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Compact Feynman rules for Majorana fermions
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We present simple algorithmic Feynman rules for Majorana fermions. Insisting on a
fermion flow through the graphs along fermion lines we only need the familiar Dirac
propagator and only vertices without explicit charge-conjugation matrices; moreover, we
get the correct relative signs between different interfering Feynman graphs as in the case
of Dirac fermions.

Supersymmetric gauge theories involve Majorana fermions. The fact that Majorana
fields are self-conjugate implies that there exist Wick contractions of these fields which
are different from those of Dirac fields. Together with the anticommutativity of fermion
fields this obscures the determination of the relative sign of interfering Feynman graphs.

Feynman rules for Majorana fermions were given in Refs. [1, 2, 3, 4]. However, those
Feynman rules seem to be either unnecessarily complicated or do not allow the determi-
nation of the relative sign of interfering Feynman graphs directly from the diagrams.

We derive Feynman rules for Majorana (and Dirac) fermions which are close to the
rules for Dirac fermions. Since the fermion number flow is violated we introduce a con-
tinuous fermion flow, i.e. an (arbitrary) orientation of each fermion line. Based on this
fermion flow we can form chains of Dirac matrices and determine the relative sign of
interfering Feynman graphs as one does for Dirac fermions. We only need the well-known
Dirac propagator for all fermions, and we have to introduce in general two analytical
expressions for each vertex (one for the two possible orientations), which is still less than
in the usual treatment.

To be more specific we consider a typical coupling term L£; = XI'x where each x can
be a Dirac or a Majorana fermion and I' denotes a generic fermionic interaction including
Dirac matrices, coupling constants h%,, and boson fields:

—X_FX = hf),chaFiXbQC' (]')

The field ® summarizes scalar and vector fields and I'; = 1,5, Y475, Yu» Opw-
To be able to follow the introduced fermion flow along the oriented fermion line it may
be necessary to rewrite £ in the equivalent "reversed” form

Lr=XI'% (2)




with the charge conjugate fields
¥=0x"X=—x"C" (3)

and

I' = crict. (4)

Using the properties of the charge conjugation matrix C
ct=c, ct =-c, CTTC™ =nI;  (no summation over 1) (5)

with
o 1 for I'; = 1,295,775
= —1 for I'; = v4, 00

we obtain _ o
&/F,i = h;bcni%bri%aQC . (7)
If both y are Majorana fermions (7) implies n;h’,. = hi,, for all i, i.e. I =T".
For the spinors we have

v(p,s) = CT (p,s)  ulp,s)=Co (p,s) (8)

where p and s denote momentum and polarization, respectively, and for the propagator

S(p)
CS(p)C~! = 5(—p). (9)

A detailed derivation including a more complete set of examples and a comparison
with Refs. [1, 2, 3, 4] will be given in [5], where we also show that our Feynman rules
naturally apply to theories containing explicit charge-conjugate fermion fields.

So we can write down our Feynman rules:

Fermions are denoted by solid lines. For Dirac fermions, each line carries an arrow
which indicates the fermion number flow. Majorana lines do not carry arrows.

The fermionic vertices are read off from the Lagrangian as usual, but for every vertex
containing fermions we need two expressions, the direct one (I') and the "reversed” one
(I'"). For a pure Majorana fermion vertex there is only one expression because I' = I.

With respect to the fermion number flow of Dirac fermions there exists the usual
propagator S(p) and the "reversed” one S’(p) = S(—p) as well the usual spinors and their
"reversed” counterparts. For Majorana fermions there are only the usual propagator and
spinors and no reversed ones (see Figs. 2 and 3). With respect to the fermion flow the
"reversed” spinors and propagators equal the usual ones and there is only one propagator
and the usual spinors!.

With this rules the Feynman amplitudes are obtained as follows:

e Draw all possible Feynman diagrams for a given process.

1The usual Feynman rules for propagators and external fermions depend on the relative orientation
of fermion number flow and momentum. Our Feynman rules are obtained from the usual ones when
substituting the fermion number flow by the fermion flow using the same set of analytical expressions.
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Figure 1: The Feynman rules for fermionic vertices with orientation (thin arrows)
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Figure 2: The Feynman rules for fermion propagators with orientation (thin arrows). The
momentum p flows from left to right.

e Fix an arbitrary orientation (fermion flow) for each fermion chain.

e Start at an external leg (for closed loops at some arbitrary propagator) and write
down the Dirac matrices proceeding opposite to the chosen orientation (fermion
flow) through the chain.

e For each internal propagator, external line and vertex insert the appropriate analytic
expression as given in Figs. 1, 2 and 3 corresponding to the chosen fermion flow.
This implies that if the orientation is opposite to the flow of fermion number the
reversed vertices I”, propagators S(—p) and spinors have to be taken.

e Multiply by a factor (—1) for every closed loop.
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Figure 3: The Feynman rules for external fermion lines with orientation (thin arrows).
The momentum p flows from left to right.
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Figure 4: Feynman diagram contributing to ¥ — ®®

e Multiply by the permutation parity of the spinors in the obtained analytical expres-
sion with respect to some reference order.

e As far as the determination of the combinatorial factor is concerned, Majorana
fermions behave exactly like real scalar or vector fields.

Note, that the analytical expressions are independent of the chosen orientation (fermion

flow).

We illustrate the application of our Feynman rules by giving one example. We consider
the contribution to the process ¥ — ®® via Majorana exchange depicted in Fig. 4
resulting from the interaction Lagrangian Lr = hibcxaFﬂ/}b‘I)c where A\, and %, denote the
Majorana and the Dirac fermions, respectively.

With the help of our Feynman rules we can immediately write down the expression
for the amplitude with arbitrary fermion flow. For the orientation in Fig. 4b we get

iM = —i0,TiS(pe — pa)Tjushiochlyy (10a)
and for the reversed fermion flow (Fig. 4c)

iM' = (=1)(=0)Bs %8 (pa — pe)Tittahly hlyy = iM. (10b)
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The sign is determined from the permutation parity of the spinors with respect to a
reference order. Fixing the reference order as (a,b) yields the explicit factor (—1) in
(10b). The equivalence of (10a) and (10b) can be easily shown using (4), (8) and (9).

The Feynman rules quoted above apply to any order of perturbation theory. Note that
a self energy loop with two identical Majorana fermions receives the usual combinatorial
factor —;— for identical particles.

To summarize we state that our Feynman rules — based on a well-defined fermion flow
— are simple and algorithmic. They resemble closely the usual ones for Dirac fermions
and do not involve the charge-conjugation matrix explicitly. All sign ambiguities have
disappeared and the relative sign of interfering Feynman diagrams is determined exactly
as in the case of Dirac fermions. This set of rules facilitates practical calculations con-

siderably. Furthermore they can easily be implemented into symbolic Feynman diagram
generators.

References

1] S.K. Jones and C.H. Llewellyn Smith, Nucl. Phys. B217 (1983) 145.

[

[2] H.E. Haber and G.I. Kane, Phys. Rep. 117 (1985) 76.

[3] E.I Gates and K.L. Kowalski, Phys. Rev. D37 (1988) 938.
[

4] J. Gluza and M. Zralek, Phys. Rev. D45 (1992) 1693.
[5] A. Denner, H. Eck, O. Hahn and J. Kiiblbeck, CERN-TH.6549/92.



