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Abstract

We consider vortex dynamics in self-dual Chern-Simons Higgs systems. We

show that the naive Aharanov-Bohm phase is the inverse of the statistical phase

expected from the vortex spin, and that the self-dual configurations of vortices

are degenerate in energy but not in angular momentum. We also use the path

integral formalism to derive the dual formulation of Chern-Simons Higgs systems

in which vortices appear as charged particles. We argue that besides the elec-

tromagnetic interaction, there is an additional interaction between vortices, the

so-called Magnus force, and that these forces can be put together into a single

‘dual electromagnetic’ interaction. This dual electromagnetic interaction leads to

the right Aharanov-Bohm phase. We also derive and study the effective action

for slowly moving vortices, which contains terms both linear and quadratic in the

vortex velocity.
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1. Introduction

Recently, several studies of self-dual abelian Chern-Simons Higgs systems in

2+1 dimensions have appeared.
[1,2]

These self-dual models have a specific sixth-

order potential which has degenerate symmetric and asymmetric vacua. There is

a Bogomol’nyi-type bound on the energy functional, which is saturated by con-

figurations satisfying certain first-order equations. These self-dual configurations

consist of topologically stable vortices in the asymmetric phase, and nontopolog-

ical solitons in the symmetric phase. These solitons carry both electric charge

and magnetic flux, resulting in nontrivial spin, and can be regarded as anyons, or

particles with fractional spin and statistics.
[3]

While attention has been paid to the statistics of vortices in the asymmetric

phase,
[4,5]

there are many aspects of vortices which still need to be understood

clearly. One aspect is the spin-statistics for vortices. Another is the dynamics

of slowly moving vortices in self-dual systems. In this paper, we study various

questions related to vortices in Chern-Simons Higgs systems.

Let us start first with considering the angular momentum of nontopological

solitons and vortices. One striking fact is that for a given charge or magnetic

flux, the angular momentum of nontopological solitons without any vorticity in

the symmetrics phase has the opposite sign compared with that of topological

vortices in the asymmetric phase.
[2]

The spin-statistics theorem implies that the

spin of a particle is directly related to the statistics of that particle. The statistics

of elementary charged particles
[5]

and nontopological solitons are determined by

the Aharanov-Bohm phase due to electric charge and magnetic flux. Since vortices

could have the same charge and magnetic flux but opposite spin compare with

nontopological solitons, the statistics of vortices cannot be explained by the naive

Aharanov-Bohm phase. This is the first puzzle we will consider.

A self-dual configuration of n vortices appears to be completely specified by the

vortex positions, that is, by 2n real parameters.
[1,2]

As we will see, all configurations

of given number of vortices are degenerate in energy but not in angular momentum.

For a system of two vortices, total angular momentum decreases from four times

the vortex spin to twice the vortex spin as their separation increases from zero to

infinity. The influence of this change on the motion of vortices with small kinetic
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energy is the second puzzle we shall consider.

In order to understand the statistics of vortices, we reformulate the original

theory in a way that makes the interaction between vortices manifest. This re-

formulation is called the dual formulation, where the massive vector boson in

the asymmetric phase is described by the Maxwell and Chern-Simons rather than

Chern-Simons and Higgs terms, and where vortices appear as charged particles.

The dual formulation has been derived many times in past using the equations of

motion or a lattice model.
[6]

We present here a clearer derivation using the path

integral formalism.

Some physical implications of the dual formulation of various three dimensional

field theories have been studied previously.
[7]

In the theory of a complex scalar field

with a global abelian symmetry, a vortex in a uniform charged background feels

the so-called Magnus force, which has more-or-less the same origin as the force

responsible for the curved flight of a spinning ball. The Magnus force on a curve

ball is proportional to its speed and is perpendicular to its direction, very much like

the Lorentz force. In the dual formulation, vortices are charged particles and the

background charge density becomes a magnetic field. The Magnus force on vortices

becomes a Lorentz force. The concept of the Magnus force is important for vortex

dynamics in superfluids.
[8]

One can also see the Magnus force for vortices in Maxwell

Higgs theories when there is a background electric charge density screened by the

Higgs field. While it is possible to see the Magnus force in the original formulation,

it appears more transparently in the dual formulation.

In Chern-Simons Higgs systems, vortices carry both magnetic flux and electric

charge. Because vortices feel the charge of other vortices, vortices also feel also the

Magnus force in the absence of a background charge. In the dual formulation both

the electromagnetic and Magnus forces are combined into a single ‘dual electro-

magnetic’ force. The Aharanov-Bohm phase in the dual formalism determines the

statistics of vortices and yields exactly what one expects given the vortex spin.

The total angular momentum of many overlapping vortices is equal to the vor-

tex spin times the square of the total vorticity. When vortices at rest are separated

from each other by a distance much larger than the vortex core size, one finds that

the total angular momentum is just the sum of the individual vortex spins. The
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physical reason is that any gauge-invariant local field falls off exponentially to its

vacuum configuration as one moves away from any vortex. For self-dual vortex

configurations characterized by the positions of the vortices, the total energy is

just the sum of the individual vortex masses but the total angular momentum is a

function of the vortex positions.

The behavior of the total angular momentum could be understood as fol-

lows. Consider two noninteracting point anyons of spin s in nonrelativistic quan-

tum mechanics. Two separated anyons at rest have zero classical orbital angu-

lar momentum. Quantum mechanically, orbital angular momentum is given by

2s + 2h̄ × integer, which in turn implies that the total angular momentum is

4s + 2h̄× integer. Our vortices are extended objects and can overlap each other.

If we quantize the self-dual configurations of two vortices, there would be many

states whose orbital angular momentum varies from 2s to 2s + 2h̄ × integer ∼ 0

with the same energy. The average separation of two vortices in these states will

increase as the orbital angular momentum decreases.

We are also interested in how the position dependence of the total angular

momentum affects the classical dynamics of slowly moving vortices in self-dual

Chern-Simons Higgs systems. To understand the dynamics of vortices in general,

we derive the effective lagrangian for slowly moving vortices. We follow Manton’s

approach
[9]

which means for ur case that for a given number of vortices, the field

configurations of slowly moving vortices are very similar to the field configurations

of vortices at rest and the effective action for slowly moving vortices is determined

by the characteristics of the self-dual configurations of vortices.

We approach the problem from the lagrangian point of view. We imagine

that the motion of slowly moving vortices is a generalization of the nonrelativistic

limit of the Lorentz transformation. This implies that the field configurations of

vortices in motion satisfy the field equations to first order in the vortex velocity.

We calculate the field-theoretic lagrangian, which then yields the effective action

for those vortices as a functional of the vortex positions and velocities. We show

that the orbital angular momentum for vortices at rest calculated from the effective

action is identical to that calculated from the field theory.

The contents of this paper are as follow. In Sec. 2, we briefly review vortex
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configurations in self-dual Chern-Simons Higgs systems. We analyze the total an-

gular momentum of vortices at rest and present the result of a numerical analysis

for two vortices at finite separation. In Sec. 3 we present the dual transformation of

Chern-Simons Higgs theories in the path-integral formalism. Here we include ex-

ternal currents and fields in the transformation. In Sec. 4, we study various aspects

of the dual formulation. We relate the statistics of vortices to the Magnus force.

We also discuss the effect of external currents and fields in the dual formulation.

In Sec. 5, we derive and study the effective lagrangian of slowly moving vortices.

In Sec. 6, we conclude with some remarks. In appendix A, we present the dual

formulation of the theory of a complex scalar field with a global abelian symmetry

and discuss the Magnus force. In appendix B, we present the dual formulation

of Maxwell Higgs theories. In appendix C, we derive the effective lagrangian for

slowly moving vortices of self-dual Maxwell Higgs systems using the dual formu-

lation of appendix B. This effective lagrangian has been studied in detail both

numerically and analytically by various authors.
[10]
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2. Model

We consider the theory of a complex scalar field φ = feiθ/
√

2 interacting with

a gauge field Aµ whose kinetic term is the Chern-Simons term. The lagrangian for

the theory is given by

L =
κ

2
ǫµνρAµ∂νAρ +

1

2
(∂µf)2 +

1

2
f2(∂µθ + Aµ)2 − U(f). (2.1)

Self-dual models arise when the potential has the form,

U(f) =
1

8κ2
f2(f2 − v2)2. (2.2)

Gauss’s law constraint obtained from the variation of A0 is given by

κF12 + f2(θ̇ + A0) = 0, (2.3)

where dot denotes the time derivative. Gauss’s law implies that the total magnetic

flux Ψ =
∫

d2rF12 and the total electric charge Q =
∫

d2rf2(θ̇ + A0) are related

by

κΨ = −Q. (2.4)

For the self-dual models the energy functional can be written as

E =

∫

d2r

{

1

2
ḟ2 +

1

2
[∂if ∓ ǫijf(∂jθ + Aj)]

2 +
1

2
f2[(θ̇ + A0) ±

1

2κ
(f2 − v2)]2

}

±mpQ,
(2.5)

where mp = v2/2κ is the mass of charged particles in the symmetric phase. As the

integral in Eq.(2.5) is positive, there is a bound on the nergy functional,

E ≥ mp|Q|. (2.6)

This bound is saturated by the configurations satisfying

ḟ = 0,

∂if ∓ ǫijf(∂jθ + Aj) = 0,

θ̇ + A0 ±
1

2κ
(f2 − v2) = 0,

(2.7)

and Gauss’s law (2.3). In the remainder of this section, we will consider only the
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positively charged configurations.

If there are vortices of unit vorticity at points ~qa, a = 1, , , n, the phase variable

can be chosen to be

θ =
n

∑

a=1

Arg(~r − ~qa), (2.8)

which satisfies ǫij∂i∂jθ = 2π
∑

a δ(~r−~qa). Eq.(2.7) implies that the total magnetic

flux is given by Ψ = −2πn for this configuration. Eqs.(2.3), (2.7) and (2.8) imply

that the f field satisfies

∂2
i ln f2 − 1

κ2
f2(f2 − v2) = 4π

∑

a

δ(~r − ~qa). (2.9)

Assuming that vortices are not overlapping, we can analyze the behavior of the f

field near ~qa. In the complex coordinate of positions, Eq.(2.9) implies

ln f2 = ln |z − qa|2 + c+ b1(z − qa) + b2(z − qa)
2 + b3(z − qa)

3

+ b4(z − qa)
4 + b∗1(z

∗ − q∗a) + b∗2(z
∗ − q∗a)2 + b∗3(z

∗ − q∗a)3

+ b∗4(z
∗ − q∗a)

4 − v2

16κ2
ec|z − qa|4 +O((z − qa)

5),

(2.10)

where real c[~qa] and complex bi[~qa] are defined with respect to ~qa and functions of

the positions of other vortices.

In addition to magnetic flux and energy, there is angular momentum which

characterizes a given configuration. The angular momentum functional J =
∫

d2xǫijr
iT 0j

is given by

J = −
∫

d2rǫijr
i
[

ḟ∂jf + f2(θ̇ + A0)(∂jθ + Aj)
]

= −
∫

d2rǫijr
i
[

ḟ∂jf − κF12(∂jθ + Aj)
]

(2.11)

with Gauss’s law (2.3).

Any rotationally symmetric solution with vorticity n in the cylindrical coordi-

nate (r, ϕ) would be given by the ansatz, f(r), θ = nϕ, and Ai = ǫijr
j(a(r)−n)/r2.

There are two finite energy solutions of Eq.(2.7) with this ansatz. When f(∞) = 0,
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the solution becomes a nontopological soliton with vorticity n. In this case we can

have a(∞) = −α where α > n + 2. When f(∞) = v, a(∞) = 0 and the solution

becomes overlapped vortices. The total magnetic flux of this ansatz is

Ψ = −2π(n + α). (2.12)

The angular momentum of the solution can be calculated from Eq.(2.11),
[2]

leading

to

J = πκ(α2 − n2). (2.13)

Since we have used just Gauss’s law, Eq.(2.13) is applicable to theories with more

general potential than the self-dual one (2.2). Nontopological solitons in the sym-

metric phase have the energy per charge identical to that of elementary charged

particles, implying that they are at the verge of instability. Vortices in the asym-

metric phase are however stable for the topological reasons.

In the symmetric phase elementary particles have spin sp = 1/4πκ and non-

topological solitons has spin spQ
2 −Qn. Since total charge would be quantized in

integers , the Qn part would be an integer. The statistics of elementary charged

particles and nontopological solitons is given by the phase change of the wave

function for two identical objects when they are rotated by 180 degrees counter-

clockwise wise around the center of mass, which will be e2πispQ2

and is identical

to the half of the Aharanov-Bohm phase, eiΨQ/2. On the other hand, vortices

of unit voticity would carry spin sv = −πκ and the correct statistics would be

e2πisv = e−2πispQ2

, which cannot be the naive Aharanov-Bohm phase.

The self-dual configurations of vortices seem to be parameterized only by the

positions ~qa. Energy is independent of vortex positions and so the derivative of

fields with respect to vortex positions would become 2n zero-modes of the self-

dual equations. For self-dual configurations, the total angular momentum (2.11)

becomes

J = κ

∫

d2rǫijr
i(∂jθ + Aj)F12. (2.14)

From Eq.(2.3), we know that F12 vanishes at points ~qa’s because f2 vanishes there.

Without changing the value of J , we can then subtract these points from the
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integration in Eq.(2.14). Except at these points, F12 = ∂1Ā2 − ∂2Ā1 with Āi =

Ai + ∂iθ. Noting that

ǫijr
iĀjǫkl∂kĀl = ∂i

[

1

2
ri(Āj)

2 − Āi(r
jĀj)

]

+ (∂iĀi)(r
jĀj), (2.15)

and Āi being transverse from Eq.(2.7), we can write the angular momentum as a

boundary integration,
[2]

J = −κ
[

∑

a

∮

dlia −
∮

∞

dli
]

ǫij

{

1

2
rj(Āk)

2 − Āj(r
kĀk)

}

, (2.16)

where the sum is over the positions of vortices and the line intergal is around a

small counter-clockwise circle around ~qa. There is no spatial infinity term in the

asymmetric phase. (For nontopological solitons the boundary at spatial infinity

contributes and this contribution does not depend on the position or shape of

solitons.)

Let us evaluate the integral in Eq.(2.16) at each vortex position ~qa. Near ~qa,

we can put ri = qi
a + ǫijl

j
a and Eq.(2.16) becomes

J = − κ
∑

∮

dliaǫij

{

1

2
qj
a(Āk)2 − Āj(q

k
aĀk)

}

− κ
∑

∮

dliaǫij

{

1

2
ǫjkl

k
a(Āl)

2 − Āj(ǫkll
l
aĀk)

}

.

(2.17)

We use Eqs.(2.7) and (2.10) to expand Āi near ~qa,

Āi = −ǫij∂j ln f

= −ǫij
{

ǫjk
lka

|~la|2
+ bj

1
+O(la)

}

,
(2.18)

where b1 = b1
1
− ib2

1
. We evaluate the integration in Eq.(2.17) with Eq.(2.18) to get

the total angular momentum as

J = −2πκ
∑

a

~qa ·~b1[~qa] − πκ|n| (2.19)

with total voticity n. The first term of the right hand side of Eq.(2.19) represents

the orbital part and the second term represents the spin part.
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There is only one length scale, v2/κ, in the problem. As the distance between

vortices goes to infinity, the field around each vortex position would approach to

the rotationally symmetric ansatz exponentially, which with Eq.(2.10) means that

bi[qa]’s vanish exponentially with the mutual distance. Thus the total angular

momentum (2.19) would changes from svn
2 to svn as vortices get separated from

each other. The self-dual vortex configurations are degenerate in energy but not

in angular momentum.

Let us investigate briefly the self-dual configurations of two vortices by a nu-

merical analysis. Although the existence of multi-vortex solutions is proved,
[11]

no

exact analytic solutions is found. Fig. 1 and 2 show the magnitude of the scalar

field and the magnetic field at d = 6κ/v2. In Fig. 3, we show the total angular

momentum as a function of the separation distance. Angular momentum decreases

from −4πκ to −2πκ, supporting the argument in the previous paragraphs.
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3. Dual Formulation

Suppose we are interested in the calculating physical amplitude by using the

path integral formalism. For a generality we include an external gauge field Aext
µ

and current Jµ. The lagrangian is then

L =
κ

2
ǫµνρAµ∂νAρ +

1

2
(∂µf)2 +

1

2
f2(∂µθ + Aµ + Aext

µ )2 − U(f) + AµJ
µ. (3.1)

The generating functional will be

Z =< F |e−iHT |I >=

∫

[df ][dθ][dAµ]
∏

x

f(x)Ψ̄F exp{i
∫

d3xL}ΨI , (3.2)

where there is a nontrivial Jacobian factor because we use the radial coordinate

for the scalar field. The initial and final wave functions, ΨF,I give the necessary

boundary conditions.

A given field configuration in the path integral could contain vortices and

antivortices and the θ field could be multivalued. We can in principle split the θ

field into two parts,

θ(~r, t) = θ̄(~r, t) + η(~x, t), (3.3)

where the first term describes a configuration of vortices,

θ̄(~r, t) =
∑

a

(−1)aArg(~r − ~qa(t)) (3.4)

with vorticities (−1)a and locations ~qa(t), and the second term η represents single-

valued fluctuations around a given configuration of vortices. From the multi-valued

θ̄, we can construct the vortex current,

Kµ(x) ≡ 1

2π
ǫµνρ∂ν∂ρθ̄

=
∑

a

(−1)a(1,
d~qa
dt

)δ2(~r − ~qa(t))

=
∑

a

(−1)a
∫

dτ
dqµ

a

dτ
δ3(xν − qν

a(τ)),

(3.5)

which satisfies the conservation law, ∂µK
µ = 0. Integration over the θ variable
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becomes

[dθ] = [dθ̄][dη] = [dqµ
a ][dη], (3.6)

which means that we sum over single-valued fluctuations around a given configura-

tion of vortices and then sum over all possible configurations of vortices, including

annihilation and creation of vortex pairs.

Let us now linearize the third term of the lagrangian (3.1) by introducing an

auxiliary vector field Cµ,

∏

x

f(x) exp i

∫

d3x
[1

2
f2(∂µθ + Aµ + Aext

µ )2
]

=

∫

[dCµ] exp i

∫

d3x

{

− 1

2f2
(Cµ)2 + Cµ(∂µθ̄ + ∂µη + Aµ + Aext

µ )

}

,

(3.7)

where the nontrivial Jacobian is essential. As η is single-valued, one can integrate

over η in the standard way, leading to

∫

[dη] exp

[

i

∫

d3xCµ∂µη

]

= δ(∂µC
µ). (3.8)

Now we introduce the dual gauge field Hµ to satisfy

∫

[dCµ]δ(∂µC
µ)... =

∫

[dCµ][Hµ]δ(Cµ − 1

2π
ǫµνρ∂νHρ)... (3.9)

where the dots denote the integrand. There would be infinite gauge volume which

can be taken care of later, but there is no nontrivial Jacobian factor as the change

of variables is linear. By using the fact

1

2π
ǫµνρ(∂µθ̄)∂νH = KµHµ (3.10)

up to a total derivative, we can integrate over Cµ, resulting in the lagrangian,

which is

L′ = − 1

16π2f2
H2

µν +HµK
µ +

1

2
ǫµνρAµ∂ν(κAρ +

1

π
Hρ)

+
1

2π
ǫµνρHµ∂νA

ext
ρ + AµJ

µ + ...

(3.11)

where Hµν = ∂µHν − ∂νHµ and the dots indicate f -dependent terms.
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The exponent is quadratic in Aµ and so the integral over Aµ is easy. The

equation of motion for Aµ is

κǫµνρ∂νAρ = − 1

2π
ǫµνρ∂νHρ − Jµ, (3.12)

whose solution is formally

Aµ = − 1

2πκ
Hµ + Vµ, (3.13)

where ǫµνρ∂νVρ = −Jµ/κ. Rather than integrating over Aµ, we substitute Aµ in

the path integral by Eq. (3.13) and then the integration over Aµ becomes the

integration over Vµ.

The resulting path integral becomes

Z =

∫

[df ][dqµ
a ][dHµ][dVµ] exp i

∫

d3xLD, (3.14)

where the dual transformed lagrangian is

LD =
1

2
(∂µf)2 − U(f) − 1

16π2f2
H2

µν − 1

8π2κ
ǫµνρHµ∂νHρ +HµK

µ

− 1

2πκ
HµJ

µ +
1

2π
ǫµνρHµ∂νA

ext
ρ +

κ

2
ǫµνρVµ∂νVρ + VµJ

µ.

(3.15)

There is no Jacobian factor in the measure. One can introduce the gauge fixing

terms for Hµ and Vµ. The sign difference between the Chern-Simons terms of

the original and dual transformed theories will be crucial in understanding the

statistics of vortices. The original gauge field is separated into two pieces, Hµ

and Vµ. The vortex current Kµ becomes an electric current for the dual field Hµ.

External current is however coupled to both the dual gauge field Hµ and reduced

gauge field Vµ.

The mass of vortices arises from the cloud of the f,Hµ fields surrounding them

is finite. The variation of H0 implies the Gauss’s law constraint,

∂i(
1

f2
H0i) −

1

κ
H12 + 4π2K0 + 2πF ext

12 − 2π

κ
J0 = 0, (3.16)

which would dictate the cloud around vortices.
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The relation between the original fields and dual fields in the classical level can

be seen from the equations one would get from the lagrangians at each step. They

are related to each other by

f2(∂µθ + Aµ + Aext
µ ) = Cµ =

1

2π
ǫµνρ∂

νHρ, (3.17)

Another relation between the original and dual fields is given by Eq.(3.13). The

original U(1) charge is then given by

Q =

∫

d2r
{

f2(θ̇ + A0 + Aext
0 ) + J0

}

=

∫

d2r

{

1

2π
H12 + J0

}

=

∫

d2r

{

2πκK0 +
κ

2π
∂i(

1

f2
H0i) + κF ext

12

}

,

(3.18)

where the last equality comes from Gauss’s law (3.16). The second-to-last term

gives nonzero contribution to the charge for the configuration of nontopological

solitons in the symmetric phase where f field vanishes only on isolated points

and the spatial infinity. Note that the charge conservation in dual formulation is

satisfied by the topology of the field configuration, not by the field equations.
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4. Physical Consequences

We have obtained the dual formulation of Chern-Simons Higgs systems, which

could be useful in understanding the various physical aspects of the asymmetric

phase. In the dual formalism the interaction between vortices is more direct because

they appear as charged particles rather than topological objects. In addition, we

can see the interaction between vortices and external currents and fields more

directly. The dual transformation in general transforms the weak coupling into

the strong coupling and vice versa and has been widely used to understand the

phase structure of a given theory. (See Ref.[12] for a review.) If we try to quantize

vortices by the semiclassical method, the coupling between elementary particles

should be very small, or κ ≫ 1 for the method to be a good approximation. In

this case, vortices interact with each other strongly as one can see from the dual

formulation. However this aspect of the dual formulation would not be explored

in this paper. Let us now make a few observation about the dual formulation.

1) Massive vector bosons

There are two ways to describe a massive vector boson of spin one in three

dimensions: the Maxwell and Chern-Simons terms, or the Chern-Simons and Higgs

terms. This observation led to the original derivation of the dual transformation.
[6]

From Eqs.(3.1) and (3.15) with f = v we have two equivalent lagrangians,

L1 =
κ

2
ǫµνρAµ∂νAρ +

1

2
v2A2

µ,

L2 = − 1

16π2v2
H2

µν − 1

8π2κ
ǫµνρHµ∂νHρ.

(4.1)

Both describe a particle of mass m = v2/|κ| and spin −κ/|κ|

2) Quantum Magnus Phase

We know how a spinning baseball curves. Let us consider a two-dimensional

version. When a ball is moving to the negative x direction with clockwise rotation

in a fluid, the wind velocity (at the ball’s rest frame) on the positive y part is

faster than that on the negative y part, resulting in the pressure difference. The

net force on the ball is then pointing the positive y direction. The magnitude of

the force is proportional to the ball velocity and so this force is somewhat similar
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to an effective Lorentz force due to a constant magnetic field. When the moving

object is a vortex, it is called the Magnus force.
[8]

The simplest example in field theory is the theory of a complex scalar field

with a global abelian symmetry. When global vortices in this theory move in a

unform charge background, it feels this Magnus force. As one can see in appendix

A, the charge density appears as a uniform magnetic field and vortices as charged

particles in the dual formulation. The Magnus force is given exactly as a Lorentz

force.

When vortices in the asymmetric phase of a Maxwell Higgs theory interact

each other without any background charge, we know that there is no Magnus

force. As shown in appendix B, vortices again become charged particles in the

dual formulation. The background charge again appears as a uniform external

magnetic field in the dual formulation and vortices in such background would feel

the Magnus force.

Vortices in a Chern-Simons Higgs theory carry both magnetic flux and charge

around their core. When vortices are close to each other they would feel the

electromagnetic force, which leads to an Aharanov-Bohm phase in large distance.

Because vortices carry charge, there would be the Magnus force between vortices.

The Magnus force is like a Lorentz force in nature and would lead to an additional

Aharanov-Bohm phase. The total Aharanov-Bohm phase would then be a sum

of those from these two forces. As we have seen in the previous section, the dual

formulation of Chern-Simons Higgs theories has the dual gauge interaction between

vortices. Thus, one would say the original electromagnetic force and the Magnus

force come together as a single dual gauge force. Vortices are charged particles in

the dual formulation and so their statistics should be given by the Aharanov-Bohm

phase coming from the dual lagrangian (3.15). The Aharanov-Bohm phase is a long

distance effect and determined only by the Chern-Simons term. The sign of the

Chern-Simons term in the dual lagrangian is different from that of the original

lagrangian, which makes the real Aharanov-Bohm phase between vortices to be

exactly inverse of the naive Aharanov-Bohm phase in the original formulation.

This implies that the Magnus force is two times larger than and has the opposite

sign to the original electromagnetic force. The statistics from the dual Aharanov-
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Bohm phase is consistent with what we expect from the vortex spin. Although the

dual formulation has been discovered many times,
[6]

this aspect of vortex interaction

has not been noticed.

3) External Current and Field

We have derived the dual lagrangian which is valid even with external currents

and fields. Let us see first the effect of the external point charge. In the asymmetric

phase of a Maxwell Higgs theory, any charge will be completely screened and the

net total charge is zero. In the asymmetric phase of a Chern-Simons Higgs theory,

the charge of vortices cannot however be screened because Gauss’s law (2.3) or

(3.16) implies that total charge is nonzero when there is nonzero magnetic flux.

If there is no external field and vortex, there cannot be any net magnetic flux for

any finite energy configurations and so total charge is zero implying that external

charges are totally screened. For a given external point charge, the screening charge

will surround this charge with the length scale given from the Higgs mass.

What is the interaction between external currents and vortices? The dual

lagrangian (3.15) leads to the answer. Both of them are charged currents of the dual

gauge field and so there would be nontrivial phase when the external charge goes

around a vortex in a full circle. This phase is determined by the dual lagrangian

and is given by e−i2πQext with external charge Qext. If the charge is fractional,

the phase is nontrivial because the Higgs field carries a unit charge and can screen

only integer charges completely. From Gauss’s law (3.16) we see that a uniform

external charge density is screened by a uniform dual magnetic field. A single

vortex moving on this background would feel the Magnus force which appears as

a Lorentz force.

What is the interaction between two external point charges? They are interact-

ing through two gauge fields Hµ and Vµ. In the large distance, the Aharanov-Bohm

phases due to two gauge interaction would cancel each other, and there is no non-

trivial phase between them. Since the screening charge has a finite core size, in a

short distance external charges would see the nontrivial statistics.

We can ask whether the external currents and fields could have a dynamical

origin. In Sec. 3 we have not used the conservation of external currents explicitly.

The key aspect is that external currents and the gauge field Aµ couple linearly.
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There seems to be two simple examples where external currents arise dynamically.

The matter could be made of fermions, in which case AµJ
µ would be replaced by

LF = iψ̄γµ(∂µ + ieAµ)ψ + ... (4.2)

where the dots denote the mass and Yukawa interaction terms. Or, the matter

field could be made of a simple gauge field, in which case the additional lagrangian

would be

LW = eǫµνρAµ∂νWρ + ... (4.3)

where the dots indicate the kinetic terms for the Wµ field. The external field Aext
µ

can be made dynamical by replacing Aext
µ in Eq. (3.1) by a gauge field Wµ with

some kinetic term. It is trivial to see how these dynamical degrees couple to the

dual gauge field, which we will not bother to write down.

One may wonder whether there is any dual formulation of Maxwell Chern-

Simons Higgs theories. One can follow the similar procedure as in Sec.3 and ap-

pendix B and will end with a dual formulation with two gauge fields even when

there is no external currents and fields. In the case where the f field is a constant, a

dual formulation with a single gauge field was obtained in Ref.[13], whose approach

is different from ours.
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5. Low Energy Effective Lagrangian

We now consider self-dual systems with the specific potential (2.2). Vortices

at rest are described by the configurations satisfying the self-dual equation (2.7).

As they are degenerate in energy, there is no attractive or repulsive forces between

them even though there may be velocity-dependent forces. We are interested in

an effective action for slowly moving vortices, which as a nonrelativistic action

for interacting particles consists of terms quadratic and linear in velocity. The

linear term would represent the ‘dual magnetic’ interaction between vortices. The

effective action also should somehow take into account the fact that vortices are

not degenerate in angular momentum. If the kinetic energy of vortices is small

enough, there would be very small radiation and degrees of freedom except vortex

positions may be neglected. For this classical picture to be consistent, quantum

fluctuation should be very small, which means κ ≫ 1 and vortices interact with

each other strongly as argued in the previous section.

There are considerable works
[10]

for the effective action for slowly moving vor-

tices in self-dual Maxwell Higgs systems. Their approaches are either geometrical

or numerical. Here we take somewhat different tactic which seems to work also in

the Maxwell Higgs case as shown in appendix C, where we use the dual formulation

even though the original formulation would work equally well. For self-dual Chern-

Simons Higgs systems, the dual formulation seems cumbersome for our present

purpose and we start from the original lagrangian (2.1).

Consider n vortices with uniform velocity ~u and total mass M = πv2n. The

field configuration for this case can be obtained from that for vortices at rest by

a Lorentz transformation. We are interested in the slow motion or nonrelativistic

limit. The f field would transform trivially and the gauge field as vector would

have a correction linear in ~u. The gauge fields would satisfy the field equation to

first order in ~u. We can calculate the lagrangian L =
∫

d2rL with this transformed

configuration and get the expected result L = M~u2/2 −M .

For the field configurations for the slowly moving vortices of a given trajec-

tory ~qa(t), we imagine a generalization of the nonrelativistic limit of the Lorentz

transformation. For the consistency, we will assume that there are first order cor-

rections to both scalar and gauge fields, and require that they satisfy the field
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equations to first order in the vortex velocities, ~̇qa(t). The zeroth order f field

would be f(~r; ~qa(t)) which satisfies Eq.(2.9). The zeroth order θ field would be

θ =
∑

a Arg(~r− ~qa(t)). For a given zeroth order scalar field, the gauge field in the

same order can be obtained from Eqs.(2.3) and (2.7).

A0(~r; ~qa(t)) = − 1

2κ
(f2 − v2),

Ai(~r; ~qa(t)) = −1

2
ǫij∂j ln

f2

∏

a(~r − ~qa(t))2
.

(5.1)

From the lagrangian (2.1), we get the field equations,

− ∂2
µf + (∂µθ − Aµ)2f − U ′(f) = 0,

κF12 + f2(θ̇ + A0) = 0,

κǫijF0j + f2(∂iθ + Ai) = 0.

(5.2)

The field equation for the θ field can be obtained from the Jacobi identity for the

gauge field equations. We demand the field equations are satisfied to first order in

the vortex velocities by the first order corrections, ∆f,∆θ,∆Aµ. We choose the

gauge where ∆θ = 0. From Eq.(5.2), we get the first order field equations,

∂2
i ∆f + [A2

0 − (∂iθ + Ai)
2]∆f + 2fA0(θ̇ + ∆A0)

− 2f(∂iθ + Ai)∆Ai − U ′′(f)∆f = 0,

κǫij∂i∆Aj + f2(θ̇ + ∆A0) + 2fA0∆f = 0,

κǫij(Ȧj − ∂j∆A0) + f2∆Ai + 2f(∂iθ + Ai)∆f = 0,

(5.3)

where f, Aµ are given in zeroth order. We do not know at present moment the

solution ∆f,∆Aµ of Eq.(5.3) in terms of f explicitly. If there is a unique solution

of Eq.(5.3) for a given trajectory of the vortices, we have definite configurations

for slowly moving vortices of the self-dual Chern-Simons Higgs system. For the

vortices of unform motion, the solution of Eq.(5.3) is trivially given taking the

nonrelativistic limit of the Lorentz transformed fields.

We imagine the field sum in the path integral to be restricted to these config-

urations for slowly moving vortices. The field theoretic action for slowly moving
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vortices then becomes the effective action as a functional of these vortex trajec-

tories. There will be terms linear and quadratic in the vortex velocities, but no

terms which just depend on the vortex positions. We do not need to consider the

second order corrections to the fields to be consistent because their contribution

vanishes due to the field equations satisfied by the zeroth order fields. By using

Gauss’s law (2.3), let us write the lagrangian density (2.1) as

L =
1

2
ḟ2 − κθ̇F12 +

κ

2
ǫijȦiAj

− 1

2
(∂if)2 − 1

2
f2(θ̇ + A0)

2 − 1

2
f2(∂iθ + Ai)

2 − U(f).

(5.4)

The zeroth order term in the effective action can be calculated trivially and

becomes negative of the rest mass. In Eq.(5.4) the last four terms can be put into

a sum of two squares plus the rest mass term as shown in Eq.(2.5) and so yields

only the second order terms. Thus the first order term ∆1L is given by

∆1L = −κθ̇F12 +
κ

2
ǫijȦiAj , (5.5)

where the fields are given in zeroth order. With Eq.(5.2), the second part of the

right-hand side of Eq.(5.5) is proportional to

2ǫijȦiAj = −Ai∂i∂0 ln
f2

∏

= −∂i

{

Ai∂0 ln
f2

∏

}

+ (∂iAi)∂0 ln
f2

∏ ,

(5.6)

with the obvious understanding of
∏

. Since the zeroth order gauge efield is trans-

verse and the boundary terms lead to no contribution to the effective action,

Eq.(5.6) does not contribute to the effective action. With θ̇ =
∑

a ǫij q̇
i
a∂j ln |~r−~qa|,

the first part of the right-hand side of Eq.(5.5) is proportional to

θ̇F12 = ǫijǫklq̇
i
a(∂j ln |~r − ~qa|)∂kAl

= q̇i∂i(Aj∂j ln |~r − ~qa|) − q̇i
a∂j(Aj∂i ln |~r − ~qa|) + q̇i

a(∂jAj)∂i ln |~r − ~qa|
− q̇i

a∂j(Ai∂j ln |~r − ~qa|) + q̇i
aAi∂

2
j ln |~r − ~qa|,

(5.7)

where ǫijǫkl = δikδjl − δilδjk is used and the sum over the indices a is assumed.

Now we can get the first order term of the effective lagrangian from Eqs.(5.5) and
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(5.7),

∆1L =

∫

d2r∆1L = −2πκ
∑

a

q̇i
aAi(~qa), (5.8)

where ∂2
i ln |~r − ~qa| = 2πδ(~r − ~qa) is used and the boundary terms are dropped

as they make no contribution to the effective action. There is another way to see

that Eq.(5.8) is the only contribution from Eq.(5.7) even though many terms in

Eq.(5.7) seem singular at vortex positions. Because θ̇ ∼ 1/δ and F12 ∼ δ2 with
~δ = ~r − ~qa, θ̇F12 vanishes at vortex positions, which allows us to subtract these

points from the integration in Eq.(5.8). Then we can calculate the integration with

boundary contributions at vortex positions, getting the same result.

The second order term in the lagrangian would be

∆2L = κ∆A0∆F12 +
1

2
κǫij(∆ȦiAj + Ȧi∆Aj)

+
1

2
ḟ2 − 1

2
(∂i∆f)2 − 1

2
U ′′(f)(∆f)2

+
1

2
f2(θ̇ + ∆A0)

2 − 1

2
f2(∆Ai)

2 +
1

2
(∆f)2A2

0 −
1

2
(∆f)2(∂iθ + Ai)

2

+ 2f∆fA0(θ̇ + ∆A0) − 2f∆f(∂iθ + Ai)∆Ai.
(5.9)

First note that ǫij∆ȦiAj = ǫijȦi∆Aj up to a total time derivative, which does not

affect the effective action. We use Eq.(5.2) to remove U ′′ and the Chern-Simons

part up to total derivatives. The resulting second order term is

∆2L =
1

2
ḟ2 +

1

2
f2(θ̇ + ∆Ao)

2 +
1

2
f2(∆Ai)

2

+ f∆fA0(θ̇ + ∆A0) + f∆f(∂iθ + Ai)∆Ai

(5.10)

Hence, we have obtained the effective action for slowly moving vortices. From

Eqs.(5.8) and (5.10), we can see that the effective lagrangian for slowly moving
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vortices is given by

Leff (~qa, ~̇qa) =

∫

d2r

{

1

2
ḟ2 +

1

2
f2[(θ̇ + ∆A0)

2 + (∆Ai)
2]

+f∆fA0(θ̇ + ∆A0) + f∆f(∂iθ + Ai)∆Ai

}

−2πκ
∑

a

q̇i
aAi(~qa).

(5.11)

Here f, Ai are given by Eqs.(2.9) and (5.2) and functions of ~qa’s. ∆f and ∆Aµ

are given by the first order field equation (5.3) and is linear in velocity. The

effective lagrangian is made of the usual quadratic terms and the linear terms

which describes the magnetic interactions between vortices.

We made some reasonable assumptions to derive the effective action for slowly

moving vortices. A configuration for moving vortices is specified by f + ∆f, Aµ +

∆Aµ. The energy functional for this configuration consists of the rest mass and

terms linear and quadratic in the vortex velocities. From Eq.(5.3), One can easily

show that ∆1E =
∫

d2rκǫij∂j [A0∆Ai], which vanishes. The quadratic terms in the

energy functional is not identical to the quadratic part of the effective lagrangian.

The difference is

∆2E − ∆2L =

∫

d2r

{

f∆fA0(θ̇ + ∆A0) + f∆f(∂iθ + Ai)∆Ai

+
1

2
(∂i∆f)2 +

1

2
(∆f)2A2

0 +
1

2
(∆f)2(∂iθ + Ai)

2

}

,

(5.12)

which does not seem to vanish. We believe that the quadratic part of the effec-

tive action is given by ∆2L rather than ∆2E because the linear part cannot be

obtain from the energy point of view. For uniformly moving vortices, the first

order correction (5.3) of the fields would be given by the nonrelativistic limit of

the Lorentz transformationed fields and the effective lagrangian becomes the total

kinetic energy of the system.

We can use Eq.(3.13) to express the linear term in terms of the dual gauge

field. As there is no external charge, we can choose the gauge where Vµ = 0 and
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Aµ = −Hµ/2πκ. The linear term (5.8) becomes then

∆1L =
∑

a

q̇i
aHi(~qa), (5.13)

which is exactly what we get from the dual formulation and need for the statistics

of vortices. The linear part (5.13) implies the ‘dual magnetic’ interaction between

vortices. In Sec. 4, we argued that dual magnetic interaction originates both or-

dinary magnetic and Magnus forces. This linear interacting terms (5.13) leads to

the statistical phase between vortices. In Ref.[14], Eqs.(5.5) and (5.6) have been

examined to get the statistics of vortices at large separation but was not put into

a simple form as Eq.(5.8) or (5.13), let alone its physical meaning.

From Eq.(2.3) we can see the original gauge field strength F12 vanishes at

~r = ~qa. This does not mean that the field strength felt by vortices vanish. The

reason is that the gauge field Aµ(~r; ~qb) as a function of ~qa when ~r = ~qa is different

from that as a function of ~r. From Eqs.(2.10) and (5.1), we can get the field

strength felt by the vortex at ~qa,

H12(~qa) = −2πκǫij
∂Aj

∂qi
a

= −2πκ
∂bi

1
[~qa]

∂qi
a
.

(5.14)

Similar consideration would apply as well to the cases studied in appendices A and

B.

There is an interesting check of the linear term. Let us consider the total

angular momentum of vortices from the low energy effective lagrangian (5.11),

Jorbit =
∑

a

ǫijq
i
a
∂L

∂q̇j
a

= −2πκ
∑

a

ǫijq
i
aAj(~qa) +O(q̇i

a).
(5.15)

With Eqs.(2.10) and (5.1), one can see that

Jorbit = −2πκ
∑

a

~qa ·~b1[~qa] +O(q̇i
a), (5.16)

which is identical to the orbital part in Eq.(2.19) for vortices at rest. Our effective
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lagrangian for slowly moving vortices is consistent with the field theory lagrangian.

Let us briefly study the dynamics of slowly moving two votices. First consider

two overlapped vortices with a small initial kinetic energy. The initial angular

momentum would be very close to 4sv. If they can escape from each other to

the spatial infinity, their angular momentum would be the sum of spins and orbital

angular momentum, 2sv+u0b, where u0 is the asymptotic speed and b is the impact

parameter. As we can choose the kinetic energy, or u0, arbitrarily small, the angular

momentum conservation says that the impact parameter becomes arbitrary large,

which is impossible because the force is short ranged. Rather, we think that two

vortices are bound together by the mutual magnetic field. By turning around this

argument, one can also see that two vortices from the spatial infinity with very

small kinetic energy cannot make a head-on collision rather they will always veer

off from each other.

In the center of mass frame of two vortices, their positions are given by ~q1 =

−~q/2, ~q2 = ~q/2. The scalar field configuration would be symmetric under the

inversion, that is, f(~r; ~qa) = f(−~r; ~qa), which with Eq.(2.10) means that ~b1[~q1] =

−~b2[~q2]. There is a rotational symmetry of the effective action under the rotation

of ~q, which implies that

~b1 = q̂B1(q) + ẑ × q̂B2(q), (5.17)

where q = |~q| and (ẑ× q̂)i = ǫijq
j. Eqs.(2.19) and (5.17) imply that the total angu-

lar momentum for two vortices at rest is J = −2πκqB1(q)−2πκ. The linear action

(5.13) for two vortices in the center of mass frame becomes ∆1L = −2πκq̇iAi(~q1).

The magnetic field felt by the reduced one body would be then

H12(q) = −2πκ

q

d(qB1)

dq

=
1

q

dJ(q)

dq
.

(5.18)

The magnitude of the angular momentum decreases with the separation between

vortices. The sign of the magnetic field is then opposite to the sign of the angular

momentum, which in turn leads the direction to which the vortex trajectories
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bends. When the vortex spin is positive, or, κ < 0, vortices in a two vortex

system turn right. For the negative spin, vortices turn left. From this one can

easily obtain a qualitative pictures of the dynamics of two vortices which are either

bounded closely or starting and ending at the spatial infinity. However, the detail

pictures seem to be complicated and will not be pursued here.

Somewhat similar behavior has been observed numerically in another kind

of self-dual system with global charge and topology in three dimensions.
[15]

Our

approach may shed some light on the physical understanding of the interaction

between those solitons.

Finally, let us consider the meaning of the effective lagrangian (5.11). We do not

have any geometric derivation of the quadratic term, but we can take the quadratic

term as a metric on the moduli space, the space of the self-dual configurations of

vortices. The linear term could be interpreted as a magnetic field in the moduli

space. Vortices are then moving along geodesics determined by the metric and

magnetic field. Vortices carry spin and may feel the spin connection of the metric

on the moduli space. Since the spin connection could be interpreted as a sort of

the gauge field, the linear term in our effective lagrangian may be interpretable as

the spin connection, making the effective action fully geometric. To see this, we

need a better understanding of the quadratic part of the effective action.
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6. Conclusion

We understand now various aspects of vortex dynamics in Chern-Simons Higgs

systems. We have the dual formulation in the path integral formalism, where the

interaction between vortices manifests. The statistics of vortices comes from the

Aharanov-Bohm phase of the dual gauge interaction, which combines the usual

electromagnetic and Magnus forces. In the dual formulation, we included the

external field and current, which could be dynamical. In self-dual models we

studied the properties of static vortices and presented an effective action for slowly

moving vortices.

There seems to be some interesting directions to take from here. One direction

is to find the further use of the dual formulation. We can ask whether the per-

turbative expansion is possible in the dual formulation. For vortices moving on a

curved surface whose typical length scale is much larger than the size of vortices,

there could be an force on vortices via spin connection because vortices carry spin.

Maybe our approaches would shed some light on that. It would be also interesting

to find whether there is a dual formulation of the nonrelativistic limit of the theory

in the symmetric phase. Another is to understand better the effective action for

slowly moving vortices and its dynamical consequences. Besides the statistics, we

have not studied the quantum aspects of vortex dynamics. Quantum aspects of

vortices in the field theoretic and effective action levels need further investigation.
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APPENDIX A.

Here we derive the Magnus force in the simplest example. Consider the theory

of a complex scalar field in three dimensions with a global U(1) symmetry. The

lagrangian is given by

L = |∂µφ|2 − U(φ). (A..1)

The generating functional is

Z =< F |e−iTH |I >=

∫

[dφ][dφ∗]ei
∫

d3xL. (A..2)

With φ = feiθ/
√

2, the lagrangian becomes

L =
1

2
(∂µf)2 +

1

2
f2(∂µθ)

2 − U(f). (A..3)

The conserved current for the global abelian symmetry is jµ = f2∂µθ. Suppose

we are interested in the minimum energy density configuration for a given uniform

charge density j0 = ρB . The phase becomes θ = wt with a constant w and the f

field is fixed by the minimizing the energy density,

Ueff (f) =
1

2f2
ρ2

B + U(f). (A..4)

There could be a global vortex with this background. The ansatz will be

f(r) and θ = wt+ nϕ. These vortices carry logarithmically divergent energy and

quadratically divergent angular momentum when the charge density is non-zero.

Let us consider the motion of vortices and antivortices with some background

charge. For example, one is imagining some bosonic superfluid or Q-matter. In

the same way as in Sec. 3 we introduce an auxiliary field Cµ to linearize the

second term of the lagrangian (A.3). Separate the phase θ into a part for vortex

configurations and a part for single-valued fluctuations as in Eq.(3.3). Integrate

28



over the fluctuation to get a new gauge field Hµ for Cµ. After some further steps

similar as in Sec.3, we arrive at the dual formulation of the generating functional,

Z =

∫

[df ][dHµ][dqµ
a ]ei

∫

d3xLD , (A..5)

where

LD =
1

2
(∂µf)2 − 1

16π2f2
H2

µν +HµK
µ. (A..6)

with Kµ given in Eq.(3.5). There is no Jacobian factor in measure as in Sec. 3.

In the dual formulation the Goldstone boson is described by the massless vector

field with the Maxwell kinetic term. Vortices become charged particles and the

logarithmically divergent self-energy comes from the divergent Coulomb energy.

In the dual formalism, the conserved current for the global symmetry becomes

jµ = f2∂µθ = ǫµνρ∂νHρ. (A..7)

The uniform charge density background becomes a uniform magnetic field back-

ground. Vortices moving on a uniform charge background would feel the Magnus

force as a Lorentz force in the dual formulation.

Let us now do a little bit of fluid dynamic approach to the Magnus force

to figure out the direction. For the positive w and n, the momentum density

flow T 0i = −
∫

d2r[ḟ∂if + f2θ̇∂iθ] around the vortex is clockwise, resulting in

the negative angular momentum density. Let us consider a vortex moving to the

negative x axis. This is very similar to the case where the 2-dimensional baseball

moving in the same direction with the same rotation, feeling the net Magnus force

in the positive y direction. This direction of force is exactly that of the Lorentz

force one would get from the dual lagrangian (A.6)
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APPENDIX B.

Here we present the path integral derivation of the dual transformation for a

Maxwell Higgs theory in three dimensions. The lagrangian for a complex scalar

field φ = feiθ/
√

2 coupled to the gauge field Aµ is

L = − 1

4e2
F 2

µν +
1

2
(∂µf)2 +

1

2
f2(∂µθ + Aµ + Aext

µ )2 − U(f) + AµJ
µ, (B..1)

where Jµ is the external current and Aext
µ is the external gauge field. As in Sec.3,

we introduce the vortex current Kµ and integrate over the fluctuation part of the

θ field, resulting in a dual gauge field Hµ. The effective lagrangian becomes

L′ =
1

2
(∂µf)2 − U(f) − 1

16π2f2
H2

µν +HµK
µ − 1

4e2
F 2

µν

+
1

4π
ǫµνρHµFνρ +

1

4π
ǫµνρHµF

ext
µν + AµJ

µ.

(B..2)

In order to treat Fµν and Aµ to be independent from each other, we introduce

an vector field Nµ so that

∫

[d Fµν ][dAµ]δ(Fµν − (∂µAν − ∂νAµ))...

=

∫

[dFµν ][dAµ][dNµ] exp{i
∫

d3x
1

4π
ǫµνρNµ[Fνρ − (∂νAρ − ∂ρAν)]}...

(B..3)

The Fµν integration is just a gaussian integral and so trivial. The Aµ integration

leads to a factor

δ(
1

2π
ǫµνρ∂νNρ − Jµ), (B..4)

which is consistent only if the external current Jµ is conserved explicitly. Thus,

unlike to Sec. 3 the external current could have a dynamical origin only for the

case when AµJ
µ is replaced by

LW = ǫµνρAµ∂νWρ + kinetic terms. (B..5)

The external gauge field can be made dynamical by simply replacing Aext
µ by, for

example, Wµ in Eq.(B.5)
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Let us consider a single-valued scalar field ζ such that

Nρ = N̄µ + ∂ρζ, (B..6)

where

ǫµνρ∂νN̄ρ = 2πJµ (B..7)

and ∂ρN̄ρ = 0. A uniform external electric charge density corresponds to a uniform

magnetic field in the vector potential N̄ρ. If we put N̄ρ = ∂ρζ̄ for a point current

of unit charge, ζ̄ becomes multivalued with shift 2π, which can be absorbed into

ζ . This allows an interpretation that point external charges of integer charge are

vortices in the ζ variable.

Putting together, the generating functional after the dual transformation be-

comes

Z =

∫

[df ][dHµ][dqµ
a ][dζ ]δ(ǫµνρ∂νN̄ρ − 2πJµ) exp{

∫

d3xLD}, (B..8)

where

LD =
1

2
(∂µf)2 − U(f) − 1

16π2f2
H2

µν +HµK
µ

+
e2

8π2
(Hµ + N̄µ + ∂µζ)

2 +
1

4π
ǫµνρHµF

ext
νρ .

(B..9)

with Kµ given in Eq.(3.5). There is an obvious abelian gauge symmetry in the

dual lagrangian. The point external currents of integer charge could appear as

vortices in the ζ variable. The massive vector bosons of spin ±1 are described by

the Maxwell Higgs terms in both formalisms.

If there is a uniform electric charge density background, we know that there

should be a uniform charge density background of the opposite charge carried by

the Higgs field to have a finite Coulomb energy. In the dual formulation, there is

a uniform external magnetic field carried by N̄ρ which should be balanced by the

unform magnetic field of the opposite sign carried by Hµ for a finite energy density

as one can see in the dual lagrangian (B.9). In the dual formulation vortices moving

on the uniform charged background are equivalent to charged particles moving on

a uniform external magnetic field and vortices feel the Magnus force as an effective

Lorentz force.
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APPENDIX C.

Here we study the effective lagrangian for slowly moving vortices in self-dual

Maxwell Higgs systems in the dual formulation of appendix B. The self-dual model

is fixed by choosing the potential,

U(f) =
e2

8
(f2 − v2)2. (C..1)

The energy functional of the dual lagrangian (B.9) can be rewritten as

E =

∫

d2r

{

1

2
ḟ2 +

1

8π2f2
H2

12 +
e2

8π2
(Hi + N̄i + ∂iζ)

2

+
1

2
(∂if ± 1

2πf
H0i)

2 +
e2

8π2
(H0 + N̄0 + ∂0ζ ∓ π(f2 − v2))2

}

±πv2n ,

(C..2)

where the vorticity n =
∫

d2rK0 appears because of Gauss’s law,

∂i(
1

f2
H0i) + e2(H0 + ∂0ζ) + 4π2K0 = 0. (C..3)

The energy is bounded, E ≥ πv2|n|. As there is no external charge and field, we

choose the gauge where N̄µ = 0 and ζ = 0. The energy bound is saturated by the

configurations satisfying ḟ = 0, Hi = 0,

H0 = ±π(f2 − v2),

H0i = ∓π∂if
2,

(C..4)

and Gauss’s law (C.3). Two equations in Eq.(C.4) are consistent to each other.

Eqs.(C.3) and (C.4) can be put together into an equation for f ,

∂2
i ln f2 − e2(f2 − v2) = 4π

∑

a

δ(~r − ~qa). (C..5)

Let us try to derive the low energy effective lagrangian in the dual formalism.

We know how the fields transform under the nonrelativistic limit of the Lorentz
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transformation of all vortices. The scalar field will be invariant but there is a

nontrivial correction ∆Hµ to the gauge field. The gauge field satisfies the Maxwell

equation in the first order of vortex velocity ~̇qa,

∂ν(
1

f2
Hνµ) + e2Hµ + 4π2Kµ = 0. (C..6)

For slow moving vortices with vortex positions ~qa(t), we assume that the fields

transform like a complicated version of the Lorentz transformation. The scalar field

would be given simply as f(~r; ~qa(t)). There would be a correction to the gauge

field linear in the velocity. We require that the Maxwell equation is again satisfied

to first order in velocity. Note that the velocity of vortices would appear explicitly

in the Maxwell equation by the current Ki =
∑

a q̇
i
aδ(~r − ~qa).

In zeroth order, only H0 is nonzeros as one see from Eq.(C.4). The first order

part of Eq.(C.6) is

∂i(
1

f2
∂i∆H0) + e2∆H0 = 0,

− ∂0(
1

f2
∂iH0) + ǫij∂j(

1

f2
∆H12) + e2∆Hi = 4π2Ki.

(C..7)

The first part of Eq.(C.7) implies that ∆H0 = 0. For the second part of Eq.(C.7),

we apply both ∂i and ǫli∂l, leading to

∂i∆Hi = π∂0f
2,

∂2
i (

1

f2
∆H12) − e2∆H12 = 4π2

∑

a

ǫij q̇
i
a∂jδ(~r − ~qa).

(C..8)

As we know the divergence and curl of ∆Hi, in principle we can find ∆Hi explicitly.

Before we consider the effective action, let us ask whether the f field satisfies

its field equation to first order in the vortex velocity. One can be easily convinced

that the first order correction ∆f can be put to be zero consistently.

We now the field configuration of slowly moving vortices for a given trajectory.

Let us calculate the field theory action from Eq.(B.9) for these configurations. The
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zeroth order term is minus of the rest mass. There is no first order term. The

second becomes the effective action for slowly moving vortices. The field equation

(C.8) is essential in this derivation. The effective lagrangian is

Leff(~qa, ~̇qa) =

∫

d2r

{

1

2
ḟ2 +

1

8π2f2
(∆H12)

2 +
e2

8π2
(∆Hi)

2

}

. (C..9)

Let us see what happens in the original formulation. The field equations in the

intermediate lagrangians imply

ǫµνρ∂νHρ = 2πf2(∂µθ + Aµ),

ǫµνρH
ρ = 2πe2Fµν ,

(C..10)

which implies that

e2

2π
∆Hi = ǫijȦj

= ∂i∂0 ln f − ǫij∂jθ

(C..11)

in the A0 = 0 gauge. With this identification, our effective lagrangian (C.9) can

be shown easily to be identical to that of Samols’ in Ref.[10].
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FIGURE CAPTIONS

1) Plot of the f field in unit of v on the x− y plane for two vortices of mutual

distance d = 6 with spatial distance unit v2/κ

2) Plot of the magnetic field F12 in unit of v4/4κ2 on the x−y plane with d = 6

3) Plot of the total angular momentum in unit of −πκ as a function of mutual

distance d.

36


