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1 Introduction

The hydrodynamic analysis of heavy-ion collisions performed at RHIC and the LHC sug-

gests that a droplet of strongly interacting matter is generated in the collisions. The value

of the specific viscosity that best describes these data is very low [1, 2], η/s� 1, suggesting

that the plasma is strongly coupled and does not have a description in terms of weakly in-

teracting quasi-particles. This has encouraged much work in describing the plasma formed
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in terms of strongly coupled models, such as N = 4 super Yang-Mills theory as described

by AdS/CFT duality [3] (and references therein).

While the low value of η/s implies that the system is strongly coupled, the collisions

exhibit also hallmarks of weak coupling dynamics. In particular, it is seen that the hard

components of high-pT jets go largely unmodified and resemble those created in p-p colli-

sions [4]. This suggests that the medium formed in heavy-ion collisions cannot be strongly

coupled at all scales and even if some of the modes are strongly coupled, others are weakly

coupled. Even more strikingly, the interpretation of the observed long range rapidity corre-

lations in p-A and high multiplicity p-p collisions through final state interactions, combined

with no signature of jet quenching in these systems may be seen to suggest the presence of

both strongly and weakly coupled modes.

The simultaneous presence of strongly and weakly coupled modes poses a theoretical

challenge. In absence of any fully developed non-perturbative method to access real-time

properties of QCD in the non-perturbative regime, we may attempt to model the non-

perturbative modes using a theory that we can solve in the strong coupling limit, while

discussing the perturbative sector in a weak coupling approximation. Corresponding at-

tempts have been made in [5–7]. Such approaches in general pose the non-trivial question

then, how the two sectors, described with different models describing different degrees of

freedoms, be coupled.

A consistent coupling requires that the quantities that mediate the coupling should be

well-defined in each theory and also gauge-invariant. In the context of jet-quenching, such

couplings have been suggested for example in [5, 8].

In a different attempt to formulate a generic coupling between the two subsectors for

the study of collective dynamics and equilibration, a local coupling of all the marginal

operators of the two subsectors was proposed [6, 7], following previous examples of a semi-

holographic framework where only part of the dynamics is described by gauge/gravity

duality [9–12]. This includes in particular a coupling between the energy-momentum ten-

sors of the two subsectors, which can be induced by deforming the boundary metric of a

holographic sector.

Specifically, as a semi-holographic model of the early stages of heavy-ion collisions,

the perturbative sector was assumed to be described by classical Yang-Mills equations

as in the glasma effective theory [13] that describes the color-glass condensate initial

conditions [14, 15] of the deconfined gluonic matter liberated in the heavy-ion collisions,

and the nonperturbative infrared sector by AdS/CFT, corresponding to strongly coupled

N = 4 super-Yang-Mills theory. The toy model studied in [7] demonstrated that in this

way a closed system with a conserved energy-momentum tensor in Minkowski space can

be obtained.1

In this work, we explore the implications of the “democratic” couplings proposed in [17]

(and extensions thereof), where the effective metric of each subsystem depends on the

1However, by only considering a gravitational coupling in a strictly homogeneous and isotropic situation

which precludes propagating degrees of freedom in the bulk, the far-from-equilibrium system did not show

any thermalization. When also a coupling between the gravitational dilaton field and the Yang-Mills

Lagrangian density is turned on, the infrared sector turns out [16] to be heated up, thereby showing at least

an onset of thermalization.
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energy-momentum fluctuations of the complements. Instead of far-from-equilibrium sys-

tems studied previously we concentrate on systems that are in equilibrium and the equili-

bration of near-equilibrium systems. Furthermore, we again restrict the couplings to that

between the respective energy-momentum tensors of the subsystems.

We first address the question of what is the equilibrium state of two coupled conformal

systems. As the system is assumed to be in thermal equilibrium, and the coupling depends

only on the energy-momentum tensors of the subsystems, the microscopic features of the

subsystems do not enter the discussion and therefore the results are generic for conformal

subsystems and depend only on the properties of the coupling between the subsystems.

We observe that requiring causality and ultraviolet completeness restricts the range the

model parameters describing the coupling can take. In addition we find that the composite

system — that breaks conformal symmetry due to dimensionful parameters of the coupling

— exhibits a rich phase structure with a phase transition that takes the system from a sum

of two separate conformal subsystems at low temperatures to a new emergent conformal

system at high temperatures. As a function of the model parameters, this transition is

either a cross-over or a first-order transition, and the two are separated by second-order

critical endpoint with specific heat critical exponent α = 2/3.

Next we study in detail the collective dynamics of near-equilibrium systems. We first

assume that each subsystem can be separately described as a conformal fluid in terms

of first-order hydrodynamics. This assumption is generally valid if the length scale of the

deviation of global equilibrium is sufficiently long for a well behaved gradient expansion and

if no long-lived non-hydrodynamic modes are excited. Within this approximation we follow

how linearized energy-momentum perturbations of the composite system approach global

equilibrium and find a rich structure of two-fluid dynamics. In the shear sector we find

that the overall viscosity interpolates between those of the subsystems and decreases with

the coupling between the subsystems. In the sound sector we obtain two modes where only

one is propagating with the thermodynamic speed of sound at large coupling. However

both have attenuation vanishing with the square of momentum, implying that spatially

homogeneous density perturbations of the individual subsystems are not attenuated and

therefore more dynamics is required for the thermal equilibrium to be established between

the two sectors. Indeed, this is in line with the findings in the semi-holographic toy model

of ref. [7], where also interactions beyond the ones between the energy-momentum tensors

are needed for thermalization [16].

Finally, we study to what extent non-hydrodynamic modes in one subsystem are at-

tenuated because of coupling to the other dissipative subsystem.

The organisation of the paper is as follows. In section 2, we describe the general

setup, its motivation in the semi-holographic context, as well as the concrete mutual metric

coupling and how a total energy-momentum tensor that is conserved with respect to the

(Minkowski) background metric of the full system arises. In section 3, we discuss the

requirements of causality and UV-completeness and study the consequences of our couplings

for the thermodynamics and phase structure of the full system. In section 4, we study the

hydrodynamic limit of the full system, and in section 5 we further study the case when the

weakly coupled system can be described by kinetic theory and the strongly coupled sector

as a conformal fluid with appropriate transport coefficients.
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2 General setup

2.1 Semi-holography and democratic coupling

We consider a dynamical system S in a fixed background metric g
(B)
µν (to be set to the

Minkowski metric ηµν eventually) which consists of two subsystems S1 and S2.

In the previous approach to semi-holography [7], the full effective action S of system

S was constructed as [7]:

S = Spert
[
Aaµ, · · ·

]
+ Shol

[
g(b)µν = g(B)

µν + γtpertµν , · · ·
]
, (2.1)

where Spert is the effective perturbative action for S1, and S2 is represented by Shol, which

is the holographic on-shell gravitational action in presence of sources. These sources, such

as a non-trivial boundary metric g
(b)
µν , are functionals of the gauge-invariant operators of the

perturbative sector, and γ is a hard-soft coupling. The full conserved energy-momentum

tensor calculated by varying the action with respect to g
(B)
µν cannot be written in terms

of the effective operators of each sector and therefore the low energy dynamics of the full

system cannot be readily derived from the coarse-grained descriptions of the individual

subsystems. Furthermore, the way the two sectors are coupled is somewhat asymmetric.

On the one hand, the coupling amounts to deforming the metric of S2 by the energy-

momentum tensor of S1. On the other hand, the energy-momentum tensor of S2 enters

via the equations of motion of S1. Nevertheless the main improvement of [6] made in [7] was

that the full energy-momentum tensor is conserved, provided that the effective operators

of S2 satisfy a separate Ward identity and the equation of motion for the fields in S1 are

in effect.

Motivated by the semi-holographic approach in the democratic formulation [17], the

two subsystems are assumed to have covariant dynamics with respect to individual effective

metrics gµν and g̃µν , respectively.2 Interactions between the two subsystems are introduced

by promoting each effective metric to functions that are locally determined by the state of

the complement system,

gµν = gµν [t̃αβ , . . .], g̃µν = g̃µν [tαβ , . . .]. (2.2)

The two subsystems are assumed to share the same topological space so that we can use

the same coordinates for both of them (and thus the total system).3 Furthermore, the

subsystems appear as closed systems with respect to their individual effective metrics,

but they can exchange energy and momentum defined with respect to the actual physical

background metric g
(B)
µν . Thus the effective metric tensors encode the interactions between

the two subsystems.

The diffeomorphism invariance of the respective theories describing the two subsystems

imply the Ward identities

∇µtµν = 0, ∇̃µt̃µν = 0, (2.3)

2In the following, quantities relating to the subsystems S1 and S2 will be distinguished either by indices

1 and 2 or by a tilde for those pertaining to S2 (a tilde is used in particular when indices might be confusing).
3Coordinate transformations would thus affect the background metric of the complete system and the

effective metrics of the subsystems simultaneously.
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where ∇ and ∇̃ refer to the covariant derivatives with respect to the different effective

metrics with the Levi-Civita connections

Γµνρ =
1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ) = Γµ(B)

νρ +
1

2
gµσ

(
∇(B)
ν gσρ +∇(B)

ρ gσν −∇(B)
σ gνρ

)
,

Γ̃µνρ =
1

2
g̃µσ(∂ν g̃σρ + ∂ρg̃σν − ∂σ g̃νρ) = Γµ(B)

νρ +
1

2
g̃µσ

(
∇̃(B)
ν g̃σρ + ∇̃(B)

ρ g̃σν − ∇̃(B)
σ g̃νρ

)
.

(2.4)

Above, ∇(B) is the covariant derivative with respect to g
(B)
µν and Γ

µ(B)
νρ is the corresponding

Levi-Civita connection, and the second equalities in (2.4) indicate that from the point of

view of the actual physical background metric g
(B)
µν the identities (2.3) actually imply that

work is done on the respective subsystems by external forces. In what follows, we restrict

the forms (2.2) of the effective metrics g and g̃ (in a generally covariant manner) such that

there exists a Tµν for the full system that is locally conserved with respect to the physical

background metric g
(B)
µν , i.e., we can enforce the Ward identity for the total system:

∇(B)
µ Tµν = 0. (2.5)

It turns out that the full energy-momentum tensor Tµν is a functional only of the effec-

tive operators tµν and t̃µν of the two sectors. Hence one can readily construct effective

descriptions of the full dynamics from the effective description of each sector.4 The main

advantage of our method in the context of phenomenology is that it works even when we

cannot invoke action principles for the effective descriptions of one or both subsystems.

The full dynamics is obtained by solving the subsystems in a mutually self-consistent way

as has been illustrated in case of the vacuum state in a toy example [17].

In the present paper, we utilize this to construct the low energy phenomenology by

considering appropriate effective description of each subsector. First we assume that both

sectors are described by fluids. Then we describe the perturbative sector by an effective

kinetic theory and the non-perturbative sector by a strongly coupled fluid. We will be

able to find consistent solutions for the full thermal equilibrium and also study its linear

perturbations.

As a general remark, the principle of democratic coupling can be extended to other

couplings such as that between scalar operators O and Õ [17]. Let the theory describing the

non-perturbative sector be also a (strongly coupled holographic) Yang-Mills theory with

the coupling g̃YM whereas gYM is the coupling of the perturbative sector. These mutual

deformations by scalar operators lead to the modified Ward identities (we turn off other

couplings including the effective metric couplings for purpose of illustration)

∂µt
µ
ν = O∂νgYM, ∂µt̃

µ
ν = Õ∂ν g̃YM. (2.6)

Then we may postulate a democratic coupling of the form:

gYM = g0YM + αÕ, g̃YM = g̃0YM + αO, (2.7)

4Additionally such couplings can generate expectation values of high-dimensional irrelevant operators

without the need of introducing a non-trivial irrelevant deformation of the respective theory [17]. This

feature is needed for the cancellation of the Borel poles of the perturbative expansion.
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where g0YM and g̃0YM are constants. It is clear then that the above Ward identities along

with (2.7) imply the existence of the conserved energy-momentum tensor Tµν given by

Tµν = tµν + t̃µν − αOÕδµν (2.8)

satisfying ∂µT
µ
ν = 0.

In [17], the most general scalar couplings of the form have been explored and a toy

construction has been done to illustrate how these “hard-soft” couplings (such as α) along

with the parameters of the holographic classical gravity determining Shol can be derived

as functions of the perturbative couplings in Spert via simple consistency rules. In the

following subsection, we extend and correct the democratic effective metric type couplings

set up in [17].

2.2 Consistent mutual effective metric couplings

We start the construction of the coupling rules between the two subsystems by demanding

that the total system a conserved energy-momentum tensor Tµν can be written for the

total system S in the flat background metric (from now on we choose g
(B)
µν = ηµν unless

explicitly mentioned otherwise)

∂µT
µν = 0, (2.9)

while simultaneously satisfying the Ward identities of the two subsystems in their respective

curved metrics

∇µtµν = 0, ∇̃µt̃µν = 0, (2.10)

where ∇ and ∇̃ refer to the covariant derivatives with respect to the different metrics of

the subsystems, with the corresponding Christoffel symbols (2.4).

For the rest of the paper, unless explicitly indicated otherwise, by tµν we will mean

tµρgρν and by tµν we will mean gµρt
ρσgσν , etc., with all lowering (and raising) of indices

done by the effective metric (and its inverse) of the respective theory. The Ward identity

of subsystem S1 implies that

∇µtµν = 0, (2.11)

i.e.,

∂µt
µ
ν + Γµµρt

ρ
ν − Γµνρt

ρ
µ = 0, (2.12)

or

∂µ(tµν
√
−g)− 1

2
tµσ
√
−g∂νgµσ = 0, (2.13)

where we have used

Γµµν = ∂ν(ln
√
−g), Γµνρt

ρ
µ =

1

2
tµρ∂νgµρ, (2.14)

and multiplied both sides of (2.12) with
√
−g to obtain (2.13). Similarly, the Ward identity

for subsystem S2 implies that

∂µ(t̃µν
√
−g̃)− 1

2
t̃µσ
√
−g̃∂ν g̃µσ = 0. (2.15)

– 6 –
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We require that both tµν and t̃µν are symmetric tensors. Using these Ward identities, it is

straightforward to verify that the following local relations for the effective metrics

gµν = ηµν + γ ηµαt̃
αβηβν

√
−g̃ + γ′ ηµνηαβ t̃

αβ
√
−g̃,

g̃µν = ηµν + γ ηµαt
αβηβν

√
−g + γ′ ηµνηαβt

αβ√−g, (2.16)

where γ and γ′ are coupling constants (with mass dimension −4), allow us to construct a

symmetric conserved tensor for the full system in flat space.

From (2.13) and (2.15) it follows that

Kµ
ν = tµν

√
−g + t̃µν

√
−g̃ + ∆Kδµν , (2.17)

with

∆K = −1

2

[
γ (tρα

√
−g)ηαβ(t̃βσ

√
−g̃)ησρ + γ′ (tαβ

√
−g)ηαβ(t̃σρ

√
−g̃)ησρ

]
(2.18)

satisfies

∂µK
µ
ν = 0. (2.19)

Similarly it is easy to see that

L ν
µ = t ν

µ

√
−g + t̃ ν

µ

√
−g̃ + ∆Kδ ν

µ (2.20)

satisfies

∂νL
ν
µ = 0. (2.21)

A symmetric and conserved total energy-momentum tensor Tµν = ηµρT ν
ρ = Tµρηρν with

∂µT
µν = 0 (also ∂µT

µ
ν = 0) can therefore be defined by

Tµν =
1

2
(Kµ

ν + L µ
ν ). (2.22)

We can easily generalize the above construction for a curved background metric g
(B)
µν

instead of the Minkowski metric using the second identities in (2.4) which imply

Γµνµ − Γ
(B)µ

νµ = ∂ν(ln
√
−g)− ∂ν(ln

√
−g(B)) = ∂ν

(
ln

√
−g√
−g(B)

)

=

√
−g(B)

√
−g

∂ν

( √
−g√
−g(B)

)
=

√
−g(B)

√
−g

∇(B)
ν

( √
−g√
−g(B)

)
, (2.23)

where we have used that
√
−g/

√
−g(B) is a scalar under general coordinate transformations.

With the help of these relations, one can readily see that the consistent coupling rules

have the following general covariant forms

gµν = g(B)
µν +

(
γ g(B)

µα t̃
αβg

(B)
βν + γ′ g(B)

µν t̃
αβg

(B)
αβ

) √
−g̃√
−g(B)

,

g̃µν = g(B)
µν +

(
γ g(B)

µα t
αβg

(B)
βν + γ′ g(B)

µν t
αβg

(B)
αβ

) √
−g√
−g(B)

. (2.24)

– 7 –
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Then with

∆K = −γ
2

(
tρα

√
−g√
−g(B)

)
g
(B)
αβ

(
t̃βσ

√
−g̃√
−g(B)

)
g(B)
σρ

− γ′

2

(
tαβ

√
−g√
−g(B)

)
g
(B)
αβ

(
t̃σρ

√
−g̃√
−g(B)

)
g(B)
σρ , (2.25)

the full conserved energy-momentum tensor is again given by (2.22), and it satisfies

∇(B)
µ Tµν = 0 in the actual background where all degrees of freedom live. (Note

Tµν = Tµρg(B)ρν).

More general consistent couplings can be constructed if we permit higher powers of

the energy-momentum tensors tµν and t̃µν together with new coupling constants carrying

correspondingly higher inverse mass dimension. This is done in appendix A (correcting

and generalizing ref. [17] in this respect); in the following we will restrict ourselves to the

above two coupling terms with coupling constants γ and γ′.5

While the dimensionful coupling constants introduced here appear to be arbitrary at

this stage, we shall see that certain restrictions appear when further physical requirements

are imposed. In particular, the complete dynamics should be such that causality remains

intact. This means that the effective lightcone speed in the subsystems should not exceed

the actual speed of light defined by g
(B)
µν . At least in the following applications to equi-

librium and near-equilibrium situations, we can confirm that with just the two terms of

in the consistent coupling rules corresponding to γ and γ′ causality can be ensured — at

arbitrary energy scales — by choosing γ > 0 and r ≡ −γ′/γ > 1. Interestingly enough,

a positive value of the tensorial coupling constant γ was also found to be required in the

semi-holographic study of ref. [7] in order that interactions lead to a positive interaction

measure, E − 3P = −Tµµ > 0, which is a feature of (lattice) Yang-Mills theories at finite

temperature [18, 19].

3 Thermodynamics

3.1 General equilibrium solution

We now assume that the full system S, living in a flat Minkowski background metric g
(B)
µν =

ηµν and composed of two sectors S1 and S2 that interact through mutually determining

their effective metrics, has reached a homogeneous and isotropic equilibrium state with

temperature T with total energy-momentum tensor

Tµν = (E + P)UµUν + Pηµν , Uµ = (1, 0, 0, 0). (3.1)

5Appendix A points out that in the most general set-up, where the total energy-momentum tensor

satisfies thermodynamic consistency proven in appendix B, each possible interaction term in the total

energy-momentum tensor can be obtained via an appropriate coupling rule as a result of an interesting

combinatoric identity. This is significant because a generic interaction term is not ruled out by any symme-

try, and therefore it should indeed be reproduced by our way of introducing interactions via effective metrics.

– 8 –
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Assuming furthermore that the subsystems S1 and S2 have also thermalized due to

their internal dynamics taking place in their respective effective metrics, we expect that the

latter will have a static, homogeneous and isotropic form for which we introduce the ansätze

gµν = diag(−a2, b2, b2, b2), g̃µν = diag(−ã2, b̃2, b̃2, b̃2), (3.2)

with constants a, b, ã, b̃ to be determined self-consistently.6

The energy-momentum tensors of the subsystems are then of the form

tµν = (ε1(T1) + P1(T1))u
µuν + P1(T1)g

µν , with uµ = (1/a, 0, 0, 0),

t̃µν = (ε2(T2) + P2(T2))ũ
µũν + P2(T2)g̃

µν , with ũµ = (1/ã, 0, 0, 0), (3.3)

i.e.,

tµν = diag

(
ε1(T1)

a2
,
P1(T1)

b2
,
P1(T1)

b2
,
P1(T1)

b2

)
,

t̃µν = diag

(
ε2(T2)

ã2
,
P2(T2)

b̃2
,
P2(T2)

b̃2
,
P2(T2)

b̃2

)
, (3.4)

with individual temperatures T1 and T2.

The simplest coupling rules (2.16) now read

1− a2 =

(
γ
ε2(T2)

ã2
− γ′

(
−ε2(T2)

ã2
+

3P2(T2)

b̃2

))
ãb̃3,

b2 − 1 =

(
γ
P2(T2)

b̃2
+ γ′

(
−ε2(T2)

ã2
+

3P2(T2)

b̃2

))
ãb̃3,

1− ã2 =

(
γ
ε1(T1)

a2
− γ′

(
−ε1(T1)

a2
+

3P1(T1)

b2

))
ab3,

b̃2 − 1 =

(
γ
P1(T1)

b2
+ γ′

(
−ε1(T1)

a2
+

3P1(T1)

y2

))
ab3, (3.5)

and these determine a, b, ã and b̃ as functions of T1, T2 and the coupling constants γ and

γ′. The full energy-density and pressure following from (2.22) are

E = ε1(T1)ab
3 + ε2(T2)ãb̃

3

+
γ

2

(
ε1(T1)ε2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

)
ãb̃3ab3

+
γ′

2

(
−ε1(T1)

a2
+

3P1(T1)

b2

)(
−ε2(T2)

ã2
+

3P2(T2)

b̃2

)
ãb̃3ab3,

P = P1(T1)ab
3 + P2(T2)ãb̃

3

− γ

2

(
ε1(T1)ε2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

)
ãb̃3ab3

− γ′

2

(
−ε1(T1)

a2
+

3P1(T1)

b2

)(
−ε2(T2)

ã2
+

3P2(T2)

b̃2

)
ãb̃3ab3. (3.6)

6If one of the systems is to be described by gauge/gravity duality, the simple metric ansatz above is of

course not pertaining to the bulk, but to the boundary of the gravity dual.
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In a thermal equilibrium for the full system as well as for its individual subsystems,

the physical temperature T of S living in Minkowski space is given by the inverse of
∫ β
0 dτ ,

where τ is imaginary time and β its period. The temperature of the subsystem S1, which

effectively lives in a metric with constant
√
−g00 = a, is then given by

T−11 =

∫ β

0

√
−g00 dτ = aβ = aT −1; (3.7)

by the same token we have T−12 = ãT −1. Hence,

T = T1a = T2ã. (3.8)

Thus T alone parametrizes the space of equilibrium solutions.

Using the thermodynamic identities

ε1,2 + P1,2 = T1,2s1,2, E + P = T S, (3.9)

the result (3.6) implies

T S = T1s1(T1)ab
3 + T2s2(T2)ãb̃

3 = T
[
s1(T1)b

3 + s2(T2)b̃
3
]
, (3.10)

showing that the total entropy density is the sum of the two entropy densities. Therefore,

we identify the total entropy current as

Sµ =
√
−gsµ1 +

√
−g̃sµ2 (3.11)

for sµ1 = s1(T1)u
µ, sµ2 = s2(T2)ũ

µ, and Sµ = SUµ and Uµ = (−1, 0, 0, 0).

This indeed makes perfect sense in a general non-equilibrium situation. When each

sector has an entropy current sµ1,2 satisfying

∇µsµ1 ≥ 0, ∇̃µsµ2 ≥ 0, (3.12)

this implies

∂µ(
√
−gsµ1 ) ≥ 0, ∂µ(

√
−g̃sµ2 ) ≥ 0, (3.13)

such that

∂µ(
√
−gsµ1 +

√
−g̃sµ2 ) = ∂µSµ ≥ 0. (3.14)

In thermal equilibrium, we also need to have

dE = T dS (3.15)

or, equivalently, dP/dT = S, for thermodynamic consistency. In appendix B we prove

this relation and the consistency of (3.8), (3.10) and (3.15) for the coupling discussed here

as well as for the coupling rules that generalize (2.16). The mutual compatibility of the

thermodynamic identities (3.9) and (3.15) of the full system with the global equilibrium

condition (3.8) (along with the additivity of the total entropies that can be expected from

the fact that each subsystem is closed in an effective point of view) provides a strong

low-energy consistency check of our approach.
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3.2 Causal structure of equilibrium solution

Since the causal structure of the dynamics taking place in the subsystems is dictated by the

respective effective metrics only, causality in the full system, which is living in Minkowski

space, is not guaranteed. For example, massless excitations from the point of view of

subsystem S1 with metric gµν = diag(−a2, b2, b2, b2) propagate with velocity v = a/b with

respect to the actual physical spacetime that the full system is occupying. (Recall that the

two subsystems and the full system share the same topological space; the effective metrics

of the subsystems just encode the effects of interactions between the two components of

the full system.)

At least for the above solution for the equilibrium configuration obtained in the case of

the simplest coupling rules (2.16) we can ensure the absence of superluminal propagation

by requiring that the tensorial coupling constant γ ≥ 0 together with P1,2 ≥ 0 and ε1,2 ≥ 0.

To see this, take the sum of the first and second as well as of the third and fourth equation

in (3.5). This leads to

b2 − a2 = γ

(
ε2(T2)

ã2
+
P2(T2)

b̃2

)
ãb̃3 ≥ 0,

b̃2 − ã2 = γ

(
ε1(T1)

a2
+
P1(T1)

b2

)
ab3 ≥ 0, (3.16)

independent of γ′, implying that the effective lightcones defined by the metrics gµν and g̃µν
are contained within the lightcone defined by the background Minkowski metric.

3.3 Conformal subsystems

In the following we shall consider the case of two conformal subsystems. For example one

may think of a gas of nearly free massless particles for S1 coupled to a strongly interacting

quantum liquid for S2. The energy-momentum tensors tµν and t̃µν are assumed to be

traceless with respect to the effective metrics gµν and g̃µν , thus the equations of state of

the two subsystems are then simply

ε1(T1) = 3P1(T1) = 3n1T
4
1 ,

ε2(T2) = 3P2(T2) = 3n2T
4
2 , (3.17)

with constant prefactors n1 and n2.

The entropy is a simple expression in terms of the effective lightcone velocities v, ṽ

associated with the effective metrics gµν and g̃µν , respectively,

S = 4T 3
(n1
v3

+
n2
ṽ3

)
, (3.18)

where

v :=
a

b
, ṽ :=

ã

b̃
. (3.19)
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Similarly we obtain for (3.5)

1− v2b2 = 3γT 4n2
1− r(1− ṽ2)

ṽ5b̃2
,

b2 − 1 = γT 4n2
ṽ2 + 3r(1− ṽ2)

ṽ5b̃2
,

1− ṽ2b̃2 = 3γT 4n1
1− r(1− v2)

v5b2
,

b̃2 − 1 = γT 4n1
v2 + 3r(1− v2)

v5b2
, (3.20)

where

r := −γ
′

γ
(3.21)

is a dimensionless coupling constant that we shall use from now on in exchange for γ′.

Eliminating b and b̃ yields the two equations

n1γT 4 =
v5(1− ṽ2)(3 + ṽ2)

[3 + v2ṽ2 − 3r(1− v2)(1− ṽ2)]2
, (3.22)

n2γT 4 =
ṽ5(1− v2)(3 + v2)

[3 + v2ṽ2 − 3r(1− v2)(1− ṽ2)]2
. (3.23)

Since causality implies 0 < v, ṽ < 1, we see that solutions exist for arbitrarily high T
only when the denominator on the right-hand side of (3.22) is able to reach a zero and

is positive. This is the case when r > 1, which thus turns out to be a necessary (as well

as sufficient) condition for ultraviolet completeness for the simplest coupling rules (2.16);

otherwise this model would exist only up to some finite value of T .

As shown in appendix C, the high-temperature behavior of the total system is governed

by the fact that the metric factors a, ã, b, b̃ asymptote to linear functions of the physical

temperature T . Since the effective temperatures of the subsystems are given by T1 = T /a
and T2 = T /ã, they stop growing together with T and instead saturate at finite values

proportional to γ−1/4. For r = 2 figure 1 displays this behavior for equal and unequal

subsystems, i.e., n1 = n2 and n1 6= n2, respectively.

Although the subsystems are conformal, when the two sectors interact, the full system

in general is no longer conformally invariant. With the simplest coupling rules (2.16) and

the resulting solution (3.6) we find

E − 3P =
6γv2ṽ2n1n2T 8

a2ã2
[
(3 + v2ṽ2)− 3r(1− v2)(1− ṽ2)

]
. (3.24)

Note that the term in square brackets in (3.24) is the square root of the denominator

in (3.23); it is positive in the uncoupled case where v = ṽ = 1, and it cannot change sign

for any finite value of γT 4. Therefore, the conditions for causality γ > 0 and condition

for ultraviolet completeness, r > 1, imply that the interaction measure E − 3P = −Tµµ
is positive (as is the case with lattice QCD results), and that the full system approaches

conformality at large temperature T .
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Figure 1. Effective temperatures of the subsystems as a function of the physical temperature with

r = 2 for equal and nonequal (n2 = n1/10) subsystems (left and right panel, respectively). As

the physical temperature increases, the effective temperature of the subsystems first increases in

line with the former (the dotted line marks equality), but when T becomes larger than γ−1/4, the

effective temperatures asymptote to a limiting value. This limiting value is larger for the subsystem

with fewer degrees of freedom.

While in general we have to resort to numerical evaluations, one can also derive per-

turbative expansions for all quantities (see appendix C). For small couplings or for small

temperature,7 |γ|, |γ′| � T −4, the resulting a, ã, v, and ṽ are all close to unity, and thus

E − 3P ≈ 24γn1n2T 8, i.e., the full system approaches conformality at small temperature

as expected.

This behavior can also be seen in the speed of sound (squared) of the full system,

defined thermodynamically by

c2s =
dP
dE

=

(
d lnS
d ln T

)−1
, (3.25)

which expanded up to third order in γT 4 reads

cs(T ) =
1√
3
− 8√

3
γT 4 n1n2

n1 + n2
− 32
√

3γ2T 8n1n2(n
2
1 + n22)

(n1 + n2)2
+O((γT 4)3). (3.26)

With conformal subsystems the dependence on r = −γ′/γ appears only at third order; in

quantities which only depend on v and ṽ, as is the case for the entropy, also the third-order

term is still independent of r.

3.3.1 Equal subsystems

For the special case n1 = n2 where v = ṽ, the numerical solution of (3.22) is displayed in

figure 2 for various values of r > 1.8

7When writing down perturbative results, we shall assume that γT 4 and γ′T 4 are of the same order,

i.e., that r is of order 1.
8Note that having equal equations of states does not imply that the subsystems are identical. Later

on, we shall consider hydrodynamical results with subsystems that have n1 = n2 but different transport

coefficients.
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Figure 2. Effective light-cone speeds of the two subsystems with n1 = n2 = 1 and different values

of r = −γ′/γ. Above r = rc ≈ 1.1145 there is a unique solution for all values of γ1/4T (full lines),

while below rc there are ranges of γ1/4T with three solutions (dashed lines).

It turns out that for 1 < r < rc ≈ 1.1145 more than one solution exists. This

corresponds to a phase transition that will be discussed in section 3.3.3. Concentrating

first on the case r > rc, the behavior of the pressure and the interaction measure (divided

by T 4) is shown in the left panel of figure 3 for a typical case (r = 2). Intriguingly, P/T 4

shows an increase somewhat reminiscent of the deconfinement crossover transition in QCD.

The speed of sound (squared) (3.25) shown in the right panel of figure 3 exhibits

a pronounced dip, indicating a crossover as opposed to a phase transition as γ1/4T is

increased from the conformal situation at γ1/4T = 0 to large values, where it asymptotes

again to conformal value 1/3.

Since S/T 3 ∝ v−3, the entropy increases from its interaction free value at T = 0,

where v = 1, in parallel to the drop in v displayed in figure 2.

In the case of two identical conformal subsystems, the relation between the effective

lightcone velocity v and γT 4 is given by the roots of a polynomial equation of 9th degree

(explicitly given in (D.2)), which in general can only be solved numerically. The asymptotic

value of v is however determined by a simple quadratic equation which yields

v2∞ := lim
γT 4→∞

v2 =
3r −

√
3
√

4r − 1

3r − 1
. (3.27)

Evidently, the entire physical range 0 < v∞ < 1 is covered as r varies between unity and

infinity.

Since the speed of sound cs approaches the conformal value 1/
√

3 at large γ1/4T , for

sufficiently small values of r (namely r < 7/3), cs can be larger than the effective lightcone

speed v of the subsystems. This is no contradiction to causality, since besides dynamics

within the subsystems, there is also collective dynamics between them. (In section 4.2 this

will be studied further.)
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Figure 3. Left panel: pressure (black line) and trace of the energy-momentum tensor (red) divided

by T 4, with the asymptotic value of the pressure indicated by the short dashed line; right panel:

speed of sound squared (full black line) — both for n1 = n2 = 1 and r = 2. As γ1/4T increases from

small to large values, a crossover between regimes with different values of P/T 4 takes place that is

accompanied by a dip in the speed of sound which takes on a conformal value in both asymptotic

regimes. At large γ1/4T and for sufficiently low values of r (including the case r = 2 at hand), the

speed of sound in the full system turns out to be larger than the effective lightcone speed v of the

subsystems (green dashed line: v2).

3.3.2 Unequal subsystems

For unequal systems one can show (using formulae (3.22) and (3.23)) that there exist

solutions for v and ṽ in the limit γT 4 → ∞ for any value of n2/n1 and r > 1. They are

given by the (sextic) equations

3[r(1− v2∞)− 1]5/2

(4r − 1)v5∞[r(1− v2∞) + v2∞/3]1/2
=
n2
n1

=
(4r − 1)ṽ5∞[r(1− ṽ2∞) + ṽ2∞/3]1/2

3[r(1− ṽ2∞)− 1]5/2
, (3.28)

which have a unique solution in the domain 0 < v∞, ṽ∞ <∞ when r > 1. In the extreme

limit that one of the systems completely dominates, say n2/n1 → 0, the asymptotic effective

lightcone velocity of the smaller system approaches zero, ṽ∞ ∼ O((n2/n1)
1/5), while the

dominant system has the limit v∞ →
√

1− r−1.
In figure 4, the full numerical solution of the effective lightcone velocities is displayed

for n2/n1 = 1/10 and r = 2 as well as the resulting entropies of the two subsystems.

While the smaller subsystem has a much larger relative growth of S/T 3 than the larger

subsystem, the latter remains dominant. (Considering again the extreme limit n2/n1 → 0,

S2/S1 changes from being of order n2/n1 at low γT 4 to (n2/n1)
2/5 at high γT 4.)

At the value r = 2 used in figure 4, the behavior of the speed of sound is similar to the

case shown in figure 3. Again, there is a dip at the crossover between the regimes of small

and large γ1/4T , where cs asymptotes to the conformal value 1/
√

3. In the case displayed

in figure 4, now only one of the effective lightcone velocities, namely ṽ, falls below the

(conformal) value of the speed of sound at large γ1/4T .

– 15 –



J
H
E
P
0
8
(
2
0
1
8
)
0
5
4

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

γ1/4T

v
2

n1=1,n2=0.1, r=2

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

γ1/4T

S
1
,2
/4
T

3

n1=1,n2=0.1, r=2

Figure 4. Unequal systems with n1 = 1, n2 = 0.1 and r = 2. Left panel: light-cone velocities

squared in the two subsystems (v2: upper, blue line, ṽ2: lower, red line) compared to c2s (dashed

black line). Right panel: entropies of the two subsystems (S1: upper, blue line, S2: lower, red line).

3.3.3 Phase transition

Perturbative expansions in the dimensionless parameter γT 4 turn out to work rather poorly

and indeed have to break down for 1 < r < rc where multiple solutions appear at finite

values of γT 4, as shown in figure 2 for n1 = n2. For 1 < r < rc ≈ 1.1145 in the case n1 = n2
and 1 < r < rc ≈ 1.25 for n1 6= n2, this corresponds to a first-order phase transition that

turns into a second-order phase transition at rc.

In figure 5 pressure and entropy are plotted in the region around the first-order phase

transition with n1 = n2 = 1 and r = 1.1.9 The range in γ1/4T where the pressure has

three solutions corresponds to the possibility of superheating or supercooling (depending

on whether the phase transition is approached from higher or lower temperatures). This

happens if one does not immediately switch to the thermodynamically preferred phase

with higher pressure (lower free energy). The third solution which directly connects the

endpoints of superheating and supercooling is always thermodynamically disfavored and

cannot be accessed physically, because it comes with negative specific heat (corresponding

to the part of the curve for the entropy with negative slope).

In figure 6 the effective temperature of the subsystems is shown for the same set of

parameters. This shows a curious nonmonotonic behavior; at the phase transition the ef-

fective temperature jumps and approaches the asymptotic value from above as the physical

temperature goes to infinity. In fact, although hardly perceptible in the left plot in figure 1,

the effective temperature also approaches the asymptotic value from above for r = 2 in

the crossover region; only for r & 2.048 (in the case of n1 = n2) the effective temperature

eventually shows monotonic behavior.

9For r ≤ 1 and the simplest coupling rules (2.16), two solutions for the pressure exist up to a maximal

value of γT 4, where they merge with different slopes and infinite second derivatives, after which there is

(at least) no homogeneous and isotropic solution to (2.16). One solution, whose beginning can be found

perturbatively, starts at zero pressure for γT 4 = 0; the other solution has smaller pressure (i.e., higher free

energy) and is thus thermodynamically disfavored.
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Figure 5. Pressure (left panel) and entropy (right panel) around the first-order phase transition

with n1 = n2 = 1 and r = 1.1. The pressure of the ground state is given by the maximal value at

each temperature. At the critical temperature the slope changes discontinuously. The lines which

extend smoothly beyond this point when coming from lower or higher temperatures correspond

to superheating or supercooling phases, respectively. (The lower line connecting the endpoints

of supercooling and superheating corresponds to the entropy curve with negative slope and thus

cannot be accessed physically.) The dotted line in the entropy curve indicates the jump in the

entropy that occurs when there is no supercooling or superheating.
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Figure 6. The behavior of the effective temperature of the subsystems during the first-order phase

transition with n1 = n2 = 1 and r = 1.1. The dotted line in the entropy curve indicates the jump

in the effective temperature when there is no supercooling or superheating.

At r = rc the phase transition becomes second-order with continuous pressure and

entropy. In appendix D the parameters of the second-order phase transition are obtained

in closed form for n1 = n2. In particular the critical exponent α that characterizes the

behavior of specific heat, is obtained, with the result

CV ∼ |T − Tc|−α, α =
2

3
, (3.29)

which is independent of n2/n1.

It is thus different from any mean-field result, and it is also larger than the value in

the Ising model (α ≈ 0.11) or in the polymer models (α ≈ 0.236), which are the largest

values occurring in N vector models (for N = 1 and N = 0, respectively) [20]. The

comparatively large value of α in (3.29) is curiously close to that obtained in the matrix

model for deconfinement of ref. [21], which yields α = 3/5.
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Figure 7. Speed of sound (squared) in two systems where one or both are replaced by a gas of

free massive bosons at r = 2. If both systems are massive, the speed of sound starts from zero at

zero temperature; if one is still conformal, the lower end point remains at 1/3. The values given

in the plot legend refer to the two masses in units of γ−1/4. (The massless case corresponds to

n1,2 = π2/90 in (3.17).)

The qualitative features of the phase transition are the same for unequal conformal

subsystems: for 1 < r < rc, the transition is first order, at r = rc the phase transition is

second order, and for r > rc it is a crossover. Furthermore, the critical value rc shows a

rather weak dependence on n2/n1, it lies in the narrow interval 1.119 . . . < rc < 1.25, and

the critical exponent α at the second-order phase transition point r = rc is always 2/3 (for

more details see appendix D).

3.4 Massive subsystems

The simplest coupling rule (2.16) with r > 1 also makes sense for more general equations of

state for the subsystems. In figure 7 we display the results for the speed of sound (squared)

that is obtained by coupling two free Bose gases with various masses (for simplicity with

r = 2, where only a crossover and no phase transition arises). When both subsystems have

particles with mass, the speed of sound starts from zero at γT 4 = 0, and approaches the

conformal value at large γT 4. (When one or both components contain massless particles,

c2s also starts from the value 1/3.)

The way approximate conformality is approached at high T is again similar to the

conformal case discussed above, although we cannot demonstrate this analytically as in

appendix C. The high-temperature behavior (at r > 1) is governed again by an asymptot-

ically linear behavior of the metric coefficients a, ã, b, b̃ ∼ T . Such a behavior is at least

consistent with the (simplest) coupling rules (2.16): once a, ã, b, b̃ have grown sufficiently

large, these equations are homogeneous of degree two in the metric coefficients, provided

the effective temperatures T1, T2 become constant, which is the case when a, ã ∼ T .

However, an important difference to the conformal case is that the trace-term ∆Kδµν
in the full energy-momentum tensor is no longer subdominant, but in fact needed to cancel

the contributions to the trace of the full energy-momentum tensor at order T 4. This is a

consequence of the form (3.10) of the full entropy, S = s1(T1)b
3 + s2(T2)b̃

3 ∼ T 3, together

with thermodynamic consistency, S = dP/dT (which is proved in appendix B for arbitrary

equations of state of the subsystems).
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We expect that it is equally possible to couple more involved equations of state than

gases of free massive particles with the simplest coupling rule and to obtain a UV-complete

setup. However, we assume that the subsystems have self-interactions so that they are able

to thermalize on their own.

4 Bi-hydrodynamics

In the following we investigate the linearized perturbations of the full hybrid system about

thermal equilibrium for given values of the hydrodynamic transport coefficients within the

two subsystems, i.e., parameterising their energy-momentum tensors to first order in the

gradient expansion according to

tµν = (ε1 + P1)u
µuν + P1g

µν − 2η1σ
µν − ζ1θPµν , (4.1)

with Pµν = gµν + uµuν , θ = ∇µuµ, σµν = PµαPµβ∇(αuβ) − 1
3θP

µν , and similarly for the

second subsystem with metric g̃µν .

Owing to the rotational symmetry of thermal equilibrium, the perturbations can be

classified into three distinct sectors, which are called the shear, sound, and tensor channels.

Each channel has distinct low energy characteristics. If we take the hydrodynamic limit

in both sectors, only the shear and sound channels yield dynamic propagating modes with

distinct forms of dispersion relations. The tensor channel in the bi-hydrodynamic limit

consists only of a response local in space and time (without a pole) which is convenient

for calculating the shear viscosity of the full hybrid system using the Kubo formula. For

simplicity we will also analyze the case of conformal subsystems, and therefore we will set

ζ1 = ζ2 = 0. Note ζ1,2 do not affect the shear channel in any case.

4.1 Bi-hydro shear diffusion

In the shear sector, the velocity fields of both sectors point in the same direction but

are orthogonal to the momentum (i.e., the direction of propagation) of a perturbation.

Without loss of generality we may assume that the momentum k is in the z-direction and

the velocity fields are in the x-direction. The (normalized) velocity fields in both sectors

including the infinitesimal linearized perturbations then assume the form:

uµ =

(
1

a
, νei(kz−ωt), 0, 0

)
, ũµ =

(
1

ã
, ν̃ei(kz−ωt), 0, 0

)
. (4.2)

The temperatures in both sectors remain unperturbed from their equilibrium values (in

the shear channel).

Furthermore, we can consistently assume that the effective metrics are:

gµν = diag(−a2, b2, b2, b2) + δgµν , g̃µν = diag(−ã2, b̃2, b̃2, b̃2) + δg̃µν (4.3)

with the non-vanishing components of δgµν and δg̃µν being:

δg01 = βei(kz−ωt), δg13 = γ13e
i(kz−ωt),

δg̃01 = β̃ei(kz−ωt), δg̃13 = γ̃13e
i(kz−ωt). (4.4)
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Note that these metric perturbations preserve the norm of the velocity fields (4.2) at the

linearized level.

It follows then that the hydrodynamic energy-momentum tensors of the two sectors

including the linearized infinitesimal perturbations will assume the forms:

tµν = diag

(
ε1(T1)

a2
,
P1(T1)

b2
,
P1(T1)

b2
,
P1(T1)

b2

)
+ δtµν ,

t̃µν = diag

(
ε2(T2)

ã2
,
P2(T2)

b̃2
,
P2(T2)

b̃2
,
P2(T2)

b̃2

)
+ δt̃µν (4.5)

with the non-vanishing components of δtµν and δt̃µν being

δt01 = −P1β + (P1 + ε1)νab
2

a2b2
ei(kz−ωt), δt13 =

(
−P1γ13

b4
− ik η1ν

b2
+ iω

η1γ13
ab4

)
ei(kz−ωt),

δt̃01 = −P2β̃ + (P2 + ε2)ν̃ãb̃
2

ã2b̃2
ei(kz−ωt), δt̃13 =

(
−P2γ̃13

b̃4
− ik η2ν̃

b̃2
+ iω

η2γ̃13

ãb̃4

)
ei(kz−ωt).

(4.6)

The hydrodynamic equations (2.13) and (2.15) of the two sectors in the two (self-

consistently perturbed) effective metrics are:

ω
(P1 + ε1)(β + νab2)

a2b2
= −ik2 η1ν

b2
+ iωk

η1γ13
ab4

,

ω
(P2 + ε2)(β̃ + ν̃ãb̃2)

ã2b̃2
= −ik2 η2ν̃

b̃2
+ iωk

η2γ̃13

ãb̃4
. (4.7)

These hydrodynamic equations automatically guarantee the conservation of the full energy-

momentum tensor at the linearized level provided the metric perturbations β, β̃, γ13 and

γ̃13 are solved self-consistently in terms of the physical variables ν and ν̃ using the linearized

version of the effective metric coupling equations. Once again we will assume that only the

couplings γ and γ′ ≡ −rγ are non-vanishing.

To proceed further, we will also assume that each fluid is conformal with equations of

state given by (3.17). We will also parametrize:

η1 =
κ1
π
n1T

3
1 , η2 =

κ2
π
n2T

3
2 (4.8)

so that:
4πη1
s1

= κ1,
4πη2
s2

= κ2. (4.9)

With a Minkowski background metric, the linearized coupling equations determining

β, β̃, γ13 and γ̃13 are simply

δg03 = −γδt̃03ãb̃3, δg13 = γδt̃13ãb̃3,

δg̃03 = −γδt03ab3, δg̃13 = γδt13ab3. (4.10)
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With (4.4) and (4.6) the solutions are:

β =
4γn2T

4
2 ab̃

(
ãb̃2ν̃ − γn1T 4

1 b
3ν
)

−aã+ γ2n1n2bb̃T 4
1 T

4
2

, (4.11)

γ13 =
iγkn2T

3
2 b
(
πκ2ν̃ãb̃

2 − γκ1n1T 3
1 νab(πT2ã− iκ2ω)

)
π2
(
γ2n1n2T 4

1 T
4
2 aã− bb̃

)
+ γ2n1n2T 3

1 T
3
2 (κ1κ2ω2 − iπω(κ2T1a+ κ1T2ã))

,

and similarly for β̃ and γ̃13. Inserting them into the linearized hydrodynamic equations (4.7)

yields equations for ν and ν̃ of the form

QAB(ω, k)νB = 0, (4.12)

where νA = (ν, ν̃) and QAB is a 2 × 2 matrix. The eigenmodes have dispersion relations

ω(k) for which the determinant of Q vanishes, i.e.

detQ(ω(k), k) = 0, (4.13)

and the corresponding eigenvectors involve a momentum dependent combination of ν and

ν̃. It is to be noted that these modes are the intrinsic perturbations of the system which

can exist without any extrinsic drive such as a perturbation to the fixed background metric

g
(B)
µν where the full system lives.

Of particular interest are the shear-diffusion modes whose dispersion relations assume

the characteristic form:

ωI = −iDIk
2 +O(k3), (4.14)

where the index I labels different solutions.

As discussed before, we can solve all equilibrium quantities as functions of T , γ and γ′

so that we can also express DI as functions of these variables. The perturbative expansions

of the shear diffusion constants DI are given by:

Da(T ) =
κ1

4πT
− γκ1n2T 3

π
+
γ2κ1n2T 7[n2(κ1 − κ2) + n1(9κ2 − 5κ1)]

π(κ1 − κ2)
+O(γ3),

Db(T ) =
κ2

4πT
− γκ2n1T 3

π
+
γ2κ2n1T 7[n1(κ1 − κ2)− n2(9κ1 − 5κ2)]

π(κ1 − κ2)
+O(γ3). (4.15)

In the decoupling limit, γ1/4T → 0 (with fixed r), these two shear diffusion modes clearly

reduce to individual shear diffusion modes of the subsystems 1 and 2; with nonzero coupling

they instead involve both subsystems nontrivially. The propagating mode corresponding

to the first diffusion constant Da involves velocity amplitudes with10

ν̃ =

(
4n1κ1

(κ1 − κ2)
γT 4 +O(γ2T 8)

)
ν (4.16)

10Note that the combination of ν and ν̃ in the propagating mode is k−independent. This is so because

each element in the matrix Q in (4.12) is O(k2) at the leading order on-shell, i.e. when ω = −iDa,bk2 + · · · .
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Figure 8. Shear diffusion constants Da,b (blue and orange lines) corresponding to shear eigenmodes

in the hybrid fluid model for different parameters as a function of γ1/4T compared to the overall

(Kubo) shear diffusion constant D (red lines) corresponding to the total shear viscosity η/S ≡ TD.

Full and dashed lines correspond to equal numbers of degrees of freedom, n1 = n2 = 1, and unequal

ones, n1 = 1, n2 = 1/10, respectively. The left panel has equal values of individual shear viscosities

κi = 4πηi/si = 1, the right panel has κ1 = 10 so that the first system corresponds to a more weakly

coupled sector.
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Figure 9. The relation between the velocity amplitudes ν and ν̃ of the shear eigenmodes displayed

in figure 8 in the form ξ ≡ 2
π arctan(ν̃/ν). A value of ξ = 0 or ξ = ±1 (with these two latter values

to be identified) means that the mode is carried only by subsystem 1 or 2, respectively; ξ = 0.5 or

ξ = −0.5 corresponds to exactly equal amplitudes with equal or opposite phase.

and therefore it is indeed localized mostly in the first subsystem when γT 4 is small. Simi-

larly, the other propagating mode has

ν = −
(

4n2κ2
(κ1 − κ2)

γT 4 +O(γ2T 8)

)
ν̃ (4.17)

and thus is localized mostly in the second subsystem for small γT 4. For finite γT 4, both

these modes receive significant contributions from both subsystems (see figure 9).

Furthermore, the dependence on γ′ of the perturbative expansions (4.15) start only

at third order in the perturbative expansion — so this dependence is weak at small
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γT 4. We also note that the perturbation expansion in γT 4 evidently breaks down when

|κ1 − κ2| . γT 4, irrespective of the values of n1 and n2.

In the coincidence limit of κ1 = κ2 = κ, we instead obtain the following perturbative

series

Da(T ) =
κ

4πT
, (4.18)

Db(T ) =
κ

4πT
− γT 3κ(n1 + n2)

π
+
γ2T 7κ

(
n21 − 10n1n2 + n22

)
π

+O(γ3T 11),

where one of the diffusion modes turns out to be independent of γT 4. The propagating

mode corresponding to this γT 4-independent diffusion constant has

ν̃ =

(
1 +

3

2
(n1 − n2)γT 4 +O(γ2, γ′2)

)
ν. (4.19)

When n1 = n2, i.e. when the two subsystems are identical, then the propagating mode is

exactly given by ν̃ = ν (parallel and equal motion within the subsystems). In any case,

this mode gets significant contributions from both subsystems even in the decoupling limit

γ, γ′ → 0. The other propagating mode corresponding to the second diffusion constant Db

in (4.18) is the following combination of ν and ν̃ where

ν = −n2
n1

(
1 +

9

2
(n1 − n2)γT 4 +O(γ2, γ′2)

)
ν̃. (4.20)

When n1 = n2, this mode is exactly given by ν = −ν̃ (anti-parallel and equal motion within

the subsystems). This mode evidently gets significant contributions from both subsystems

even in the decoupling limit γ1/4T → 0 (as long as |κ1−κ2| � γ1/4T ). The nonperturbative

dependence of ν̃/ν on γ1/4T is displayed in figure 9.

In order to define the shear viscosity of the full system, we can consider the tensor

channel. Consider an extrinsic homogeneous perturbation such that the background metric

in which the full system lives is perturbed by hµν(t) whose only non-vanishing component is

h13(t). How does the full system respond? The coupling equations imply that the response

involves homogeneous perturbations of the effective metrics γ13(t) and γ̃13(t). Furthermore,

the hydrodynamic equations of the individual systems in the individual effective metrics

(cf. (4.7)) imply that the velocity fields ν and ν̃ also vanish for homogeneous γ13 and

γ̃13 up to second order in the derivative expansion along with the perturbations of the

temperatures in each sector. Therefore, the linearized perturbations of the hydrodynamic

energy-momentum tensors in the individual sectors assume the forms

δt13 = −P1

b4
γ13 −

η1
ab4

γ̇13 +O(∂2t ),

δt̃13 = −P2

b̃4
γ̃13 −

η2

ãb̃4
˙̃γ13 +O(∂2t ), (4.21)
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while the coupling rule (2.16) implies that the effective metric perturbations is determined

by the extrinsic perturbation h13(t) according to the coupled linear equations

γ13 = h13

(
1− 2γP2ãb̃+ γ′

(
− ε2
ã2

+ 3
P2

b̃2

)
ãb̃3
)
− γP2

ã

b̃
γ̃13 +O(∂t),

γ̃13 = h13

(
1− 2γP1ab+ γ′

(
− ε1
a2

+ 3
P1

b2

)
ab3
)
− γP1

a

b
γ13 +O(∂t). (4.22)

Solving the above, we obtain

γ13 =

(
1− 2γP2ãb̃+ γ′

(
− ε2
ã2 + 3P2

b̃2

)
ãb̃3
)
− γP2

ã
b̃

(
1− 2γP1ab+ γ′

(
− ε1
a2 + 3P1

b2

)
ab3
)

1− γ2P1P2
aã
bb̃

h13

+O(∂t),

γ̃13 =

(
1− 2γP1ab+ γ′

(
− ε1
a2 + 3P1

b2

)
ab3
)
− γP1

a
b

(
1− 2γP2ãb̃+ γ′

(
− ε2
ã2 + 3P2

b̃2

)
ãb̃3
)

1− γ2P1P2
aã
bb̃

h13

+O(∂t). (4.23)

One can then readily compute the energy-momentum tensor of the full system including

the linearized perturbation. We find that it assumes the standard hydrodynamic form with

vanishing velocity and temperature perturbations.11 Explicitly,

δT 13 = −Ph13 − ηḣ13 +O(∂2t ) (4.24)

where P is indeed the equilibrium pressure of the full system given by (3.6). It also follows

that the shear viscosity η of the full system is given by

η =
1

1− γ2P1P2
aã
bb̃

{
η1b

[(
1− 2γP2ãb̃+ γ′

(
− ε2
ã2

+ 3
P2

b̃2

)
ãb̃3
)

− γP2
ã

b̃

(
1− 2γP1ab+ γ′

(
− ε1
a2

+ 3
P1

b2

)
ab3
)]

+ η2b̃

[(
1− 2γP1ab+ γ′

(
− ε1
a2

+ 3
P1

b2

)
ab3
)

− γP1
a

b

(
1− 2γP2ãb̃+ γ′

(
− ε2
ã2

+ 3
P2

b̃2

)
ãb̃3
)]}

. (4.25)

It is to be noted that the bulk viscosity plays no role in the shear sector or in the response

to a homogeneous h13(t) perturbation of the background metric. So even if the individual

sectors have bulk viscosities all our results above remain valid. Given that S of the full

system is given by (3.10) we readily obtain η/S. We may thus define the Kubo diffusion

constant:

D ≡ η

T S
=

κ1n1 + κ2n2
4πT (n1 + n2)

+O(γ). (4.26)

11Note it is a priori not obvious that even if the individual sector energy-momentum tensors are hydrody-

namic, the full energy-momentum tensor also assumes a hydrodynamic form. This is particularly so because

there are two independent entropy currents. Although in this specific example, the full energy-momentum

tensor does indeed assume a hydrodynamic form, in the following subsection we will find counterexamples.
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In figure 8 the shear diffusion constants DI corresponding to shear eigenmodes are

compared with the overall diffusion constant D corresponding to the total shear viscosity

η/S ≡ TD for various parameters. The overall result obtained from the Kubo formula

is seen to be always in between the two DI ’s. The left panel shows the situation for two

strongly coupled systems with ηi/si = 1/4π, the right panel the one for a more weakly

coupled system S1. The dashed lines in both panels corresponds to the case that system

S1 contributes dominantly to the pressure (n1 > n2). In this case the overall viscosity is

closer to the viscosity of the dominant subsystem.

All results for the shear diffusion constants or specific viscosities decrease when the

effective coupling γ1/4T is increased from zero. In the case of the full viscosity there is a

slight nonmonotonic behavior in the crossover region between weak and strong coupling

between the subsystems. At large coupling all results appear to saturate at finite values.

Solving (4.13) one in fact obtains two additional eigenmodes which are spurious. First,

these are non-hydrodynamic, meaning that ω is finite as k vanishes. Second, when k van-

ishes, these eigenmodes correspond to spontaneous fluctuation of the effective metric com-

ponents γ13 and γ̃13 without involving any fluctuation of ν, ν̃ or any external background

metric fluctuation (i.e., perturbation of g
(B)
µν ). Such a freaky fluctuation is possible because

the perturbed energy-momentum tensors of each sector involves time-derivatives of the ef-

fective background metrics. Therefore, these make the coupling equations (4.10) dynamical

in the sense that these are differential equations for γ13 and γ̃13.
12 The spurious modes

correspond to this spurious dynamics. The spurious modes are also badly behaved and are

acausal (having positive imaginary parts in the dispersion relation) and this is related to

the acausal behavior of first-order hydrodynamics. If we embed the hydrodynamics of each

sector in kinetic theory/Israel-Stewart framework/holographic gravity, then these spurious

modes disappear and are replaced by well-behaved relaxation modes. This will be one of

the topics of the next section.

To summarize our findings for shear diffusion and specific viscosity:

1. The full system has two shear diffusion modes with diffusion constants Da,b such

that T Da,b decrease monotonically with increasing temperature T before saturating

at finite values at large T .

2. The overall specific viscosity η/S derived from the total conserved energy-momentum

tensor is in between the values of T Da,b with slight nonmonotonic behavior at the

phase transition.

3. When one of the systems has a dominant contribution to the total energy/pressure

and a different specific viscosity, the overall specific shear viscosity is closer to that

of the dominant system.

12One may see this from (4.6) — the first-order corrections omitted in these equations involves the time

derivative of γ13 and γ̃13. Therefore even when h13 is set to zero there exist solutions for γ13 and γ̃13! In

this case, the two systems can just have fluctuating effective metrics without any extrinsic perturbation or

change in the internal physical variables ν, ν̃, δT1 and δT2.
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4.2 Bi-hydro sounds and their attenuations

Owing to the rotational symmetry of the thermal equilibrium state, we can consistently

assume that the velocity fluctuations in both sectors are longitudinal, i.e., pointing in the

same direction as the momentum k. This longitudinal alignment of the linearized velocity

field defines the sound sector. Without loss of generality, we can take ν, ν̃ and k to be in

the z-direction. The consistent forms of the effective metrics are:

gµν = diag(−a2, b2, b2, b2) + δgµν , g̃µν = diag(−ã2, b̃2, b̃2, b̃2) + δg̃µν (4.27)

with the non-vanishing components of δgµν and δg̃µν being:

δg03 = βei(kz−ωt), δg00 = −2a δa ei(kz−ωt),

δg11 = δg22 = (2b δb+ χ)ei(kz−ωt), δg33 = (2b δb− 2χ)ei(kz−ωt),

δg̃03 = β̃ei(kz−ωt), δg̃00 = −2ã δã ei(kz−ωt),

δg̃11 = δg̃22 = (2b̃ δb̃+ χ̃)ei(kz−ωt), δg̃33 = (2b̃ δb̃− 2χ̃)ei(kz−ωt). (4.28)

The four-velocity fields in the two sectors including the fluctuations thus are:

uµ =

(
1

a
− 1

a2
δa ei(kz−ωt), 0, 0, νei(kz−ωt)

)
,

ũµ =

(
1

ã
− 1

ã2
δã ei(kz−ωt), 0, 0, ν̃ei(kz−ωt)

)
. (4.29)

We may also anticipate that the temperatures also fluctuate from their equilibrium values

so that we also have

δT1e
i(kz−ωt) and δT2e

i(kz−ωt). (4.30)

The non-vanishing components of the linearized perturbations of the individual hydrody-

namic energy-momentum tensors then turn out to be:

δt00 =

(
1

a2
dε1
dT1

δT1 − 2
ε1
a3
δa

)
ei(kz−ωt), δt03 =

(
P1

a2b2
β +

ε1 + P1

a
ν

)
ei(kz−ωt),

δt11 = δt22 =

(
1

b2
dP1

dT1
δT1 − 2

P1

b3
δb− P1

b4
χ+ i

2η1
3b2

kν + i
η1
ab4

ωχ

)
ei(kz−ωt),

δt33 =

(
1

b2
dP1

dT1
δT1 − 2

P1

b3
δb+ 2

P1

b4
χ− i4η1

3b2
kν − 2i

η1
ab4

ωχ

)
ei(kz−ωt), (4.31)

and similarly

δt̃00 =

(
1

ã2
dε2
dT2

δT2 − 2
ε2
ã3
δã

)
ei(kz−ωt), δt̃03 =

(
P2

ã2b̃2
β̃ +

ε2 + P2

ã
ν̃

)
ei(kz−ωt),

δt̃11 = δt̃22 =

(
1

b̃2
dP2

dT2
δT2 − 2

P2

b̃3
δb̃− P2

b̃4
χ̃+ i

2η2

3b̃2
kν̃ + i

η2

ãb̃4
ωχ̃

)
ei(kz−ωt),

δt̃33 =

(
1

b̃2
dP2

dT2
δT2 − 2

P2

b̃3
δb̃+ 2

P2

b̃4
χ− i4η2

3b̃2
kν̃ − 2i

η2

ãb̃4
ωχ̃

)
ei(kz−ωt). (4.32)
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The linearized coupling equations take the form:

δgµν = γ

(
ηµρδt̃

ρσησν
√
−g̃ +

1

2
ηµρt̃

(eq)ρσησν
√
−g̃g̃αβδg̃αβ

)
+ γ′

(
ηρσδt̃

ρσηµν
√
−g̃ +

1

2
ηρσ t̃

(eq)ρσηµν
√
−g̃g̃αβδg̃αβ

)
,

δg̃µν = γ

(
ηµρδt

ρσησν
√
−g +

1

2
ηµρt

(eq)ρσησν
√
−ggαβδgαβ

)
+ γ′

(
ηρσδt

ρσηµν
√
−g +

1

2
ηρσt

(eq)ρσηµν
√
−ggαβδgαβ

)
. (4.33)

These should be utilized to eliminate δa, δã, δb, δb̃, χ, χ̃, β and β̃ in favour of the physical

dynamical hydrodynamic variables δT1, δT2, ν and ν̃.

Assuming that the bulk viscosities of each individual system vanishes, the hydrody-

namic equations of motion in the respective effective metrics take the form:

ikaν − iω
(
δs1
s1

+ 3
δb

b

)
= 0,

ikãν̃ − iω

(
δs2
s2

+ 3
δb̃

b̃

)
= 0,

ik

(
δT1
T1

+
δa

a

)
− iω

(
β

a2
+
νb2

a

)
+

4

3
k2

η1
ε1 + P1

ν + 2ωk
η1

ε1 + P1

χ

ab2
= 0,

ik

(
δT2
T2

+
δã

ã

)
− iω

(
β̃

ã2
+
ν̃b̃2

ã

)
+

4

3
k2

η2
ε2 + P2

ν̃ + 2ωk
η2

ε2 + P2

χ̃

ãb̃2
= 0. (4.34)

In order to find the eigenmodes, one can first solve for the effective metric fluctuations δa,

δb, δã, δb̃, χ and χ̃ in terms of ν, ν̃, δT1 and δT2 using the linear algebraic equations (4.33).

Substituting these forms above for the effective metric fluctuations, we obtain the four

dynamical equations for the four variables ν, ν̃, δT1 and δT2 which yield a determinant.

Finally, the dispersion relations of the eigenmodes are obtained by requiring that this

determinant vanishes as in case of the shear sector.

Before considering the eigenmodes in detail, it is useful to examine the simple case of

two identical perfect fluids, i.e., the case of n1 = n2 and η1 = η2 = 0 (or rather we consider

only the leading order in the derivative expansion). We want to prove that in this case one

of the eigenmodes propagate exactly with the speed of sound of the full system provided

the thermal equilibrium solution also yields identical effective metrics, i.e., a = ã and b = b̃.

This result is valid even if the individual subsystems are not conformal.

In the case of identical perfect fluid systems, we can also assume ν = ν̃ and δT1 =

δT2, and furthermore δa = δã, δb = δb̃, χ = χ̃ = 0 and β = β̃ so that the individual

energy-momentum tensors and effective metrics are identical. Then this eigenmode can be

obtained from

ik a ν − iω
(
δs1
s1

+ 3
δb

b

)
= 0,

ik

(
δT1
T1

+
δa

a

)
− iω

(
β

a2
+
νb2

a

)
= 0. (4.35)
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We also note that the full thermal equilibrium solution is parametrized by the temper-

ature T . Therefore, a variation of T which preserves its relationship with the (identi-

cal) individual system temperatures given by (3.8) will produce a solution correspond-

ing to an infinitesimal change of the full system equilibrium temperature T . Thus we

can obtain a solution with δa = δã = (da(T )/dT )δT , δb = δb̃ = (db(T )/dT )δT and

δT1 = δT2 = (dT1(T )/dT )δT with

δT = T1(T )δa+ a(T )δT1 (4.36)

being satisfied. Furthermore, we can boost the full energy-momentum tensor. If the full

system is boosted by an infinitesimal velocity υ in the z-direction (in background flat

space), then the non-vanishing components of its energy-momentum tensor with an overall

infinitesimal temperature fluctuation takes the linearized perfect fluid form:

T 00 = E +
dE
dT

δT , T 11 = T 22 = T 33 = P +
dP
dT

δT , T 03 = (E + P)υ. (4.37)

Of course if we make δT space-time dependent we also need a spacetime dependent boost

υ in order that we can ensure energy-momentum conservation. The conservation of the

full energy-momentum tensor in flat space yields the linearized Euler equations:

ikυ − iω δS
S

= 0, ik
δT
T
− iωυ = 0. (4.38)

It is guaranteed that the diagonal components of the fluctuations can always be mapped to

a change in δT even if the systems are not identical. If we solve β and β̃ in terms of ν and

ν̃ using the off-diagonal 03-component of the coupling equations, and then compute the

off-diagonal 03-component of the full energy-momentum tensor, we can also define the υ of

the full system as an appropriate linear combination of ν and ν̃ demanding the form (4.37)

of the full energy-momentum tensor. This can always be done. In case of identical systems

with identical energy-momentum tensors living in identical effective metrics, the procedure

is simpler: eliminate β in favour of ν from the coupling equation and obtain υ in terms of

ν from the computed form of the full energy-momentum tensor.

To proceed further, we thus focus on the off-diagonal component T 03. Specifically, we

observe from (4.37) that

δT 03 = δT 0
3 = (E + P)υ, δT 3

0 = −(E + P)υ. (4.39)

With our assumptions for the effective metric and the perfect fluid forms of the energy-

momentum tensor, we should get

δt03 = δt̃03 =
P1

a2b2
β +

ε1 + P1

a
ν,

δt 3
0 = δt̃ 3

0 = −(ε1 + P1)νa,

δt03 = δt̃03 = (ε1 + P1)

(
b2

a
ν +

1

a2
β

)
. (4.40)
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From (4.37), any consistent coupling equations should lead to

δT 3
0 = 2ab3δt 3

0 , δT 0
3 = 2ab3δt03. (4.41)

Furthermore thermodynamic identities for any consistent coupling ensure that E + P =

2ab3(ε1 + P1). Therefore it follows from (4.39), (4.40) and (4.41) that any consistent

coupling equation should imply

b2

a
ν +

1

a2
β = νa = υ. (4.42)

The coupling equations always ensure that conservation of the individual energy-mo-

mentum tensor in the individual effective metric leads to conservation of the full energy-

momentum tensor in flat space. To show that the eigenmode of the full system corresponds

to the thermodynamic sound of the full system, we need to turn this argument around. We

need to show that the Euler equations of the full energy-momentum tensor in flat space will

lead to satisfying the individual Euler equations in individual effective metrics. Clearly,

we will generically need identical systems with identical energy-momentum tensors living

in identical effective metrics. Otherwise the number of conservation equations of the full

system are outnumbered by the individual conservation equations. At the linearized level,

we need to show that (4.38) implies (4.35).

We note that thermodynamic variation ensures that δS/S = 2δs1/s1+3δb/b since S =

2s1b
3 in the case of identical systems. Similarly, δT /T = δT1/T1+δa/a since T = T1a. It is

then easy to see that (4.38) implies (4.35) because of the two relations in (4.42) which follows

from consistent coupling equations. We then conclude that for any consistent coupling

between two identical systems with identical effective metric solutions at equilibrium, the

thermodynamic sound will correspond to one of the eigenmodes at the leading order in

the derivative expansion. In this mode, the velocity fields in the two identical systems are

parallel to each other so that ν̃ = ν.

Even for identical perfect fluid systems there is another eigenmode where δT1 6= δT2
and ν 6= ν̃. In this mode, the velocity fields are anti-parallel to each other so that ν̃ =

−ν. Most importantly the thermodynamic relation δT = δ(T1a) = δ(T2ã) is not satisfied

by the fluctuations. This mode does not travel at the speed of thermodynamic sound.

When n1 6= n2, it turns out that neither of the two eigenmodes does; in this case the

thermodynamically defined speed of sound is in between the velocities of the eigenmodes.

When the two systems are identical, and we consider the eigenmode which at leading

order propagates at the speed of full system thermodynamic sound, we cannot map the

first-order (identical) hydrodynamic fluctuations of the individual systems to that of a

hydrodynamic form for the full system. To see this, we may repeat the steps of the above

argument with χ = χ̃ 6= 0 and η1 = η2 6= 0 and find that for generic η1 the modified form

of (4.42) does not imply that we can obtain (4.35) with first-order corrections from the

first-order correction of (4.38) (linearized Navier-Stokes equation in flat space).

Although in general different from the thermodynamically defined sound, the disper-

sion relations of the eigenmodes have the same characteristic sound-like form,

ω(a,b) = ±c(a,b)k − iΓ(a,b)k
2 +O(k3). (4.43)
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The perturbative expansions of the results for the speed of sound modes and their

respective attenuation coefficients are given by

ca =
1√
3

(
1−2(n1+n2)γT 4−48n1n2γ

2T 8
)

+O(γ3),

Γa =
κ1n1+κ2n2

6πT (n1+n2)
−n1n2(9κ1n1−κ2n1−κ1n2+9κ2n2)

3π(n1+n2)2
γT 3+O(γ2),

cb =
1√
3

(
1−8n1n2γ

2T 8
)

+O(γ3),

Γb =
κ2n1+κ1n2

6πT (n1+n2)
−

(n1−n2)
(
2κ2n

2
1+7n1n2(κ1−κ2)−2κ1n

2
2

)
3π(n1+n2)2

γT 3+O(γ2), (4.44)

with a dependence on r = −γ′/γ showing up only in the higher-order terms. For equal

partial pressures, n1 = n2, the dependence of the sound attenuation coefficients on κ1 and

κ2 simplifies. Both Γa and Γb are then proportional to (κ1 +κ2) to all orders in γ1/4T ; the

attenuation coefficient of the faster mode which then coincides with the thermodynamically

defined speed of sound moreover becomes independent of γ1/4T .

Mode a has velocity and temperature fluctuation fields with perturbative expansions

ν̃ =
n1
n2

(
1 +

21

2
(n2 − n1)γT 4 +O(γ2, γ′2, k)

)
ν,

δT1 = ± T√
3

(
1 + 2n2γT 4 +O(γ2, γ′2, k)

)
ν,

δT2 = ±n1
n2

T√
3

(
1 +

1

2
(21n2 − 17n1) γT 4 +O(γ2, γ′2, k)

)
ν. (4.45)

Above, the + sign refers to the case when the mode is propagating parallel to the momentum

k and − sign refers to the case of opposite propagation. Mode b similarly is one in which

ν̃ = −
(

1− 1

2
(n1 − n2)γT 4 +O(γ2, γ′2, k)

)
ν,

δT1 = ± T√
3

(
1 + 2n2γT 4 +O(γ2, γ′2, k)

)
ν,

δT2 = ∓ T√
3

(
1 +

1

2
(n2 + 3n1) γT 4 +O(γ2, γ′2, k)

)
ν. (4.46)

For equal partial pressures, n1 = n2, mode a and b have ν̃ = ν and ν̃ = −ν, respectively,

to all orders.

It is instructive to compare the attenuation coefficients of these propagating modes

with what would have been the hydrodynamic sound attenuation if one of these modes

could have been interpreted as a sound channel hydrodynamic mode of the full system.

First, assuming that each individual sector is conformal and hydrodynamic as we have

done above, one can see from the expression of the conserved energy-momentum tensor of

the full system that the trace of the full energy-momentum tensor does not contain any

spatial or temporal derivative. This implies that the full system has vanishing bulk viscosity

although it is not conformal but has a nonzero trace of the total energy-momentum tensor.
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Second, with the bulk viscosity vanishing, the sound dispersion relation for a hydrodynamic

system in flat space is given by

ω = ±csk − iΓsk2 +O(k3), (4.47)

with cs being the speed of thermodynamic sound and the attenuation coefficient being

Γs = (2/3)(η/T S). With η given by (4.25), the latter would be the attenuation coefficient

of one of the propagating modes if it could be interpreted as hydrodynamic motion in flat

space. We find that none of the propagating modes attenuates in the hydrodynamic way

even when one of them travels at the speed of thermodynamic sound as in the case of

identical subsystems.

In figure 10 and 11 our nonperturbative results for the speeds and attenuations of the

propagating modes of two strongly coupled fluids, and weakly plus strongly coupled fluids

respectively have been plotted. Comparison has been made also with the hydrodynamic

sound attenuation Γs of the full system. For equal partial pressures, n1 = n2, the results

for ca,b coincide at γ1/4T = 0 and one finite value of γ1/4T . The crossing at the latter point

is lifted for all n1 6= n2 such that mode b is always faster than mode a for γ1/4T > 0. In the

limit n1 → n2, the results for ca,b develop a cusp, while Γa,b even become discontinuous.

For exactly n1 = n2, max(Γa,Γb) is even a constant independent of γ1/4T and the results

for the two modes could all be connected smoothly. We have however kept the mode labels

corresponding to taking the limit n1 → n2.

Figure 12 displays ṽ/v for the corresponding sound eigenmodes as well as the associated

(adiabatic) fluctuations of the total entropy density Sµ=0. Again, the seemingly spurious

discontinuities at n1 = n2 indeed arise when taking the limit n1 → n2 starting from n1 6= n2.

In summary, our findings for the sound sector are:

1. The thermodynamic speed of sound of the full system cs is always between the ve-

locities of the two sound modes ca and cb, ca ≤ cs ≤ cb, and coincides exactly with

one of the modes for n1 = n2.

2. At temperatures above the crossover from weak to strong inter-system coupling, the

velocity of the faster mode (b) quickly approaches the thermodynamically defined

speed of sound.

3. Near the crossover temperature, the velocity fields of the two modes change their

phase with v (or ṽ) vanishing at a certain value of γ1/4T for mode a (or b). Mode a

has out-of-phase oscillations for large γ1/4T with decreasing total entropy fluctuations

δSµ=0 and speed slower than the thermodynamic speed of sound.

4. At high temperatures, cs and cb approach 1/
√

3 due to emergent conformality.

5. While cs and cb can become larger than the effective lightcone speeds v, ṽ, the velocity

ca of the slower mode remains smaller than v, ṽ; this mode thus lies within both

effective lightcones.

6. The value of the attenuation coefficient obtained from the Kubo formula is between

that of the sound modes for large γ1/4T .
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Figure 10. Sound modes and their attenuation coefficients for equal and unequal conformal sys-

tems, same κ = 1 (corresponding to ηi/si = 1/4π), with the slower mode a plotted in blue, and

the faster mode b plotted in orange. The black line represents the thermodynamic speed of sound

and associated attenuation coefficient from the Kubo formula. The green dashed line shows the

light-cone velocities squared of the two subsystems (in the case of n2 = 1/10 only ṽ2 is in plot

region). In the case n1 = n2 the lines for c2a,b meet and could be continued smoothly by switching

the designation; however for any n1 6= n2 we have cb > ca at nonzero γ1/4T . The discontinuous

behavior of the damping rates Γa,b for n1 = n2 is in fact the limit of smooth curves as n1 → n2
from different starting values.
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Figure 11. Attenuation coefficients Γa,b of the sound eigenmodes (slower mode a in blue, faster

mode b in orange) for unequal conformal systems with different κ. The black line gives the Kubo

formula result for sound attenuation.
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Figure 12. Left panel: the relation between the velocity amplitudes ν and ν̃ of the sound eigen-

modes displayed in figure 8 in the form ξ ≡ 2
π arctan(ν̃/ν); right panel: the corresponding fluc-

tuation amplitude of the total entropy density, δS ≡ δSµ=0, divided by νT 3. Mode a and b are

given in blue and orange, respectively, with full and dashed lines representing n1 = n2 = 1 and

n1 = 1, n2 = 1/10. The divergence of δS/(T 3ν) of mode a at one value of γ1/4T is due to a zero of

ν (corresponding to |ξa| = 1); here a velocity field is present only in subsystem 2.

7. While the dependence of the attenuation coefficients on γ1/4T is in general com-

plicated, at temperatures sufficiently above the crossover region the slower “non-

acoustic” sound mode is always the more weakly damped one.

8. The coupling studied in our setup provides no pure damping modes, i.e. the imaginary

part of the speed of sound vanishes as k → 0. This reflects the fact, that this

interaction is not sufficient to equilibrate the two subsystems, e.g. in a homogeneous

configuration with subsystems at unequal temperatures.

5 Coupling a kinetic sector to a strongly coupled fluid

In order to obtain a qualitative understanding of a coupled system of weakly interacting

and strongly interacting degrees of freedom, we can study the consequences of mutual

effective metric coupling of a gas of massless particles (gluons) described by kinetic theory

(as subsystem S1) and a strongly interacting holographic gauge theory described by dual

gravitational perturbations of a black hole (S2). Using the fluid/gravity correspondence,

we may further simplify gravitational dynamics to that of a fluid with a low value of

η/s if we are interested in the long time dynamics.13 Due to the appearance of spurious

modes and associated acausalities we need to embed first-order hydrodynamics in a more

complete description. Therefore, we embed the strongly coupled fluid in an Israel-Stewart

framework with an extremely small relaxation time. In the future we plan to do a more

13Here we are tacitly assuming that the strongly coupled sector thermalizes faster despite its coupling to

the weakly coupled gluons. Our results here indicate that the correction to the relaxation dynamics of each

sector can be very mild even though the hydrodynamic behavior is modified significantly by the democratic

effective metric coupling.
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complete calculation by involving the relaxation dynamics of the strongly coupled sector

as described holographically via quasi-normal mode perturbations of a black brane.

Following refs. [22, 23] and ignoring for simplicity effects of quantum statistics, the

thermal equilibrium of the weakly coupled (and dilute) kinetic sector is described by a

Maxwell-Jüttner distribution

f0(p
i) = n0e

pµuµ/T1 , (5.1)

where p0 is determined using the mass-shell condition, pµpνgµν = 0 for massless glu-

ons when thermal corrections to the mass are neglected. Expressed in terms of p ≡√
px2 + py2 + pz2, we have p0 = pb/a, uµ = (−a, 0, 0, 0), so that the time-dilation fac-

tor a (but not the spatial dilation factor b) drops out, giving

f0(p
i) = n0e

−pb/T1 . (5.2)

The normalization constant n0 can be fixed as follows. The energy-momentum tensor

corresponding to a quasi-particle distribution f is [24]

tµν =
√
−g
∫ ∞
−∞

d3p

(2π)3
pµpν

−p0
f(pi, xi, t) (5.3)

with p0 = g0µp
µ satisfying the mass-shell condition. The equilibrium energy-momentum

tensor then takes our previously assumed form:

tµν = diag

(
3n1T

4
1

a2
,
n1T

4
1

b2
,
n1T

4
1

b2
,
n1T

4
1

b2

)
(5.4)

where n1 is our previously introduced (theory-dependent) parameter if

n0 = n1π
2. (5.5)

We will therefore set n0 to n1π
2 so that we can directly use our previously obtained results

to describe the equilibrium of the full system.

For convenience, we use spherical coordinates for the components of the momenta so

that px = p sin θ cosφ, py = p sin θ sinφ and pz = p cos θ. A linearized fluctuation of the

quasi-particle distribution about equilibrium can be written as:

f(p, θ, φ, xi, t) = n1π
2e−pb/T1 + δf(p, θ, φ, xi, t). (5.6)

For computational purposes, it is useful to split the linear term δf into two parts, each

having a specific momentum k and a specific frequency ω component, according to

δf(p, θ, φ, xi, t) =
(
δf (eq)(p, θ, φ) + ∆f(p, θ, φ)

)
ei(k·x−ωt). (5.7)

The term δf (eq) can be defined uniquely such that it produces a perturbation δtµν (eq)

in the energy-momentum tensor that is of a perfect fluid form. Only the term ∆f will

then contribute to the dissipation of energy and momentum. If δg is the (self-consistent)
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effective metric fluctuation in the kinetic theory, then in the relaxation time approximation

δf obeys the linearized Anderson-Wittig equation:(
∂t +

pi

p0
∂i

)
δf − δΓiβγ

pβpγ

p0
∂

∂pi
f0 = −a

τ
∆f (5.8)

with δΓµαβ being the linearized Levi-Civita connection obtained from δg and with p0 also

receiving a corresponding linear contribution so that the mass-shell condition is satis-

fied. Furthermore, in a conformal theory τ should be proportional to T−11 and we may

parametrize

τ(T1) =
5κ1

4πT1
(5.9)

where κ1 is a constant which will be eventually identified with 4πη1/s1 as before.

The relaxation time in the Israel-Stewart theory in which we are embedding the

strongly coupled fluid is similarly set to

τ̃(T2) =
5λ

4πT2
. (5.10)

In order to isolate the strongly coupled fluid from the relaxation dynamics, we will take

λ very small so that τ̃ is small. Unlike the kinetic sector where τ determines the shear

viscosity (this can be seen via consistent reduction to hydrodynamics), note that τ̃ of the

Israel-Stewart theory is an independent parameter which does not affect the shear viscosity

but only second-order hydrodynamics.

5.1 Branch cut in response functions of the kinetic sector

We can show that an infinite number of quasi-particle distribution fluctuations decouple

from the strongly coupled sector in the sense that all perturbed observables will get con-

tributions purely from the kinetic sector. For instance, fluctuations of the form

δf = F (p)G(θ, φ)e−iωt+ik·x, with G(θ, φ) = H1(θ) cos(nφ) +H2(θ) sin(nφ)

and n ≥ 3 (5.11)

have vanishing fluctuations of the energy-momentum tensor

δtµν ∝
∫

d3p

p0
pµpνδf(x,p, t) = 0. (5.12)

If also all perturbations in the strongly coupled sector are set to zero, we can then self-

consistently assume that

δgµν = δg̃µν = 0. (5.13)

In this case we have δf = ∆f and the linearized Anderson-Wittig equation (5.8) reduces to

− i
(
ω − a

b
n · k + i

a

τ

)
δf = 0, (5.14)
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Figure 13. Analytic structure of the response function in the kinetic sector. The branch cut

arising from (5.15) is given by the thick black line. The pole corresponding to the pure damping

mode (5.34), which lies on the second Riemann sheet, is indicated by the cross in violet.

where ni = pi/p and τ is the relaxation time in the kinetic sector. Choosing without loss

of generality k along the z-direction we obtain

ω =
a

b
k cos θ − i a

τ(T1)
=
a

b
k cos θ − i 1

τ(T )
, (5.15)

where we have used that T1a = T at equilibrium with T being the physical temperature

of the full system. The above produces a cut in the response function that stretches in the

lower half of the complex ω plane horizontally from −(a/b)k−i/τ(T ) to (a/b)k−i/τ(T ), see

figure 13. Physically, the factor of a/b (the effective equilibrium lightcone velocity) reflects

that the massless gluons propagate along this effective lightcone. The imaginary part turns

out to receive no correction when expressed in terms of the full system temperature T .

5.2 Poles in response functions of the kinetic sector

We now consider quasi-particle distribution fluctuations which cost energy and momentum.

As before, we can split the propagating modes of the full theory into shear, sound, and

tensor channels. We focus on the shear and sound channels for exactly the same reason as

before — the tensor channel has no hydrodynamic mode and to characterize it properly

we require to embed the strongly coupled fluid into gravity which we have not done yet.

As expected, we find that some of the propagating modes in both shear and sound

channels are identical to the case of the conformal bi-hydrodynamic individual systems

described before. This is simply because both the kinetic and Israel-Stewart sectors can be

consistently truncated to conformal hydrodynamics individually. In particular, we will see

that with the parametrization (5.9) of the kinetic relaxation time, we get exactly the same

results as before with κ1 identified with 4πη1/s1. This reproduction of bi-hydrodynamics

provides a consistency check of our calculations.

In addition to the bi-hydrodynamic modes, there are two other non-hydrodynamic

propagating modes in the full system in each shear and sound channel. These contribute

poles in the response function. We find that one of these is continuously connected to the
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damping in the kinetic sector as we switch off the effective metric coupling. We will focus on

this particularly because in case of the hydrodynamic sector, Israel-Stewart dynamics has

been used simply as a tool for consistent embedding hydrodynamics and not for capturing

actual relaxation dynamics. We will see that if the Israel-Stewart relaxation time is set to

zero by taking λ→ 0 limit, the other damping mode has a smooth limit that captures the

effective metric interactions of the kinetic sector with a strongly coupled fluid. Furthermore,

if we take k→ 0 limit, there is no way to distinguish the shear and sound channels owing

to rotational symmetry of the equilibrium. The damping coefficient of the full system will

then be the same in both shear and sound channels. This also provides a consistency check

of our calculations.

Let us first focus on the shear channel. The effective metric fluctuations of the two

sectors will be given by (4.3) and (4.4) as before. In the kinetic sector, the local mass-shell

condition pµgµνp
ν = 0 will imply that at the linearized level:

p0(p, θ, φ, z, t) =
pb

a
+ δp0(p, θ, φ, z, t),

δp0(p, θ, φ, z, t) = p

(
β

a2
+
γ13
ab

cos θ

)
sin θ cosφ ei(kz−ωt). (5.16)

Assuming a self-consistent fluctuation of uµ = (1/a, νei(kz−ωt), 0, 0) as before, we also

obtain:

pµu
µ = −pb+

p

b
(νb3 − γ13 cos θ) sin θ cosφ ei(kz−ωt). (5.17)

There is no fluctuation in the temperature in the shear channel. The linearized fluctuation

of the quasi-particle distribution function takes the form (5.7) with k in the z-direction and

δf (eq)(p, θ, φ) = e
− pb
T1

p

T1b
(νb3 − γ13 cos θ) sin θ cosφ. (5.18)

Above δf (eq) arises from the fluctuation in pµu
µ since the local equilibrium distribution

by definition takes the form n1π
2e−pµu

µ/T and T1 does not fluctuate in the shear channel.

Note that δf (eq) indeed reproduces the fluctuation in the energy-momentum tensor which

takes a perfect fluid form.

The linearized Anderson-Witting equation (5.8) can then be explicitly solved to obtain:

∆f(p, θ, φ) = f0
pτ sin θ cosφ

(
−(β + νab2)bω + (kνa2b2 − aγ13ω) cos θ

)
T1a(−iab− bτRω + kaτR cos θ)

. (5.19)

In the kinetic sector, the energy-momentum tensor (5.3) after taking into account both

effective metric and quasiparticle distribution fluctuations assume the linearized form

tµν = diag

(
ε1
a2
,
P1

b2
,
P1

b2
,
P1

b2

)
+ δtµν , ε1 = 3P1 = 3n1T

4
1 , (5.20)

with the non-vanishing components of δtµν being

δt01 = −P1β + (P1 + ε1)νab
2

a2b2
ei(kz−ωt), δt13 =

(
−P1γ13

b4
+ π13

)
ei(kz−ωt) (5.21)
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where

π13 =
1

8π3

∫ ∞
−∞

dp

∫ π

0
dθ

∫ 2π

0
dφ p3b2 cos θ sin2 θ cosφ ∆f(p, θ, φ). (5.22)

Comparing (5.21) with (4.6) we see that the perfect fluid parts of the energy-momentum

tensor perturbation that originates in the former case from the linearized perturbation in

p0, p
0 and δf (eq) match perfectly. The dissipative contribution in (5.21) however originates

from ∆f and is given by π13. Using the solution (5.19) for ∆f in (5.22) we find that:

π13 =
2n1T

4
1

k5a5b2τ4

(
γ13ω(ia+ τω) + k(−iνa2b2 + βτω)

)
(5.23)(

2k3a3τ3 + 3kab2τ(a− iτω)2

+ 3(iab+ bτω)(−k2a2τ2 + (iab+ bτω)2)arctanh

(
kaτ

iab+ bτω

))
.

In order to obtain the hydrodynamic limit we need to expand the right hand side above in

τ which yields

π13 = −i4n1T
4
1 τ

5ab4
(
kνab2 − γ13ω

)
+O(τ2). (5.24)

It is easy to note that the expansion in τ is essentially the derivative expansion. Substituting

the above form of π13 in (5.21) and comparing again with the hydrodynamic form (4.6),

we find a perfect match with

η1 =
4n1T

4
1 τ

5
, (5.25)

i.e., η1/s1 = T1τ/5 and crucially κ1 = 4πη1/s1 as we have claimed.

The energy-momentum conservation equation with δtµν given by (5.21) and the metric

perturbation given by (4.4) amounts to:

(ε1 + P1)(β + νab2)ω − ka2b2π13 = 0. (5.26)

One can check that the above reduces to the standard hydrodynamic equation (4.7) when

π13 is approximated by (5.24). We can regard (5.23) and (5.26) as the dynamical equations

for π13 and ν.

It is to be noted that one can explicitly check that the conservation equation (5.26) is

equivalent to the linearized version of the matching condition uµ(tµν − tµν (eq)) = 0 which

says that the projected energy-momentum tensor obtained from the full quasi-particle

distribution f should agree with that obtained from f (eq). In fact, this matching condition

is necessary to ensure energy-momentum conservation. At the level of linearized shear-

sector fluctuation, the matching condition reduces to

∆t01 ≡ 1

8π3

∫ ∞
−∞

dp

∫ π

0
dθ

∫ 2π

0
dφ

p3b3

a
sin2 θ cosφ ∆f(p, θ, φ) = 0. (5.27)

Explicitly, we can check that if we use ∆t01 = 0 with the on-shell form of ∆f given by (5.19)

and the equation of motion (5.23) for π13 to solve for the variables ν and π13, we find that

indeed (5.26) is satisfied leading to energy and momentum conservation.
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Embedding the holographic conformal fluid (with ε2 = 3P2 = 3n2T
4
2 as before) in the

Israel-Stewart framework we obtain:

δt̃01 = −P2β̃ + (P2 + ε2)(ν̃ab)
2

ã2b̃2
ei(kz−ωt), δt̃13 =

(
−P2γ̃13

b̃4
+ π̃13

)
ei(kz−ωt). (5.28)

The linearized Israel-Stewart equation of motion of π̃13 is:

− ib̃τ̃ π̃13ω + (ãb̃)4π̃13 − iη2γ̃13ω − ikη2ν̃ab2 = 0. (5.29)

The conservation of energy-momentum tensor mirrors (5.26) of the kinetic sector and takes

the form:

(ε2 + P2)(β̃ + ν̃ab2)ω − kã2b̃2π̃13 = 0. (5.30)

The equations (5.29) and (5.30) are the equations of motion for π̃ and ν̃. Note that once

again the hydrodynamic limit is reproduced by Taylor expansion in τ̃ about τ̃ = 0.

To ensure conformality, we once again parametrize:

η2 =
n2κ2
π

T 3
2 (5.31)

as before. Furthermore, we will later take the limit λ→ 0 in which τ̃ vanishes.

We now repeat the steps in the previous subsection. First, we use the coupling equa-

tions (4.10) to solve for β, β̃, γ13 and γ̃13 in terms of ν, ν̃, π13 and π̃13. Next, we substitute

these solutions for β, β̃, γ13 and γ̃13 in the dynamical equations, namely (5.23), (5.26), (5.29)

and (5.30) to obtain the 4× 4 matrix equations:

QAB(ω, k)ΛB = 0 (5.32)

where ΛB = (ν, π13, ν̃, π̃13). Finally, we obtain the eigenmodes ω(k) by solving detQ = 0

at each k.

There are four propagating modes for each k as discussed earlier. Two of these are

exactly the bi-hydro shear-like eigenmodes obtained earlier with diffusion constants Da and

Db. We thus reproduce our previous results.

There are additionally two relaxation eigenmodes. One of these eigenmodes is related

to the Israel-Stewart relaxational mode and its damping constant becomes large for small

λ and therefore can be decoupled. The corresponding propagating mode in this limit is

localized mostly in the Israel-Stewart sector and involves the following combination of π13
and π̃13 where

π13 =

(
4n1
5
γT 4 +O(γ2T 8)

)
π̃13 (5.33)

when γT 4 is small.

The damping constant of the other relaxational mode remains finite. It is of the form

ω(k) = −i
[
Γ0 +O(k2)

]
(5.34)

with perturbative expansion in the limit λ→ 0 according to

Γ0 =
4πT
5κ1

+
16πn1n2(5κ1 − 4κ2)

125κ21
γ2T 9 +O(γ3). (5.35)
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Figure 14. Pure damping modes (identical in shear sector and sound sector). Left panel: damping

constant Γ0 that remains finite when λ→ 0; right panel: damping constant ΓI of the Israel-Stewart

relaxational mode which is large for small λ (however, λ cannot be made arbitrarily small at large

γ1/4T , see text).

This is interesting because the Anderson-Witting kinetic theory does not have on its own

any non-hydrodynamic pole — the mutual metric coupling evidently causes a pole to be

generated from the cut discussed above (for γT 4 → 0 it coincides with the cut). This

pole is farther from the real axis than the cut when κ1 > κ2, i.e., when the kinetic sector

is more weakly coupled than the second sector described by pure hydrodynamics. The

corresponding propagating mode involves the following combination of π13 and π̃13 where

π̃13 =

(
4n2κ2
5κ1

γT 4 +O(γ2T 8)

)
π13 (5.36)

so that it is mostly localised in the kinetic sector as expected in the limit of small γT 4.

Interestingly, when 5κ1 = 4κ2 all corrections to Γ0/T vanish so that it is exactly 4π/5κ1
as the perturbation series (5.35) indicates. However, in this case the λ→ 0 limit becomes

sick because the other mode becomes unstable. This is consistent with the expectation

that the non-kinetic sector should have a lower η/s as it is more strongly coupled.

Furthermore, the departure of Γ0/T from its decoupling limit value 4π/5κ1 in the full

calculation are found to be very small for any value of γ1/4T (see the left panel of figure 14).

The damping constant ΓI of the Israel-Stewart relaxational mode is evaluated in the right

panel which is indeed large for all γ1/4T for the small value of λ chosen. However, it turns

out that one cannot take the limit λ→ 0 for large γ1/4T , for ΓI diverges at a certain value

of γ1/4T beyond which it turns negative, corresponding to an instability. One thus has to

keep λ finite in order to decouple this mode.

Repeating the same calculation in the sound channel, we find that we indeed reproduce

the bi-hydro sound sector modes and the same damping coefficient Γ0.

A remarkable outcome from our calculations is that non-hydrodynamic observables

turn out to receive mild or no non-perturbative corrections even when the hydrodynamic

sector receives large qualitative and quantitative modifications.
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6 Conclusions

In the semi-holographic approach to the dynamics of quark-gluon plasma with its coex-

istence of strongly and weakly interacting sectors it has been proposed to introduce a

coupling of the respective marginal operators [6, 7, 17]. In four dimensions, this always

includes the energy-momentum tensors which can be coupled to the (effective) metric of

the complement subsystem. In this paper we have determined the most general ultralo-

cal mutual effective metric coupling which leads to a total energy-momentum tensor with

respect to the flat Minkowski space of the complete system. The effective metric tensors

of the subsystems encode the interactions between them; in particular they lead to state-

dependent effective lightcone velocities within a subsystem that can be smaller than unity,

similar to thermal masses (but different in that the latter reduce the velocity of massless

particles depending on their energy).

We have then studied the consequences of mutual effective metric couplings in equilib-

rium and in a hydrodynamic limit of near-equilibrium situations. Assuming full thermal

equilibrium, we have found an interesting phase structure, which can be separated by a

first or second-order phase transition, or an analytic crossover, depending on the coupling

parameters. With only the two coupling constants of inverse dimension four turned on,

we obtained two distinct phases where the one at higher mutual coupling (or equivalently

higher system temperature) has a larger number of degrees of freedom per volume and

eventually approaches conformality, which is curiously reminiscent of the deconfinement

transition in QCD.

Studying the hydrodynamic behavior of such a two-fluid system, we found two modes

in both the sound channel and in the shear channel (with our detailed findings summarized

already at the end of the respective subsections above). In the shear channel we found a

decrease of shear diffusion constants as the mutual coupling is increased, in accordance with

the fact that shear diffusion is in general weaker at strong coupling.14 The overall shear

viscosity, which is determined by the Kubo formula involving the total energy momentum

tensor, shows a similar behavior, numerically intermediate between the viscosity values of

the subsystems.

In the sound sector, we also found two modes, which correspond essentially to in-phase

and out-of-phase density perturbations of the two subsystems. One mode always has a ve-

locity close (or equal) to the thermodynamically defined speed of sound, while the other is

slower and always below the effective lightcone velocity of the subsystems, and also more

weakly attenuated, suggestive of a quasiparticle nature. In the transition region, a role re-

versal takes place, reminiscent of a similar phenomenon in other two-fluid systems [25]. The

damping of the two modes depends in a complicated manner on the shear viscosities in the

individual subsystems and their mutual interaction (or system temperature). In the long-

wavelength limit, however, both attenuations vanish quadratically with the modulus of the

wave vector, which means that completely homogeneous and isotropic density perturbations

do not equilibrate. This is similar to the behavior found in the semi-holographic toy model

14However, since increasing the mutual coupling is equivalent to higher system temperature, the behavior

as a function of temperature here turns out to be opposite to what is expected in QCD.
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of ref. [7], where the dual gravitational theory did not permit thermalization because in

this limit there are no propagating degrees of freedom (bulk gravitons). Instead one needs

to turn on scalar degrees of freedom (the bulk dilaton) dual to the Lagrangian density [16].

Finally, we also investigated the case where one subsystem is described by kinetic the-

ory. In order to do so, we supplemented one of the subsystems with microscopic dynamics

and chose to describe it in terms of a transport theory of a distribution function of particles

f(~x, ~p, t). We observe that because the metric coupling is mediated by local stretches of

space-times of the individual subsystems, all the modes with different ~p are affected uni-

formly. Because of this, the only effect the coupling between the two subsystems can have

to the distribution function is to rescale the momentum variable f(~x, ~p, t)→ f(~x, ~p′, t) with

p′i = Λij(~x, t)pj . In consequence the coupling cannot bring the distribution to the equilib-

rium form, and the non-hydrodynamic modes are unaffected by the coupling. Therefore,

as in the toy example studied in [7] the thermalization of the full system must rely on

thermalization of the individual subsectors, in the sense that coupling a non-dissipative

subsystem to a dissipative one does not allow the non-dissipative subsystem to thermalize.

Considering the damping of non-hydrodynamic relaxation modes we find that they receive

typically small modifications, or none, through the mutual effective metric coupling.

Our results provide a glimpse of what can or cannot be expected from semi-holographic

models for equilibration and thermalization, rather independently of the internal dynam-

ics of the perturbative and nonperturbative sectors of the full system, when the semi-

holographic coupling is exclusively through the energy-momentum tensors of the subsec-

tors. The semi-holographic model for the early stages of heavy-ion collisions formulated

in [6, 7] is restricted to the phase where semi-hard gluons are overoccupied so that they can

be described by classical Yang-Mills equations while a thermal bath of infrared degrees of

freedom is building up. Some recent progress on the level of toy models has been presented

in [16] and is paving the way to more relevant qualitative studies. For later stages of the

formation and evolution of the quark-gluon plasma more refined models would be required

which involve a quantum kinetic theory for the hard degrees of freedom. Eventually, real-

istic studies would have to turn to hard-thermal-loop resummed kinetic theory for the UV

sector [26] and a confining model for the IR sector such as improved holographic QCD [27].

Before embarking on this, it will however be interesting to study further the general qual-

itative features and consequences of a semi-holographic setup by including couplings of

operators other than the energy-momentum tensor, by studying more complicated kinetic

models, and by also considering the issue of fluctuations which may be crucial for full

thermalization but are beyond the large N limit.
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A General tensorial coupling rules

In this appendix, we work out the most general ultralocal coupling rules of the effective met-

ric fields with the energy-momentum tensors of the complement subsystems. The effective

metrics cannot depend on the (covariant) derivatives of the subsystem energy-momentum

tensors because even the first derivatives of the subsystem energy-momentum tensors can

be discontinuous as for instance along a phase boundary. The effective metrics, however,

cannot have discontinuities, because in that case one cannot formulate general covariant

equations of motion as covariant derivatives cannot be defined where the metric becomes

discontinuous. The energy-momentum tensor typically involves only first derivatives of the

fields and so does the action which determines the weights for field configurations in the

path integral. Therefore, field configurations where the second derivatives of the fields and

thus first derivatives of the energy-momentum tensor are discontinuous are allowed to con-

tribute to the path integral. So one can generally argue that the effective metrics should

be determined only by polynomials of the subsystem energy-momentum tensors and not

their derivatives.

With the short-hand notation

tµν =

√
−g√
−g(B)

tµρg(B)
ρν , t̃

µ
ν =

√
−g̃√
−g(B)

t̃µρg(B)
ρν , t = tµµ, t̃ = t̃

µ
µ (A.1)

the generalization of (2.18) to higher than quadratic order in the energy-momentum tensors

tµν and t̃µν can be written as

∆K =
∑

m≥0,ji≥0
κmj1j2...(tt̃)

m
(
tr
{
t · t̃
})j1 (tr{(t · t̃)2

})j2 . . . , (A.2)

where terms of order 2k have m = 0, . . . k and
∑
ji = k−m. Thus the number of terms in

the interaction part of the total energy-momentum tensor at order 2k, denoted below by

|κk|, is given by sums over the number-theoretic partition function

|κk| =
k∑

m=0

p(k −m) (A.3)

with p(n) = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, . . . for n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . ..

In order to have a conserved total energy-momentum tensor we need (for simplicity

switching to a Minkowski background metric g
(B)
µν for now)

0 = ∂µK
µ
ν =

1

2
(∂νgµσ)

√
−gtµσ +

1

2
(∂ν g̃µσ)

√
−g̃t̃µσ + ∂ν∆K (A.4)

where the Ward identities for the subsystems, (2.13) and (2.15), have been used.

The terms obtained by differentiating ∆K can be easily seen (using cyclicity of the

trace) to be matched by the ansatz

gµν = g(B)
µν +

∑
`≥1,m≥0,ji≥0

γ`|mj1...jp(g
(B) · t̃ · (t · t̃)`−1)(µν)(tt̃)mtr

{
t · t̃
}j1 tr

{
(t · t̃)2

}j2 . . .
+ g(B)

µν

∑
m≥0,ji≥0

γ′1|mj1...jpt
mt̃m+1tr

{
t · t̃
}j1 tr

{
(t · t̃)2

}j2 . . . (A.5)
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and

g̃µν = g(B)
µν +

∑
`≥1,m≥0,ji≥0

γ`|mj1...jp(g
(B) · t · (t̃ · t)`−1)(µν)(tt̃)mtr

{
t · t̃
}j1 tr

{
(t · t̃)2

}j2 . . .
+ g(B)

µν

∑
m≥0,ji≥0

γ′1|mj1...jp t̃
mtm+1tr

{
t · t̃
}j1 tr

{
(t · t̃)2

}j2 . . . . (A.6)

(Indices enclosed by round parentheses are to be symmetrized.) To match terms of order

2k in ∆K we have to take ` = 1, . . . k, m = 0, . . . k− `, and
∑
ji = k− `−m. The number

of coefficients γ and γ′ at this order (denoted by |γk|) is therefore

|γk| = |κk−1|+
k∑
`=1

|κk−`| = 2|κk−1|+ |κk−2|+ |κk−3|+ . . . (A.7)

where it is convenient to define |κ−n| = 0 for n = 1, 2, . . .. (Note that |κ0| = 1, correspond-

ing to the possibility of adding a cosmological constant, which we ignore because it does

not lead to a gravitational coupling of the two sectors.)

For the first few orders 2k the number of coefficients in the ansätze for ∆K and the

two metric tensors read

k 0 1 2 3 4 5

|κk| 1 2 4 7 12 19

|γk| 0 2 5 11 21 38

Plugging in the ansätze in (A.4) gives as many linear relations between the coefficients

as there are different terms produced by differentiating ∆K. For each term in ∆K we get

as many different derivatives as there are different factors. We thus need to consider how

many different parts a partition of the number k −m into ji’s has. Define

q(n) =
∑

partitions of n

(number of different parts of the partition) (A.8)

From differentiating the trace terms with powers ji at order 2k we get q(k) + q(k − 1) +

. . . + q(1) different terms, while from differentiating (tt̃)m with m ≥ 1 we get p(k − 1) +

p(k− 2) + . . .+ p(0) = |κk−1| different terms (here p(0) = 1 corresponds to the single term

where m = k). Now it turns out that15 q(n) = p(n−1) +p(n−2) + . . .+p(0) = |κn−1| and

therefore the number of relations is 2|κk−1|+ |κk−2|+ . . . = |γk|. Hence, there are always as

many relations as coefficients in the ansatz for the metric which can be used to determine

them in terms of the (free) coefficients κ in ∆K.

It is interesting to note that the most general form of the conserved energy-momentum

tensor that we obtain here is that where the interaction term is the most arbitrary sym-

metric polynomial of tµν and t̃
µ
ν , and (i) is thermodynamically consistent and (ii) such

that the total entropy is the sum of the two subsystem entropies. We show in appendix B

15A proof of this non-obvious fact can be found in M. D. Hirschhorn, “The number of different parts in the

partitions of n”, Fibonacci Quaterly 52 (2014) 10–15 [http://web.maths.unsw.edu.au/∼mikeh/webpapers/

paper192.pdf].
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that the latter requirements can indeed be satisfied if the interaction term is proportional

to δµν as we have here and is otherwise arbitrary. The combinatoric identity (A.8) along

with our general construction ensures that any such arbitrary interaction term in the full

conserved energy-momentum tensor satisfying the above thermodynamic requirements can

be interpreted as a democratic effective metric interaction, i.e., as an interaction that can

be absorbed into an appropriate mutual modification of respective effective metrics. This is

important because in absence of any symmetry argument to rule out a specific interaction

term, it can be generically present, and therefore indeed we should be able to obtain it via

an mutual effective metric coupling.

A.1 Solutions to lowest orders

When ∆K is a quadratic expression formed of the energy-momentum tensors, there are

two coefficients each in ∆K and the metric ansatz, with two equations relating them:

∆K = κ tr
{
t · t̃
}

+ κ′tt̃, (A.9)

where κ ≡ κ010̇ and κ′ ≡ κ10̇ in terms of the general multi-index coefficients introduced

above, with 0̇ denoting an infinite string of zeros;

gµν = g(B)
µν + γ(g(B) · t̃)µν + γ′g(B)

µν t̃, gµν = g(B)
µν + γ(g(B) · t)µν + γ′g(B)

µν t, (A.10)

where γ ≡ γ1|0̇ and γ ≡ γ′
1|0̇.

Eq. (A.4) yields

κ = −1

2
γ, κ′ = −1

2
γ′, (A.11)

in accordance with (2.18).

At the next higher order, there are 4 coefficients in ∆K,

κ20̇, κ110̇, κ020̇, κ0010̇, (A.12)

and 5 coefficients in the metric tensors gµν and g̃µν , constrained by 5 linear relations

following from (A.4), which yield

γ2|0̇ = −4

3
κ0010̇, γ1|010̇ = −4

3
κ020̇, γ′

1|10̇ = −4

3
κ20̇, γ1|10̇ = γ′

1|010̇ = −2

3
κ110̇. (A.13)

A.2 Action formulation

When the subsystems can be described by an action principle, one can formulate the

democratic effective metric coupling of the two subsystems also through a joint action.

Let the fundamental elementary fields of the first subsystem be denoted collectively as φ

and those of the second subsystem as φ̃. Then the dynamics of the full system with the

lowest-order effective metric coupling (A.10) can be obtained from

S[φ, φ̃, gµν , g̃µν , g
(B)
µν ] =

∫
ddx
√
−gL1[φ, gµν ] +

∫
ddx
√
−g̃L2[φ̃, g̃µν ] (A.14)

+
1

2γ

∫
ddx

√
−g(B)

(
gµα − g(B)

µα

)
g(B)αβ

(
g̃βν − g

(B)
βν

)
g(B)νµ

+
1

2γ

γ′

dγ′ − γ

∫
ddx

√
−g(B)

(
gµνg

(B)µν − d
)(

g̃αβg
(B)αβ − d

)
.
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We note that the above action is not simply a functional of φ, φ̃ and g
(B)
µν as usually is

the case but also of the two effective metrics gµν and g̃µν . Thus gµν and g̃µν appear as

auxiliary fields and the interaction terms of the two subsystems represented by the last two

lines of the above action merely implement the algebraic relations between the effective

metrics and the subsystem energy-momentum tensors. On the other hand, if we vary with

respect to φ and φ̃ first, we evidently obtain the two subsystem dynamical equations in

the respective effective metrics, since the last two lines are independent of φ and φ̃. Since

the individual subsystem actions are diffeomorphism invariant, these automatically imply

that the subsystem Ward identities ∇µtµν = 0 and ∇̃µt̃µν = 0 hold on-shell. We can also

explicitly check that when the full action is stationary for variation of φ, φ̃, gµν and g̃µν , then

its variation with respect to the background metric g
(B)
µν yields the full energy-momentum

tensor Tµν as given in section 2.16

B Thermodynamic consistency

B.1 General proof

We will show that any consistent effective metric coupling rule with a total conserved

energy-momentum tensor of the form (2.22) will imply that if the global equilibrium

condition

T1a = T2ã = T (B.1)

is satisfied then thermodynamic consistency is also satisfied with total entropy S(T ) =

s1(T1)b
3 + s2(T2)b̃

3. Note that this not only covers the simplest metric coupling rule (2.16)

but the most general ansatz for ∆K in (A.2).

In order to prove this assertion, it is useful to consider the system in a static gravita-

tional potential so that the background metric is:

g(B)
µν = diag

(
−e−2φ(x), 1, 1, 1

)
, (B.2)

where φ(x) is static, i.e., not a function of time, but otherwise arbitrary. One can then

make static ansätze for the effective metrics of the individual sectors, i.e. assume that

gµν = diag(−a(x)2, b(x)2, b(x)2, b(x)2), g̃µν = diag(−ã(x)2, b̃(x)2, b̃(x)2, b̃(x)2). (B.3)

The effective metric coupling equations (constructed after removing anomalous terms in

the individual energy-momentum tensors) with the assumption that each sector is in ther-

modynamic equilibrium at temperatures T1 and T2, respectively, i.e. with the forms

tµν = diag

(
ε1(T1(x))

a(x)2
,
P1(T1(x))

b(x)2
,
P1(T1(x))

b(x)2
,
P1(T1(x))

b(x)2

)
,

t̃µν = diag

(
ε2(T2(x))

ã(x)2
,
P2(T2(x))

b̃(x)2
,
P2(T2(x))

b̃(x)2
,
P2(T2(x))

b̃(x)2

)
, (B.4)

16The existence of a full conserved energy-momentum tensor in any case follows from the individual

subsystem Ward identities (which are easier to obtain from the above action as shown above). Typically

a system has a unique energy-momentum tensor of a system up to possible local terms that are sepa-

rately conserved by virtue of identities (i.e. without need of equations of motion). We can explicitly check

that (A.14) does not produce such additional terms.
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involve no derivative of the metric so will still be algebraic (although the solutions will

depend on the specific spatial point x). However, the coupling equations need to be taken

in their generalized form with nontrivial background metric g(B). We will assume that we

can obtain flat-space solutions by smoothly taking φ(x)→ 0.

To define an equilibrium solution, we need to relate T1 and T2 parametrizing each in

terms of the full system temperature T . At global equilibrium, the inverse of the Euclidean

time circle specifying the system temperature should be constant. The global equilibrium

condition is simply then:

T1(x)a(x) = T2(x)ã(x) = T (x)e−φ(x) = T0, (B.5)

where T0 is a constant, parametrizing the global thermal equilibrium of the full system in

the background metric (B.2).

The first thing that we need to show is that the above is compatible with the conser-

vation of the energy-momentum tensors. Using (2.13), we can check that the conservation

of the individual thermal energy-momentum tensors (B.4) in the respective effective met-

rics (B.3) imply simply that

∂iP1

ε1 + P1
+
∂ia

a
= 0,

∂iP2

ε2 + P2
+
∂iã

ã
= 0, (B.6)

respectively. Note that b(x) and b̃(x) do not feature directly in the above equations. Since

dP1 = s1dT1, ε1+P1 = T1s1, dP2 = s2dT2, ε2+P2 = T2s2, the conservation equations (B.6)

are equivalent to

∂i(ln(T1a)) = 0, ∂i(ln(T2ã)) = 0, (B.7)

and thus implied by the global equilibrium condition (B.5).

By construction, the effective metric couplings ensure that the total energy-momentum

tensor, which can be parameterised as

Tµν = diag
(
E(T (x))e2φ(x),P(T (x)),P(T (x)),P(T (x))

)
, (B.8)

will be conserved in the background metric (B.2), since the individual thermal energy-

momentum tensors are conserved with respect to the respective effective metrics. We

therefore have
∂iP
E + P

− ∂iφ = 0. (B.9)

Equations (B.7) and (B.5) imply that

∂iT
T
− ∂iφ = 0, (B.10)

and therefore
∂iT
T

=
∂iP
E + P

. (B.11)

Identifying E + P = T S this implies

∂iP = S∂iT . (B.12)
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Since the above should hold for arbitrary smooth φ(x), we conclude that

dP = SdT (B.13)

where the variation is taken by changing the constant parameter T0. Together with E+P =

T S the above implies

dE = T dS. (B.14)

This shows that thermodynamic consistency follows from the conservation of the full

energy-momentum tensor as ensured by our effective metric coupling. In particular, as-

suming E + P = T S and the global equilibrium condition (B.5), we obtain dE = T dS
from the conservation of the full energy-momentum tensor. Clearly, we can take the limit

φ(x)→ 0 limit to obtain the desired proof of thermodynamic consistency in flat space.

We still need to show which form S takes. Since the form of the full energy-momentum

tensor with one contravariant and one covariant index is such that the explicit interaction

terms involving ∆K are always diagonal, they come with opposite signs for E and P.

Therefore,

(ε1 + P1)ab
3 + (ε2 + P2)ãb̃

3 = (E + P)e−φ(x). (B.15)

Thus from (E + P) = T S we get

T1s1ab
3 + T2s2ãb̃

3 = T Se−φ(x). (B.16)

The relation between the temperatures (B.5) reduces this to

S = s1b
3 + s2b̃

3. (B.17)

The above form then holds for the general consistent effective metric coupling discussed

in appendix A. Thus, we obtain a general proof of thermodynamic consistency with (B.5)

and the above form of the full entropy.

B.2 Explicit check

In the following, we explicitly verify thermodynamic consistency of the equilibrium solution

obtained in section 3 for the simplest coupling rules (2.16).

With the results (3.6), the thermodynamic relation E + P = T S is evidently fulfilled

with T = T1a = T2ã and S = s1b
3 + s2b̃

3, when ε1,2 + P1,2 = T1,2s1,2. Here we shall check

that then also

S =
dP
dT

(B.18)

holds provided the two subsystems satisfy

s1 =
ε1 + P1

T1
=
dP1

dT1
, s2 =

ε2 + P2

T2
=
dP2

dT2
. (B.19)

We need to evaluate

dP
dT

=
d

dT

[
P1ab

3 + P2ãb̃
3
]
− γ

2

d

dT

[{
ε1a
−1b3

}{
ε2ã
−1b̃3

}
+ 3 {P1ab}

{
P2ãb̃

}]
− γ′

2

d

dT

[(
−ε1a−2 + 3P1b

−2) ab3 (−ε2ã−2 + 3P2b̃
−2
)
ãb̃3
]
. (B.20)
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Differentiating the equations for the metric factors allows us to substitute the derivatives

of the parts written within curly brackets as follows:

γ
d

dT
{
ε1a
−1b3

}
= γ′

d

dT
[(
−ε1a−2 + 3P1b

−2) ab3]− 2ãã′, (B.21)

γ
d

dT
{P1ab} = −γ′ d

dT
[(
−ε1a−2 + 3P1b

−2) ab3]+ 2b̃b̃′, (B.22)

γ
d

dT

{
ε2ã
−1b̃3

}
= γ′

d

dT

[(
−ε2ã−2 + 3P2b̃

−2
)
ãb̃3
]
− 2aa′, (B.23)

γ
d

dT

{
P2ãb̃

}
= −γ′ d

dT

[(
−ε2ã−2 + 3P2b̃

−2
)
ãb̃3
]

+ 2bb′, (B.24)

where a prime means differentiation w.r.t. T (except in the case of γ′). This leads to

dP
dT

=
d

dT

[
P1ab

3 + P2ãb̃
3
]

+ ε1a
′b3 + ε2ã

′b̃3 − 3P1ab
2b′ − 3P2ãb̃

2b̃′

= P ′1ab
3 + (ε1 + P1)a

′b3 + P ′2ãb̃
3 + (ε2 + P2)ã

′b̃3

=
dP1

dT1

dT1
dT

ab3 + T1
dP1

dT1
a′b3 +

dP2

dT2

dT2
dT

ãb̃3 + T2
dP2

dT2
ã′b̃3

= s1b
3

(
dT1
dT

a+ T1a
′
)

+ s2b̃
3

(
dT2
dT

ã+ T2ã
′
)
. (B.25)

The two expressions within parentheses in the last line are both dT /dT = 1, which com-

pletes the proof: dP/dT = S.

C Low and high temperature behavior of the equilibrium solution for

conformal subsystems

In this appendix we collect some formulae that allows one to derive analytically the behavior

of the equilibrium solution for conformal subsystems (with arbitrary n1, n2) at low and

high temperatures, or, equivalently, small and large coupling γ, in the case r = −γ′/γ > 1

such that solutions exist for all values of the physical temperature T . Moreover, we show

how conformality in the limit of large γT 4 comes about.

For small γT 4, a power series expansion of the solutions to the set of equations (3.20)

can be easily obtained. The leading terms in the metric coefficients are

a2 = 1− 3n2γT 4 + (12r − 27)n1n2(γT 4)2 +O
(
(γT 4)3

)
ã2 = 1− 3n1γT 4 + (12r − 27)n1n2(γT 4)2 +O

(
(γT 4)3

)
b2 = 1 + n2γT 4 + (12r + 5)n1n2(γT 4)2 +O

(
(γT 4)3

)
b̃2 = 1 + n1γT 4 + (12r + 5)n1n2(γT 4)2 +O

(
(γT 4)3

)
(C.1)

and in the effective lightcone velocities:

v = a/b = 1− 2n2γT 4 − 16n1n2(γT 4)2 +O
(
(γT 4)3

)
ṽ = ã/b̃ = 1− 2n1γT 4 − 16n1n2(γT 4)2 +O

(
(γT 4)3

)
(C.2)

(in the latter the dependence on r first shows up at third order).
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As discussed in section 3.3, the lightcone velocities asymptote to finite values v∞, ṽ∞ for

large γT 4, provided r > 1. These values are obtained by solving the sixth-order algebraic

equations (3.28), which reduces to a quadratic equation with solution (3.27) when n1 = n2.

The full, nonperturbative equation determining the lightcone velocities as a function

of γT 4 is given by (3.22) and (3.23) which were obtained by solving first the quadratic

equations for b2 and b̃2 that are implied by (3.20). Using (3.22) and (3.23) in the relations

for b2 and b̃2 one finds

a4 ≡ b4v4 =
3 + ṽ2

v(1− ṽ2)
n1γT 4,

ã4 ≡ b̃4ṽ4 =
3 + v2

ṽ(1− v2)
n2γT 4. (C.3)

Moreover, one can derive the simple identity

b̃2

b2
=

3 + v2

3 + ṽ2
. (C.4)

At small γT 4, all metric coefficients as well as v and ṽ tend to unity, with 1 − v2

and 1 − ṽ2 proportional to γT 4. As one can check easily, (C.3) confirms the first-order

coefficients in (C.2).

At large γT 4, where v and ṽ approach nonvanishing values v∞ and ṽ∞ below unity,

(C.3) implies that the metric coefficients a, ã, b, b̃ grow linearly with physical temperature

T . Since the effective temperatures of the subsystems are given by T1 = T /a and T2 = T /ã,

this means that they saturate at finite values proportional to γ−1/4,

γT 4 →∞ ⇒ T1 →
(

3 + ṽ2∞
v∞(1− ṽ2∞)

n1γ

)−1/4
, T2 →

(
3 + v2∞

ṽ∞(1− v2∞)
n2γ

)−1/4
. (C.5)

This behavior of the metric coefficients, together with saturation of tµν and t̃µν , implies

that at large T the coupling rules (2.16) become

gµν ≈ γ g(B)
µρ t̃

ρσg(B)
σν

√
−g̃√
−g(B)

+ γ′ g(B)
ρσ t̃

ρσg(B)
µν

√
−g̃√
−g(B)

,

g̃µν ≈ γ g(B)
µρ t

ρσg(B)
σν

√
−g√
−g(B)

+ γ′ g(B)
ρσ t

ρσg(B)
µν

√
−g√
−g(B)

. (C.6)

Hence, for conformal subsystems

tµν

(
γ g(B)

µρ t̃
ρσg(B)

σν

√
−g̃√
−g(B)

+ γ′ g(B)
ρσ t̃

ρσg(B)
µν

√
−g̃√
−g(B)

)
≈ tµνgµν = 0, (C.7)

or, equivalently,

t̃µν

(
γ g(B)

µρ t
ρσg(B)

σν

√
−g√
−g(B)

+ γ′ g(B)
ρσ t

ρσg(B)
µν

√
−g√
−g(B)

)
≈ t̃µνgµν = 0, (C.8)
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so that the pure trace terms in the full energy-momentum tensor Tµν proportional to δµν
become small compared T 4, ∆K/T 4 ≈ 0. Hence, at large T ,

Tµµ/T 4 ≈ (tµµ
√
−g + t̃µµ

√
−g̃)/T 4 = 0. (C.9)

From the full solution we in fact find that Tµµ/T 4 ∼ γ−1/2T −2.
Note also that Tµν should be interpreted as the non-anomalous part of the full energy-

momentum tensor which is locally conserved by itself. (In flat background, the anomalous

contribution vanishes.) Therefore, indeed in the limit γT 4 → ∞ the full system becomes

conformal provided each system is conformal individually. As a corollary, the fluctuations

of the full system in the limit T → ∞ with γ and γ′ fixed will behave as that of a

conformal system.

D A new kind of second-order phase transition and its critical exponent

In this section we analyze further the second-order phase transition that occurs at a par-

ticular value of r = −γ′/γ and derive the value of the critical exponent α in the specific

heat of the full system,

CV = T ∂S/∂T ∼ |T − Tc|−α (D.1)

when T → Tc, for the case of two conformal subsystems (3.17) where S is given by (3.18).

Let us first study the simplest case of identical subsystems, n1 = n2 = n, where we

can equate17 v = ṽ. In place of (3.22) and (3.23) we then have the simpler relation

nγT 4 =
v5(1− v2)(3 + v2)

[3 + v4 − 3r(1− v2)2]2
(D.2)

which is plotted in figure 15 for the value of r where the second-order phase transition

occurs and two values nearby in the crossover and in the first-order regime. Note that

in this plot only the part connected to v = 1 (corresponding to γT 4 = 0) is physically

realised; increasing γT 4 from zero to infinity lowers v to a finite limiting value given by

the zero of [3 + v4 − 3r(1− v2)2] which we have given in (3.27).

For r > rc, T 4 is a monotonic function of v between v∞ and 1, whereas for r < rc it

has multiple extrema determined by the dT 4/dv = 0. This equation can be written as

v8 − 2v6 + 36v4 + 42v2 − 45

3 (v2 − 1)2 (v4 − 10v2 − 15)
= r. (D.3)

The maximum of r(v) for 0 < v < 1 determines the critical value rc beyond which no

extrema of T 4(v) occur. This is given by

dr

dv
=

4v
(
v2 + 3

) (
5v8 + 20v6 − 202v4 − 60v2 + 45

)
3 (1− v2)3 (v4 − 10v2 − 15)2

= 0. (D.4)

17It is a priori not excluded that there are solutions v 6= ṽ despite having set n1 = n2. Indeed, such a

spontaneous symmetry breaking happens in the region γ < 0 such that the broken phase has lower free

energy. However, this region is unphysical in that the effective lightcone velocity of the subsystems can

be larger than the speed of light in the physical Minkowski space. We have checked numerically that such

symmetry breaking does not occur in the case γ > 0.
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Figure 15. The relation between γT 4 and v = a/b (for n1 = n2) at the critical value r = rc
(full line) with the critical point indicated by a black dot on top of it. The dotted and dashed lines

correspond to a crossover situation with r = 1.1rc and a first-order phase transition with r = 0.95rc,

respectively.

The bi-quartic polynomial factor in the numerator has a single real root in the range

0 < v < 1. It can be given in closed form and reads

v2c

∣∣∣
n1=n2

=
1

5

(
2

√
85 + 10

√
15− 5− 4

√
15

)
≈ 0.35097, (D.5)

and thus

rc

∣∣∣
n1=n2

=
1

540

(
195 + 43

√
15 +

√
30
(

4082− 557
√

15
))

= 1.114509 . . . , (D.6)

which together inserted in (D.2) yield nγT 4
c ≈ 0.0539768.

The critical exponent α in the specific heat (D.1) can now be inferred from the simple

relationship (3.18) between entropy and effective lightcone velocities. In the vicinity of the

critical point we have, for n1 = n2,

|S − Sc| ∼ 24nT 3
c v
−4
c |v − vc|. (D.7)

As we have seen, the critical point is determined by the simultaneous vanishing of the first

and second derivatives of T 4 as given by (D.2) with respect to v. Hence,

|T 4 − T 4
c | ∼ 4T 3

c |T − Tc| ∼ |v − vc|3 (D.8)

up to some constant prefactor, and thus

|S − Sc| ∼ |T − Tc|1/3, CV ∼ |T − Tc|−2/3. (D.9)

In the case of two conformal systems with n1 6= n2, the critical parameters can no

longer be obtained in closed form. However, one can show that the critical exponent α is

independent of n2/n1 and only the values of rc and Tc change.
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In this case, one has to solve the two equations (3.22) and (3.23) numerically, which

gives functions v = v(T ) and ṽ = ṽ(T ). For sufficiently large values of r, both functions

are single-valued; phase transitions occur when these functions develop infinite tangents.

Combining (3.22) and (3.23), one finds that

n2
n1

=
ṽ5(1− v2)(3 + v2)

v5(1− ṽ2)(3 + ṽ2)
≡ ρ(v, ṽ) = const. (D.10)

Because

0 =
∂ρ

∂v

dv

dT
+
∂ρ

∂ṽ

dṽ

dT
, (D.11)

the zeros of dT /dv and dT /dṽ have to occur simultaneously in general. A critical endpoint

with second-order phase transition appears when two zeros of dT /dv (or dT /dṽ) merge as

r → rc from below, such that also d2T /dv2 vanishes and a saddle point (in one dimension)

arises. In principle, such a saddle point could have the next two higher derivatives vanish,

too, which would change the critical exponent α to −4/5. However, with the one additional

free parameter n2/n1 there is not enough freedom for a corresponding fine-tuning.

By exploring the solutions numerically, we have found that the situation analyzed above

for n1 = n2 is indeed generic. Also for any n2/n1 6= 1, there is a range 1 < r < rc where

there is a first-order phase transition at a finite value of γ1/4T , a second-order transition

at r = rc, and an analytic crossover for r > rc. In fact, rc depends rather weakly on n2/n1;

it rises from its minimal value (D.6) to ≈ 1.119 for n2/n1 = 0.1 or 10, and can be shown

always to remain below 5
4 .
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