HQL 2018

 ${\rm Charm less} \; b \; {\rm Decays}$

Jeremy Dalseno on behalf of the LHCb collaboration

J.Dalseno [at] bristol.ac.uk

28 May 2018

Outline

- 1. Types of ${\cal CP}$ violation
 - Direct, mixing-induced
- 2. 2-body

-
$$B^0 \to K^+\pi^-, \pi^+\pi^-, B^0_s \to K^+K^-$$

3. 3-body

-
$$B^0 \rightarrow K^0_S \pi^+ \pi^-$$

4. 4-body

-
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$
, $\Lambda_b^0 \to pK^-h^+h^-$ ^{New!}, $\Xi_b^0 \to pK^-\pi^+K^-$ ^{New!}
- $B_s^0 \to \phi\phi$, $K^*\bar{K}^*$

Conditions for Direct CP Violation

In charged B decays, presence of multiple amplitudes may lead to direct ${\cal CP}$ violation

$$A(B \to f) = \sum_{i} |A_{i}| e^{i(\delta_{i} + \phi_{i})}$$

$$\bar{A}(\bar{B} \to \bar{f}) = \sum_{i} |A_{i}| e^{i(\delta_{i} - \phi_{i})}$$

Strong phase (δ) invariant under CP , while weak phase (ϕ) changes sign under CP

$$\mathcal{A}_{CP}(B \to f) \equiv \frac{|\bar{A}|^2 - |A|^2}{|\bar{A}|^2 + |A|^2} \propto \sum_{i,j} |A_i| |A_j| \sin(\delta_i - \delta_j) \sin(\phi_i - \phi_j)$$

3 conditions required for direct CP violation

At least 2 amplitudes

Non-zero strong phase difference, $\delta_i - \delta_j \neq 0$

Non-zero weak phase difference, $\phi_i - \phi_j \neq 0$

Source of weak phase differences come from different CKM phases of each amplitude

Short-Distance Contributions

Multiple sources of strong phase

1. Short-distance contributions (quark level)

BSS mechanism, PRL 43 242 (1979)

Tree contribution (a)

Penguin diagram (b) contains 3 quark generations in loop

 $S\mbox{-matrix}$ unitarity, CPT require absorptive amplitude

If gluon in penguin is timelike (on-shell)

Momentum transfer $q^2 > 4 m_i^2 \; {\rm where} \; i=u,c$

Imaginary part depends on quark masses

Particle rescattering (c) generates a phase difference

CP violation in 2-body processes caused by this effect eq. $B^0 \to K^+\pi^-$

Long-Distance Contributions

Remaining sources endemic to multibody decays

Long-distance contributions ($q\bar{q}$ level)

2. Breit-Wigner phase

Propagator represents intermediate resonance states

$$F_R^{\rm BW}(s) = \frac{1}{m_R^2 - s - im_R \Gamma_R(s)}$$

Phase varies across the Dalitz plot

3. Relative CP-even phase in the isobar model

$$A(B \to f) = \sum_{i} |A_{i}| e^{i(\boldsymbol{\delta}_{i} + \phi_{i})}$$
$$\bar{A}(\bar{B} \to \bar{f}) = \sum_{i} |\bar{A}_{i}| e^{i(\boldsymbol{\delta}_{i} - \phi_{i})}$$

Related to final state interactions between different resonances

Neutral Meson Mixing

Mixing arises from a difference between the mass and flavour eigenstates

$$|P_H\rangle = p|P^0\rangle + q|\bar{P}^0\rangle, \qquad |P_L\rangle = p|P^0\rangle - q|\bar{P}^0\rangle$$

p, q are complex mixing parameters

Mixing can be described by the effective 2x2 Hamiltonian

$$H_{ij} = M_{ij} - i\Gamma_{ij}/2$$

 ${\cal M}$ is the mass term

 Γ provides the decay term due to the -i

Solving the Schrödinger Equation

3 mixing physical observables

 $\Delta m \equiv m_H - m_L$: mixing frequency in time evolution

 $\Delta \Gamma \equiv \Gamma_H - \Gamma_L$: lifetime difference

 $\phi_{\rm mix} = -\arg(M_{12}/\Gamma_{12})$: *CP*-violating mixing phase

 M_{12} : short-distance (off-shell)

 $-i\Gamma_{12}/2$: long-distance (on-shell)

CP Violation in Neutral Mesons

 ${\cal CP}$ violation in neutral meson system governed by complex parameter

$$\lambda_{CP} \equiv \frac{q}{p} \frac{\bar{A}(\bar{P}^0 \to f_{CP})}{\bar{A}(P^0 \to f_{CP})}$$

Access experimentally through time-dependent rate asymmetry in neutral mesons

$$a_{CP}(t) \equiv \frac{\Gamma(\bar{P}^0 \to f_{CP}) - \Gamma(P^0 \to f_{CP})}{\Gamma(\bar{P}^0 \to f_{CP}) + \Gamma(P^0 \to f_{CP})} = \frac{-\mathcal{C}_{CP}\cos(\Delta mt) + \mathcal{S}_{CP}\sin(\Delta mt)}{\cosh(\Delta\Gamma t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)}$$

Sensitive to 3 physical observables

$$\mathcal{C}_{CP}$$
: CP violation in the decay, $|\bar{A}|
eq |A|$

$$\mathcal{C}_{CP} \equiv \frac{|\lambda_{CP}|^2 - 1}{|\lambda_{CP}|^2 + 1}$$

 S_{CP} : Mixing-induced CP violation, $\arg(\lambda_{CP}) \neq 0$

 $\mathcal{A}_{\Delta\Gamma}$: Admixture of P_H and P_L that decay to final state

$$S_{CP} \equiv -\eta_{CP} \frac{2\Im(\lambda_{CP})}{|\lambda_{CP}|^2 + 1}$$

$$\mathcal{A}_{\Delta\Gamma} \equiv -\frac{2\Re(\lambda_{CP})}{|\lambda_{CP}|^2 + 1}$$

Outline

- 1. Types of ${\cal CP}$ violation
 - Direct, mixing-induced

2. 2-body

- $B^0 \to K^+\pi^-, \pi^+\pi^-, B^0_s \to K^+K^-$

3. 3-body

-
$$B^0 \rightarrow K^0_S \pi^+ \pi^-$$

4. 4-body

-
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$
, $\Lambda_b^0 \to pK^-h^+h^-$ ^{New!}, $\Xi_b^0 \to pK^-\pi^+K^-$ ^{New!}
- $B_s^0 \to \phi\phi$, $K^*\bar{K}^*$

$B \rightarrow h^+ h^{-\prime}$

Simultaneous analysis includes $B^0 \to K^-\pi^+, \, \pi^+\pi^-$ and $B^0_s \to K^+K^-$

Based on 2011+2012 data (3.0 fb^{-1})

Sensitive to direct and mixing-induced ${\cal CP}$ violation

Constrain α , γ and $-2\beta_s$

Requires time-dependent and flavour-tagged analysis

Decay Time Distribution

Decay times precisely measured due LHCb VELO vertex measurements

Time distribution affected by acceptance effects due to trigger and selection criteria

Shape determined from $B^0 \to K^+\pi^-$ data

Transformation to other final states from simulation

Decay Time Resolution

Event-dependent decay time resolution σ_t

Dilutes oscillation amplitudes $D=\exp(\frac{1}{2}\Delta m^2\sigma_t^2)$

Negligible in B^0 decays due to small Δm_d

Linearly dependent on per-event decay time error

Calibrated from time-dependent asymmetry of $B \to D\pi$ control samples

Flavour Tagging

Employs Opposite Side (OS) and Same Side (SS) taggers

Calibrated vs Uncalibrated mistag

Algorithm produces per-event tagging decision and associated wrong tag probability

Wrong tag probability linearly calibrated with various control samples

 B^0 tagging power: $(4.08\pm0.20)\%,$ B^0_s tagging power: $(3.65\pm0.21)\%$

$B \rightarrow h^+ h^{-\prime}$ Results

First error statistical, second systematic

$$\begin{aligned} \mathcal{C}_{\pi^+\pi^-} &= -0.34 \pm 0.06 \pm 0.01, \\ \mathcal{S}_{\pi^+\pi^-} &= -0.63 \pm 0.05 \pm 0.01, \\ \mathcal{C}_{K^+K^-} &= +0.20 \pm 0.06 \pm 0.02, \\ \mathcal{S}_{K^+K^-} &= +0.18 \pm 0.06 \pm 0.02, \\ A_{K^+K^-}^{\Delta\Gamma} &= -0.79 \pm 0.07 \pm 0.10, \\ \mathcal{A}_{CP}^{B^0 \to K^+\pi^-} &= -0.084 \pm 0.004 \pm 0.003, \\ \mathcal{A}_{CP}^{B^0 \to K^-\pi^+} &= +0.213 \pm 0.015 \pm 0.007 \end{aligned}$$

Most precise single measurement First determination of $A^{\Delta\Gamma}_{K^+K^-}$ 4σ evidence for CP violation in $B^0_s\to K^+K^-$

$B \rightarrow h^+ h^{-\prime}$ World Average

Outline

- 1. Types of ${\cal CP}$ violation
 - Direct, mixing-induced
- 2. 2-body

-
$$B^0 \to K^+\pi^-, \pi^+\pi^-, B^0_s \to K^+K^-$$

3. 3-body

-
$$B^0 \rightarrow K^0_S \pi^+ \pi^-$$

4. 4-body

-
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$
, $\Lambda_b^0 \to pK^-h^+h^-$ ^{New!}, $\Xi_b^0 \to pK^-\pi^+K^-$ ^{New!}
- $B_s^0 \to \phi\phi$, $K^*\bar{K}^*$

 $\rightarrow K_{\rm C}^0 \pi^+ \pi^-$

Mediated by penguin and tree processes

Time-independent amplitude analysis (today)

Sensitive to direct CP violation for intermediate states

Time-dependent amplitude analysis (long-term plan)

Direct measurement of CP violating phase β from CP eigenstate intermediates states

Flavour-specific intermediate states contribute information towards γ measurement

$B^0 ightarrow K^0_S \pi^+ \pi^-$ Yield

Analysis performed with 2011+2012 data (3.0 fb^{-1})

Around 3200 signal events in signal region with \sim 90% purity

arXiv:1712.09320

$B^0 \rightarrow K^0_S \pi^+ \pi^-$ Amplitude

Isobar approach

 $A = \sum_{i} c_i F_i(m_{12}^2, m_{23}^2)$

 $F_i(m_{12}^2,m_{23}^2)$: strong dynamics form factor

Contains lineshape and spin density

 c_i : CP-violating complex fit coefficients

$$\mathcal{A}_{CP}^{\text{Raw},i} = \frac{|\bar{c}_i|^2 - |c_i|^2}{|\bar{c}_i|^2 + |c_i|^2}$$

Raw \mathcal{A}_{CP} corrections

- $B^0/\, ar{B}^0$ production asymmetry $(-0.35\pm 0.81)\%$
- π^+/π^- detection asymmetry $(0.00\pm0.25)\%$

Resonance	Parameters	Lineshape
$K^{*}(892)^{-}$	$m_0 = 891.66 \pm 0.26$	RBW
	$\Gamma_0 = 50.8 \pm 0.9$	
$(K\pi)_0^-$	$\mathcal{R}e(\lambda_0) = 0.204 \pm 0.103$	EFKLLM
	$\mathcal{I}m(\lambda_0) = 0$	
	$\mathcal{R}e(\lambda_1) = 1$	
	$\mathcal{I}m(\lambda_1) = 0$	
$K_2^*(1430)^-$	$m_0 = 1425.6 \pm 1.5$	RBW
	$\Gamma_0 = 98.5 \pm 2.7$	
$K^{*}(1680)^{-}$	$m_0 = 1717 \pm 27$	Flatté
	$\Gamma_0 = 332 \pm 110$	
$f_0(500)$	$m_0 = 513 \pm 32$	RBW
	$\Gamma_0 = 335 \pm 67$	
$ ho(770)^{0}$	$m_0 = 775.26 \pm 0.25$	GS
	$\Gamma_0 = 149.8 \pm 0.8$	
$f_0(980)$	$m_0 = 965 \pm 10$	Flatté
	$g_{\pi} = 0.165 \pm 0.025 \text{ GeV}$	
	$g_K = 0.695 \pm 0.119 \text{ GeV}$	
$f_0(1500)$	$m_0 = 1505 \pm 6$	RBW
	$\Gamma_0 = 109 \pm 7$	
χ_{c0}	$m_0 = 3414.75 \pm 0.31$	RBW
	$\Gamma_0 = 10.5 \pm 0.6$	
Nonresonant (NR)		Phase space

EFKLLM: $(K\pi)^0$ form factor from QCDf

Phys. Rev. D 79, 094005 (2009)

 $B^0 \rightarrow K^0_S \pi^+ \pi^-$ Amplitude -

First observation of CP violation in $B^0 \to K^{*+}(892)\pi^-$ (6 σ significance)

Outline

- 1. Types of ${\cal CP}$ violation
 - Direct, mixing-induced
- 2. 2-body

-
$$B^0 \to K^+\pi^-, \pi^+\pi^-, B^0_s \to K^+K^-$$

3. 3-body

-
$$B^0 \rightarrow K^0_S \pi^+ \pi^-$$

4. 4-body

$$\begin{array}{l} - \ \Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-, \ \Lambda_b^0 \rightarrow p K^- h^+ h^{-\operatorname{New}!}, \ \Xi_b^0 \rightarrow p K^- \pi^+ K^{-\operatorname{New}!} \\ - \ B_s^0 \rightarrow \phi \phi, \ K^* \bar{K}^* \end{array}$$

4-body Baryonic Decays

Rich underlying resonant structure

Probe CP violation with integrated and scalar triple-product asymmetry measurements

 $P\operatorname{-odd}{\mathsf{triple}}$ products

$$\begin{split} \Lambda_b^0 &: C_{\hat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^+}) \propto \sin \Phi \\ \bar{\Lambda_b^0} &: \bar{C}_{\hat{T}} = \vec{p}_{\bar{p}} \cdot (\vec{p}_{h_1^+} \times \vec{p}_{h_2^-}) \propto \sin \bar{\Phi} \end{split}$$

 $P\text{-}\mathrm{odd}$ asymmetries of \hat{T} operator

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}$$
$$\bar{A}_{\hat{T}} = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)}$$

$$a_{CP}^{\hat{T}-\text{odd}} = \frac{1}{2} (A_{\hat{T}} - \bar{A}_{\hat{T}})$$

Sensitive to interference between $P\mbox{-}{\rm even}$ and $P\mbox{-}{\rm odd}$ amplitudes

$\Lambda_h^0 ightarrow p\pi^- h^+ h^-$ Results

Based on 2011-12 data (3.0 fb^{-1}) Nature Physics 13 (2017) 391 No CP violation in integrated phase space

No CP violation in integrated phase space $\frac{2}{2}$ Divide into bins

Scheme A:

Based on dominant resonant structure

eg. Δ^{++} , N^* , $\rho(770)$

Scheme B:

Function of angle between decay planes

First evidence for CP violation (3.3 σ)

$\Lambda_b^0 \to pK^-h^+h^-, \Xi_b^0 \to pK^-\pi^+K^-$

New preliminary result based on 3.0 fb^{-1} $(p\pi^-h^+h^{-\prime} \rightarrow pK^-h^+h^{-\prime})$

 $\Lambda_b^0
ightarrow pK^-\pi^+\pi^-$ Yield: 19877 ± 195 $\Lambda_b^0
ightarrow pK^-K^+K^-$ Yield: 5297 ± 83 $\Xi_b^0
ightarrow pK^-\pi^+K^-$ Yield: 709 ± 45 Left: Sceme A, Right: Scheme B Scheme A: Binned in dominant resonances Scheme B: Binned in Φ

Additional binned search in mass combinations

No significant asymmetries found

arXiv:1805.03941

Time-dependent VV Final States

 $B^0_s \to \phi \phi$ ($b \to s \bar{s} s$), $K^* \bar{K}^*$ ($b \to s \bar{d} d$) penguin dominated final states

Highly sensitive to New Physics amplitudes in the mixing and decay processes

Final state is *CP* admixture, time-dependent angular analysis to disentangle

Measure $CP\mbox{-violating mixing phase }\phi_s^{s\bar{s}s}\mbox{, }\phi_s^{sdd}$

Theory: $|\phi_s^{s\bar{s}s}| < 0.02$ rad

arXiv:0810.0249, Nucl. Phys. B 774, 64 (2007), Phys. Rev. D 80, 114026 (2009)

$B^0_s \to \phi \phi$

Analysis based on Run 1 and 2015+16 data (5 fb^{-1}), LHCb-CONF-2018-001

Analysis based on 2011+12 data (3 fb^{-1})

World's first measurement

JHEP 03 (2018) 140

 $K\pi$ mass distribution modelled

Effective tagging efficiency: $(5.17 \pm 0.17)\%$

Systematics dominated by multi-dimensional acceptance

No evidence for CP violation

Results consistent with $B^0_s \to \phi \phi$

Summary

LHCb provides a rich environment to search for various manifestations of ${\cal CP}$ violation

Time-dependent measurement of CP violation in $B \to h^+ h^{-\prime}$

Most precise single measurement

Amplitude analysis of $B^0 \to K^0_S \pi^+\pi^-$

First observation of CP violation in $B^0 \to K^{*+}\pi^-$

Search for CP violation in 4-body baryonic $b \ {\rm decays}$

First evidence of CP violation in $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ with triple product constructs

Time-dependent measurements of ϕ_s with $B^0 \to VV$ channels

 $B^0_s \to \phi \phi$ consistent with SM predictions

First measurement with $B^0_s \to K^* \bar{K}^*$