 − η)ν/γ 1.1(1) 1.0 1.0

(2ν − γ)/(νη) 1.1(1) 1.0 1.0

(6 − η)/(2 + η) − δ 0.13(20) 0.0 0.0

of ν = 0.68(3)); the dotted line, corresponding

to the correct value of βmag and to the mean

field value for ν, demonstrates the sensitivity

of the method to the exponents choice; x = 1

(dashed), hence η = 0, is clearly ruled out. η

turns out to be ≃ 0.5, compatible with the re-

sult given by the hyperscaling relation between

η and δ.

SPECTROSCOPY

The numerical values of the fermion and

meson masses contribute to build a coher-

ent scenario: the dynamical breaking of chiral

symmetry should be associated with the ap-

pearance of a Goldstone boson, the approach

to the continuum limit can be tested by look-

ing at the scaling plots, which in turn give in-

formation on the level ordering.

The Goldstone character of the pion

In the strongly coupled, symmetry broken

region, we expect the usual PCAC behaviour.

The square of the pion mass should be lin-

ear in the quark mass (plus second order cor-

rections), eventually vanishing in the chiral

limit. The pion decay constant, on the con-

trary, should stay finite in the same limit. The

pion behaviour is shown in Fig. 4 : the rela-

tion m2
π ∝ mq is well verified in the strong

coupling region, while deviations are observed

at weak coupling. Figure 5 shows f 2
π .

Level ordering

The mass ratios can be plotted one against

the other: near the continuum limit the de-

tails of the lattice discretization are lost, and

the resulting plots (scaling plots) are β inde-

pendent. In a bit more formal fashion, we

can derive this property (widely exploited in

lattice QCD studies) by building up mass ra-

tios from the EOS in Section 2 above. We

sample here the results for σ/ρ vs. π/ρ for

β = (0.245, 0.250, 0.255) : within large errors,

all the data fall on the same plot (Fig. 6).

Moreover, we can get information on the

level ordering in the chiral limit: from Figure

6, and the analogous ones for the other ratios,

we found 0 = Mπ < Mσ < 2Mf < Mρ < Ma1.

As discussed at length in [5] Mσ < 2Mf is a

peculiarity of non-trivial theories.

SUMMARY

We summarize in Table 1 the critical in-

dices and the relations among them dictated

by hyperscaling. In the first column we give

the results from the simulation, in the second



Figure 5. f2

π as a function of m for β =

(0.245, 0.250, 0.255, 0.260)

Figure 6. Scale invariant plot for (σ/ρ)2 vs

(π/ρ)2. (Squares, diamonds, crosses) are β =

(0.255, 0.250, 0.245)

column the hyperscaling prediction assuming

the other indices as input for the single index

entries, in the third column the mean field pre-

diction (d=4). These results, together with

the ones from spectroscopy, support a picture

of non-trivial critical behaviour, which is in-

ferred both from the hyperscaling, and from

the large anomalous dimension η.
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[5] A. Kocić, J. B. Kogut and M. –P .Lom-

bardo, “ Universal properties of chiral

symmetry breaking”, ILL-(TH)-92-#18,

CERN-TH.6630/92, (1992).


