AIDA-2020-SLIDE-2018-019

AIDA-2020

Advanced European Infrastructures for Detectors at Accelerators

Presentation

Rare earth doped silica-based optical fibres for high energy physics detectors

Moretti, F. (University of Milano-Bicocca,)

26 September 2016

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package **14: Infrastructure for advanced calorimeters**.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site http://aida2020.web.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=AIDA-2020-SLIDE-2018-019

Copyright © CERN for the benefit of the AIDA-2020 Consortium

Rare earth doped silica-based optical fibres for high energy physics detectors

A. Vedda¹, N. Chiodini¹, F. Cova¹, M. Fasoli¹, <u>F. Moretti¹</u>, K. Pauwels², T. Tabarelli de Fatis², E. Auffray³, M. Lucchini³, E. Bourret-Courchesne⁴, S. Baccaro⁵, A. Cemmi⁵

Department of Materials Science, University of Milano-Bicocca, Italy
 Department of Physics, University of Milano-Bicocca, Italy
 CERN, Switzerland
 Materials Science Division, Lawrence Berkeley National Labs. USA
 ENEA UTTMAT, Italy

SiO₂:Ce fibres for medical applications

Real time in-vivo dosimetry is a new challenging methodology in the medical field

 It is necessary in order to ensure beam quality of new medical irradiation systems and to precisely control dose levels to patients

 Silica based optical fibre radioluminescence (RL) dosimeters are promising systems for this purpose

Chiodini et al. APL 81, 4374 (2002)

SiO₂:Ce fibres for medical applications

Error < 1% below Cerenkov threshold

High temporal resolution (luminescence decay time of Ce³⁺ radiative transition: 60 ns)

Fibres in HEP new calorimeters

Next generation of detectors in HEP experiments will require high spatial resolution and very good timing performaces: some proposed calorimeters are based on scintillating optical fibres

Can we use SiO_2 :RE (RE= Ce, Pr) optical fibres also in HEP?

SiO₂:Ce, Pr samples and characterization

Samples: sol-gel SiO₂ doped with 500 or 125 ppm Ce or Pr in form of

-- preforms

-- optical fibres (Ce only):

2 geometries core diameter: 600 μm or 365 μm cladding: F-doped silica and polymeric, respectively

Characterization: Radio-luminescence (RL) Optical Absorption (OA) and radiation hardness Light attenuation Light Yield and scintillation decay

SiO₂:Ce, Pr preforms, Radio-Luminescence RL

RL spectra of SiO_2 : Ce, or Pr preforms are typical for the two rare earths Non-homogeneous broadening of Pr^{3+} 4f-4f transitions is clearly evident

SiO₂:Ce, Pr preforms, optical absorption (OA) and X-ray irradiation

Ce³⁺ and Ce⁴⁺ absorptions at 3.9 and 4.9 eV, respectively.

X-ray irradiation is the cause of evident, though weak (1.5 cm⁻¹), absorption at about 2.4 eV (516 nm)

Pr³⁺ related absorptions above 5 eV and 2.7 eV, respectively.

X-ray irradiation is the cause of evident broad absorption at about 3.3 eV (375 nm)

SiO₂:Ce, Pr preforms, optical absorption (OA) and X-ray irradiation: recovery with time at RT

For both Ce- and Pr-doped SiO₂ preforms time reduces the presence of induced absorptions. Recovery of Ce-doped preform is more evident.

SiO₂:Ce, Pr preforms, optical absorption (OA) and X-ray irradiation: thermal recovery

For both Ce- and Pr-doped SiO_2 preforms heating up to 650 °C allows to eliminate the radiation induced absorptions.

Thermal treatment duration 15 min each.

SiO₂:Ce preforms, Light yield and scintillation decay

Light yield @ 59 keV (²⁴¹Am)

Scintillation decay time (source ²²Na)

SiO₂:Ce preform LY= 2000 Ph/MeV

Main scintillation decay time 100 ns

No scintillation signal from Pr doped preform

SiO₂:Ce fibres: attenuation set-up (@CERN)

SiO₂:Ce fibres: attenuation VS ⁶⁰Co y-ray dose

Excitation diode wavelength 365 nm, not well matched with Ce³⁺ excitation band

Due to the presence of Ce⁴⁺, these glasses give rise to weak photoluminescence

Attenuation length (in cm) for different ⁶⁰Co cumulative doses imparted to the fibres. These values are rather qualitative

fibre	0 Gy	1 Gy	2 Gy	6.6 Gy	10.13 Gy	14.7 Gy	22 Gy	1 kGy
F-doped cladding	65	34	43	24	27	22	15	6
Polymeric cladding	58	56	53	41	35	26	30	5

SiO₂:Ce fibre: attenuation and recovery at RT

~50 cm

Is there a further pronounced recovery on a longer timescale after 1 kGy irradiation?

Conclusions and perspectives

- Fibres showed promising results for applications in High Energy Physics, they are, in fact, rather bright and their luminescence decay time is fast. In perspective they could be obtained in large volume at a low price
- At the moment, the fibres seem to be relatively easily damaged by ionizing radiation, though the radiation induced optical absorption band tend to recover with time.
- Further studies are needed in order to increase radiation hardness and light yield.

Acknowledgements

H2020 Marie Sklodowska-Curie RISE

Advanced European Infrastructures for Detectors at Accelerators

Thank you for your attention!

SiO₂:Ce fibre: Optical absorption

Togliere parte A

Three different fibre lengths (from 16.8 cm up to 26 cm)

- Absorptions below 380 nm are due to Ce3+ and Ce4+ optical absorption: their structuration is due to luminescence phenomena and system saturation.
- Broad bands above 550 nm are of unclear origin, and are barely visible also on preforms