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1 Introduction

In this paper we consider the supercurrent multiplet when coupled to supergravity, using
superconformal and superspace techniques. The results presented here are an extension of
a previous investigation of the same authors [1]. In rigid supersymmetry the supercurrent
multiplet has a certain amount of ambiguity due to the possibility of improvement terms.
These redefinitions modify the conservation law of a supercurrent Jαα̇ expressed through its
supercurrent divergence [2–7]

D
α̇
Jαα̇ ≈ DαY + ωα , (1.1)

where Y , ωα are chiral superfields and moreover ωα satisfies a reality condition Dαω
α =

Dα̇ω
α̇. In linearized supergravity [3, 6] the current couples to the Einstein multiplet Eαα̇:1

Eαα̇ ≈ −κ2Jαα̇ , (1.2)

together with a Ward identity, which (without a gauge multiplet) is

old minimal supergravity: D
α̇
Eαα̇ =DαR ,

new minimal supergravity: D
α̇
Eαα̇ =WL

α , (1.3)

where R is a scalar chiral multiplet and WL
α is a spinor chiral multiplet. The trace equation

becomes in the two formulations

R ≈ −κ2Y , WL
α ≈ −κ2ωα . (1.4)

The equations (1.2) and (1.4) are the supergravity extensions of the Einstein equation and
its trace

Gµν ≈ κ2Tµν ,

R ≈− κ2Tµ
µ , (1.5)

Equations (1.3) also contain the Einstein tensor identity (strong equation =):

∇µGµν = 0 , (1.6)

which then implies the ‘weak’ equation (≈)

∇µTµν ≈ 0 , (1.7)

The latter is the covariant conservation law of the stress tensor, which holds when the
matter field equations are imposed. Note that in the superconformal supergravity context
the Planck constant is hidden in the value of the (first component of the) compensating
multiplet, which is a chiral superfield in old minimal supergravity and a linear multiplet in
new minimal supergravity

old minimal supergravity: Dα̇X0 = 0 , X0 �
= κ−1

1We will indicate equations valid modulo equations of motion by ≈.
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new minimal supergravity: T (L) = T̄ (L) = 0 , L
�
= κ−2 , (1.8)

where we denote by
�
= equations due to the (super)conformal gauge fixing. T is the super-

conformal version of the superspace operator D
2

[8,9], which defines a chiral multiplet from
another multiplet, and T defines an antichiral multiplet.

1.1 Old minimal Superconformal formulation: results

It has been speculated in the literature that the gravity analogue of the conservation law
(1.1) where both Y and ωα are present corresponds to a new type of supercurrent with
(16+16) bosonic + fermionic degrees of freedom, while the two minimal supergravities (1.3)
have (12 + 12) degrees of freedom and the maximal non-minimal supergravity has (20 + 20)
degrees of freedom [4, 6, 7]. In the present paper we will argue that the conservation law
when both Y and ωα are not vanishing is perfectly possible whenever an additional gauge
symmetry acts on the chiral compensating multiplet X0. This just happens in old minimal
supergravity when a Fayet– Iliopoulos (FI) term and a Kähler potential appear.

The basic Lagrangian we consider is

L =
[
N(XI , X̄I)eξV

]
D

+ [WαWα]F , {XI} = {X0, X i} , (1.9)

where ξ is the (dimensionless) FI constant. We will assume that the fields X i appear only
in the form

N(XI , X̄I) = X0X̄0Φ(Si, S̄i) , Si ≡ X i/X0 , (1.10)

Note that under FI U(1) gauge transformations

X0 → X0e−ξΛ , V → V + Λ + Λ̄ , Si inert, (1.11)

while under Kähler transformations

X0 → X0eΞ , Φ → Φe−Ξ−Ξ , W (S) → W (S)e−3Ξ , (1.12)

where we mention the transformation of the superpotential for completeness. We do not
further consider a superpotential in this paper. However, since in this paper we will confine
to an additive Φ such that

Φ = −3 + ΦM , (1.13)

where the first term corresponds to pure supergravity, the Kähler invariance will be lost.
Below, we will see that in the new minimal formulation, unlike the old minimal one, the
gravity-matter splitting preserves the Kähler invariance. See below (1.23), where the Kähler
invariance is evident.

The super-Einstein equations are obtained from the Lagrangian (1.9) by variation of the
auxiliary field Aµ (the gauge field of the U(1) R-symmetry of the superconformal algebra).
So the super-Einstein equation becomes2

1
4
iγµαα̇e

−1 δL
δAµ

= Eom,V
αα̇ (X0, V ) + Jαα̇(X0, V, Si) + EWαα̇ ≈ 0 , (1.14)

2We follow the conventions of [10], where the actions, transformations and field equations are given
explicitly. Some additional notation is introduced in [9].
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where we split the contributions according to (1.9) and further to (1.13), and we have

EWαα̇ = 4Wα̇Wα , Wα ≡ TDαV = −1
2
iλα , (1.15)

λα being the left-projected gaugino in the gauge multiplet.
We will prove a ‘strong identity’ (V , X0 arbitrary)

Dα̇Eom,V
αα̇ = (eξVX0)3Dα

[
e−3ξV T

(
eξV X̄0

)
(X0)2

]
+ 3ξX0eξV X̄0Wα . (1.16)

The superspace geometry that encodes the Ward identity in (1.16) was denominated ‘chirally
extended supergravity’ in [11]. Note that for ξ = 0 this becomes the Ward identity of [1].
Equation (1.16) has both terms as in (1.1) even if we are in old minimal supergravity. The
field equations coming from (1.14) have a contribution coming from the V and X0 field
equations (field equations for the auxiliary fields, respectively D and F 0)

1
2
D = DαWα = Dα̇W̄ α̇ ≈ −1

4
ξNeξV = −1

4
ξ(NG +NM)eξV ,

T (N0eξV ) ≈ 0 , (1.17)

where we have introduced

N = NG +NM , NG = −3X0X̄0 , NM = X0X̄0ΦM(Si, S̄i) , (1.18)

while

N0 ≡
∂N(X, X̄)

∂X0
= X̄0

(
Φ− Si ∂Φ

∂Si

)
= −3X̄0 +NM

0 , NM
0 = X̄0

(
ΦM − Si∂ΦM

∂Si

)
.

(1.19)
The second line in (1.17) gives the trace of the Einstein equations in de Sitter space as

described in section 4.2. Acting with Dα̇ on (1.15) using (1.17) we find

Dα̇EWαα̇ = −2WαD ≈ ξWα (NG +NM)eξV . (1.20)

From the field equation (1.14) we have

Dα̇Eom,V
αα̇ +Dα̇Jαα̇ +Dα̇EWαα̇ ≈ 0 . (1.21)

In this sum, the first term of (1.20) (with NG) cancels the last term in (1.16) and with the
second part of (1.17) we obtain

Dα̇Jαα̇ ≈ 1
3
(eξVX0)3Dα

[
e−3ξV T

(
eξVNM

0

)
(X0)2

]
− ξWαN

MeξV , (1.22)

which is the generalization of R ≈ −κ2Tµ
µ of general relativity. We understand the last term

in the context of electromagnetism in Appendix C.
Note that for conformally coupled (neutral) chiral multiplets NM

0 = 0 and the violation
of the superconformal symmetry comes only from the last terms due to the FI term.
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1.2 New minimal Superconformal formulation: results

In the new minimal formulation with neutral matter and FI term, the action is

Lnm =

[
3L ln

L

X0X̄0

]
D

+ [LK]D + ξ [LV ]D + [WαWα]F , (1.23)

where K is the matter Kähler potential

K(S, S̄) = −3 ln
(
−1

3
Φ(S, S̄)

)
. (1.24)

The relevant field equation is here the field equation of χα, the fermionic component of the
linear multiplet, which defines WL

α , WK
α and W nm,FI

α for the three first terms of (1.23)3

WL
α +WK

α +W nm,FI
α ≈ 0 ,

WL
α = 3TDα ln

L

X0X̄0
,

WK
α = TDαK = −1

2
iλα(K) ,

W nm,FI
α = ξWα , (1.25)

where λα(K) is the PLλ component of the real multiplet K.4 Clearly, χ does not appear in
the last term of (1.23).

The full Aµ field equation is split as

ELa + Ja + EWa ≈ 0 , (1.26)

where Ja is related to the part with the Kähler potential in (1.23) (the FI term does not
contribute). We will prove below the strong equations

Dα̇ELαα̇ = LWL
α , Dα̇EWαα̇ = −2WαD . (1.27)

The D field equation is now 2D + ξL ≈ 0, leaving us with

Dα̇Jαα̇ ≈ LWK
α , (1.28)

which is identical to the rigid equation for the supercurrent of the matter system.

In section 2 we will give a general proof of the strong equations (Ward identities) men-
tioned above, based on general rules of the transformations of field equations. We obtain
the higher θ components of the Einstein multiplet in section 3, and in section 4 we discuss
applications related to rigid supersymmetric curved backgrounds. We give an account of the

3e.g. WL
α is i times the covariant field equation for PLχ of the first term of (1.23), see Appendix A.

4The superfield WK
α is also the main ingredient in the construction of super-Kähler invariant actions

in [12] and in the new actions for broken supergravity, dubbed ‘Liberated supergravity’ in [13]. In these
papers, this superfield is used in the context of old minimal supergravity.

6



different auxiliary field formulations and related conformal compensators of N = 1 super-
gravity in section 5. We finish with a conclusion in Section 6. In Appendix A, we give some
information on the linear multiplet and the related fermionic chiral superfield. Supercon-
formal Ward identities are given in Appendix B. Appendix C explains an electromagnetic
analogue of the conservation law. In Appendix D we discuss the example where supergravity
with FI term is coupled to a charged chiral multiplet, and we consider also a nilpotent chiral
multiplet so that the model includes a Volkov–Akulov field.

2 Ward identities

2.1 General equation

As mentioned in the introduction, we obtain results by giving first Ward identities that are
of the form

Dα̇Eαα̇ = . . . , Eαα̇ = 1
4
iγaαα̇Ea , or Ea = 2iEαα̇(γa)

αα̇ , (2.1)

where Eαα̇ or, equivalently Ea, is defined by the field equation of Aµ in supergravity actions:
in general

Ea ≡ −
4

3
e−1eµa

δ

δAµ
S . (2.2)

In the notation where Θ(φi) indicates the covariantized field equation5 of the field φi, the
latter equation is written

Ea = −4

3
Θ(Aa) . (2.3)

The multiplet Ea has (Weyl,chiral) weights (3,0). The right-hand side of (2.1) should have
weights (7/2, 3/2). Other components of Ea are obtained by successive supersymmetry trans-
formations on this lowest component of the multiplet.

We will consider several actions, e.g. Som and define then Eom
a as the expression defined

by (2.2) when S = Som. But first we find general relations that do not depend on the choice
of action S.

The quantity in (2.1) is

Dα̇Eαα̇ = −1
4
i (γaδREa)α , (2.4)

where δR is defined by
δEa = ε̄PLδLEa + ε̄PRδREa . (2.5)

To find this, we use a method explained in [1, Appendix D], based upon earlier work in
e.g. [14, 15]. The covariant field equations satisfy Ward identities

δ(ε)φj Θ(φ)j = 0 . (2.6)

5Θ(φ)i ≡
→
δ S
δφi + non-covariant terms.
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We will use the formula that gives the symmetry transformation of covariant field equations

δ(ε)Θ(φi) = −

→∂δ(ε)φj
∂φi


cov

Θ(φ)j , (2.7)

where ‘cov’ refers to a covariantization of all spacetime derivatives and omission of terms
with undifferentiated gauge fields. The equation depends on which multiplets are taken in
the theory and on their transformation laws (see the sum over j in the right-hand side). E.g.
since Aµ does not appear in S-supersymmetry transformations of other fields, (2.7) with ε
replaced by the S-supersymmetry parameter η implies that (2.3) does not transform under
S-supersymmetry and therefore Θ(Aa) defines a superconformal primary.

We will consider this now for superconformal Q-supersymmetry, with6

the Weyl multiplet: {eaµ, ψµ, bµ, Aµ} .

chiral multiplets: {XI , ΩI , F I}.

a real vector multiplet: {V, ζ, H, Wa, λ, D}, which in Wess–Zumino (WZ) gauge is re-
duced to {Wµ, λ, D}.

a real linear multiplet: {L, aµν , χ} .

The supersymmetry transformation of the field equation of Aµ according to (2.7), with
φi replaced by Aµ, depends on the fields that have a term Aµε in their transformation. Such
terms are included in covariant derivatives. Considering all the fields mentioned above, we
find

δ(ε)Θ(Aa) = ε̄PR

[
−3

2
iΘ(ψ)a −

1√
2

iγa

(
XIΘ(Ω)I +

1

2
ΩIΘ(F )I

)
−3

2
γaζΘ(H)− 3

4
iζΘ(W )a +

3

4
γaλΘ(D)

]
+ h.c. . (2.8)

Combining this with (2.4) and (2.3), we find

Dα̇Eαα̇ =
[

1
2
γaΘ(ψ)a + 2

3

√
2XIΘ(Ω)I + 1

3

√
2ΩIΘ(F )I

−2iζΘ(H) + 1
4
γaζΘ(W )a + iλΘ(D)

]
α
. (2.9)

This expression can be rewritten upon use of the Ward identity (2.6) for S-supersymmetry,
see (B.9),

W (S) ≡ (δSφ
i) Θ(φ)i = 0 . (2.10)

Considering the mentioned multiplets, the left projection of this equation is

PLW (S) = PL

[
γaΘ(ψ)a +

√
2XI Θ(Ω)I − 2iζΘ(H) + 1

2
γaζΘ(W )a − 2iLΘ(χ)

]
. (2.11)

6The generalization to several real or linear multiplets is obvious, adding indices that are summed similar
to the sum over I for the chiral multiplets.
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Combining (2.9) and (2.11), we get

Dα̇Eαα̇ =
[

1
6

√
2
(
XIΘ(Ω)I + 2ΩIΘ(F )I

)
− iζΘ(H) + iλΘ(D) + iLΘ(χ)

]
α
. (2.12)

In Appendix A it is shown that the general equation (2.7) also implies that

W χ
α = iΘ(χ)α , Wα = −1

2
iλα , (2.13)

satisfy the same properties (chiral primaries with real DαWα). Therefore, we still rewrite
this equation as

Dα̇Eαα̇ = 1
6

√
2
[
XIΘ(Ω)Iα + 2ΩI

αΘ(F )I
]
− iζαΘ(H)− 2WαΘ(D) +W χ

α L . (2.14)

The upper indication χ for W χ
α will later be used to refer to the χ field equation of

particular actions, e.g. SL for the pure supergravity new minimal model: (2.42). The term
with ζαΘ(H) is absent in WZ gauge. The last two terms of (2.14) are of the form of the
second term in (1.1) when Θ(D)A is a constant (FI constant) or L is a constant (conformal

gauge choice L
�
= κ−2).

2.2 Old minimal pure supergravity

We first consider pure supergravity with only the compensating multiplet X0. Thus we only
have the terms with Θ(Ω)0 and Θ(F )0 in the right-hand side of (2.14).

When we apply (2.7) for φi = F I we get

δ(ε)Θ(F )I = − 1√
2
ε̄PLΘ(Ω)I . (2.15)

Therefore we have

δ(ε)
Θ(F )0

(X0)2
= − 1√

2(X0)3

[
X0Θ(Ω)0 + 2Ω0Θ(F )0

]
, (2.16)

The quantity in the left-hand side has (Weyl,chiral) weights (0,0). Applying (2.7) for S-
supersymmetry for φi = F I shows that Θ(F )I is S-supersymmetry invariant since F I does
not appear in the S-transformations of the fields. Therefore Dα is well defined on this
quantity and we can write (2.14) as

Dα̇Eom
αα̇ = −1

3
(X0)3Dα

Θ(F )0

(X0)2
, (2.17)

where ‘om’ stands for pure ‘old minimal’ supergravity. We can apply it to the action

Som =
[
−3X0X̄0

]
D
, (2.18)
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where Θ(F )0 = −3F̄ 0 = −3T (X̄0). With the definition

R ≡ 1

X0
T (X̄0) , (2.19)

we thus get the equation in the form presented in [1]:

Dα̇Eom
αα̇ = (X0)3Dα

R
X0

. (2.20)

The value of Eom
a is in this case

Eom
a = −8X0X̄0Aa+4iX0∂aX̄

0̄−4iX̄ 0̄∂aX
0 +2iΩ̄0PLγaΩ

0̄ +2
√

2iψ̄a

(
PLΩ0X 0̄ − PRΩ0̄X0

)
,

(2.21)
whose flat limit is

Eom
αα̇ |flat = −4iX̄ 0̄∂αα̇X

0 + 4iX 0̄∂αα̇X̄
0 − 2(DαX

0)(Dα̇X̄
0̄) . (2.22)

2.3 Old minimum supergravity with a FI term

We now apply the above for the case when X0 transforms under an Abelian gauge group
gauged by a real multiplet V . The supergauge transformations are given in (1.11), where
the chiral superfield Λ reduces in the WZ gauge to Λ = −1

2
iθ plus contributions to the

supersymmetry (see e.g. (2.28) in [16]). The θ transformation is then a phase transformation
on the compensating scalar with gauge field Wµ.

δ(θ)X0 = 1
2
iξθX0 , δWµ = ∂µθ . (2.23)

The action that provides the FI term is the covariantization of (2.18), and is indicated by
‘om,V’:

Som,V =
[
−3X0eξV X̄0

]
D
. (2.24)

This action leads to covariant field equations

Θ(F 0)V = −3T (eξV X̄0) , Θ(H)V = 3
2
ξX0T (eξV X̄0) , (2.25)

in agreement with the Ward identity for the transformation with parameter the upper com-
plex component of Λ:

1
2
Θ(H)− ξ X0 Θ(F0) = 0 . (2.26)

Since we still have only one chiral multiplet, the rewriting of the first two terms of (2.14) in
(2.17) is still valid. The field equation for the auxiliary field D of the gauge multiplet in WZ
gauge gives the moment map, P , and the supergauge-invariant form is

Θ(D)V = −P , P = 3
2
ξX0eξV X̄0 . (2.27)

10



Therefore we get

Dα̇Eom,V
αα̇ = (X0)3Dα

[
T
(
eξV X̄0

)
(X0)2

]
+ 2WαP − 3

2
iξζαX

0T (eξV X̄0) . (2.28)

Since e3ξVDαe−3ξV = −3
2
iξζα, the last term can be absorbed in the first one

Dα̇Eom,V
αα̇ = (eξVX0)3Dα

[
e−3ξV T

(
eξV X̄0

)
(X0)2

]
+ 2WαP . (2.29)

When using this in WZ gauge, the exponentials of V do not appear, and the equation
simplifies to (we denote the Ea field now as Eom,FI

a )

Dα̇Eom,FI
αα̇ = (X0)3Dα

R
X0

+ 2WαP . (2.30)

But one should take into account that the supersymmetry transformations of a chiral mul-
tiplet are modified, i.e.

δ(ε)F̄ 0 = . . .− 1
2
iε̄ξPLλX̄

0 , (2.31)

and covariant spacetime derivatives get a Wµ connection. Thus the meaning of supercovari-
ant derivatives Dα is different, and (2.31) induces an extra term

(X0)3Dα
R
X0

= (X0)3Dα
F̄ 0

(X0)2
= . . .− 1

2
iξX0X̄0PLλ = . . .+ 2

3
PWα . (2.32)

The latter replaces the contribution in (2.29) where the derivatives Dα and T act on V .

We can write a supergauge-invariant version of (2.22)

Eom,V
αα̇

∣∣∣
flat

=2eξVX0Dαe−ξVDα̇eξV X̄0 − 2eξV X̄0Dα̇e−ξVDαeξVX0

− 2e−ξVDα(eξVX0)Dα̇(eξV X̄0) . (2.33)

This expression makes no sense in conformal language since e.g. Dα can only be applied on
a multiplet with c = −w. Thus this expression is only applicable to the rigid supersymmetry
limit. Therefore we write Dα and not Dα, ... But we can check the coefficient of the last

term in (2.29) by using this flat limit. Indeed, D
α̇

on (2.33) gives a term7

D
α̇Eom,V

αα̇

∣∣∣
flat

= . . .+ 8
3
WαP . (2.34)

This contains the contributions of the last term of (2.29) and of (2.32).

7The conventions in Appendix A of [1] imply T = D̄2 = −D̄α̇D̄α̇ and we neglect all terms that have less
than 3 derivatives on V .
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In WZ gauge, the field equation of Aµ is the covariantized version of (2.21), which implies
that there is an extra term:

Eom,FI
a =− 8X0X̄0Aa + 4iX0∂̂aX̄

0 − 4iX̄0∂̂aX
0 + 2iΩ̄0PLγaΩ

0̄

+ 2
√

2iψ̄a

(
PLΩ0X 0̄ − PRΩ0̄X0

)
=Eom

a − 8
3
WaP , (2.35)

where ∂̂aX
0 = ∂aX

0 − 1
2
iξWaX

0. The transformation of Eom,FI
a contains then the transfor-

mation of Wa

δextra(ε)Eom,FI
a = −8

3
Pδ(ε)Wa = 4

3
P ε̄γaλ , (2.36)

which leads to the same term (2.34).

2.4 Gauge kinetic terms

Now we consider
SW = −1

4

[
λ̄PLλ

]
F

= [WαWα]F , (2.37)

which added to (2.24) gives the off-shell version of the Freedman model [17,11]. The Aµ field
equation of this action leads to

EWa = iλ̄γ∗γaλ , EWαα̇ = λα̇λα = 4Wα̇Wα . (2.38)

Here there are no chiral multiplets, and the only contribution in the right-hand side of (2.14)
comes from

ΘW (D) = D = iDαλα = −2DαWα . (2.39)

Hence the equation is

Dα̇EWαα̇ = −2WαD , (2.40)

which can easily be checked from the supersymmetry transformation of λ. For the full model
with FI term and kinetic terms, we thus get

Dα̇
(
Eom,V + EW

)
αα̇

= (eξVX0)3Dα

[
e−3ξV T

(
eξV X̄0

)
(X0)2

]
+ 2Wα(P −D) . (2.41)

where the last factor is the D-field equation.
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2.5 New minimal pure supergravity

Here we have only a real linear multiplet L (and the chiral multiplet X0, which, however,
does not appear in the action):

SL =

[
3L ln

L

X0X̄0

]
D

=
3

2

∫
d4x e

[
−2cL+

1

2L

(
vav

a +DaLDaL+ χ̄ /Dχ
)

+
1

4L3
χ̄PLχχ̄PRχ

+
1

2
iψ̄µγ

µγ∗

(
/Dχ+

1

2L

(
iγ∗/v − /DL

)
χ+

1

2L2
χχ̄χ

)]
+ εµνρσ(2Aµ −

1

L
vµ −

1

4L2
iχ̄γ∗γµχ+

1

2L
ψ̄µχ)∂νaρσ , (2.42)

using fields and notations as in Appendix A. The Aµ field equation gives now

ELa = −4va +
3

2L
χ̄γ∗γaχ . (2.43)

According to (2.14), this satisfies

Dα̇ELαα̇ = LWL
α , (2.44)

where now we use for Θ(χ) the field equation for the action (2.42):

WL
α = iΘ(χ)L , Θ(χ)L =

3

2L
PL /Dχ+

3

4L3
PLχχ̄PRχ−

3

4L2
i/vPRχ . (2.45)

In Poincaré gauge, L = κ−2 and χ = 0, this is

WL
α

�
= −1

2
PLγ · R̂′(Q) , R̂′µν(Q) = 2

(
∂[µ −

3

2
iA[µγ∗ +

1

4
ωab[µγab +

1

4
iκ2γ∗γ[µ/v

)
ψν] ,

(2.46)
which agrees with what is found in [18,19].

2.6 The FI term in new minimal supergravity

The FI term in new minimal supergravity is

Snm,FI = ξ [LV ]D . (2.47)

Aµ does not appear in this action. Hence (2.14) reduces here to

0 = −2WαΘnm,FI(D) +W nm,FI
α L . (2.48)

Indeed, Θnm,FI(D) = 1
2
ξL and W nm,FI

α = −ξ Wα. The FI term in new minimal does therefore
not contribute to Ea and this is consistent with the conservation equations.
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We can consider then the total action

Snm,total = SL + Snm,FI + SW . (2.49)

The conservation equation is then

Dα̇
(
EL + EW

)
αα̇

= LWL
α − 2DWα , (2.50)

Adding the zero result (2.48) and using (2.39) this is

Dα̇
(
EL + EW

)
αα̇

= LW nm,total
α − 2WαΘnm,total(D) ,

W nm,total
α = WL

α + ξ Wα , Θnm,total(D) = D + 1
2
ξL , (2.51)

and thus the right-hand side also vanishes by the field equations.

3 Components of the Einstein curvature multiplet

The Einstein current multiplet is defined by the field equation of Aµ, the U(1) gauge field in
the Weyl multiplet, see (2.2) or (2.3). This is the first component of a real multiplet since it
is a superconformal primary (it does not transform under S-supersymmetry). Then all other
components are defined by the transformations of this first component. These components
are denoted as

{Ca, Za, Ha, Bba, Λa, Da} , (3.1)

where the fermions Za and Λa are Majorana spinors, while from the bosons only Ha is
complex and the others are real.

We omit now the overall coefficient in (2.3), and start from Ca = Θ(A)a. We then use
(2.7) to derive the further components. E.g. (2.8) determines the Za component. Sometimes
we use Ward identities (2.6) for several symmetries to rewrite expressions. In (6.3) of [1] we
obtained this result for the coupling of the Weyl multiplet to chiral multiplets. Now we will
add a real multiplet and a linear multiplet as in section 2.1.

The relevant components are then

Ca =Θ(A)a ,

Za =3Θ(ψ)a − γaγ ·Θ(ψ) +
1√
2
γa
(
ΩIΘ(F )I + h.c.

)
− 3

2
iγ∗γaλ

AΘ(D)A − 2iγ∗γaΘ(χ)L ,

Ha =2iX̄ ĪDaΘ(F )Ī − 4iΘ(F )ĪDaX̄ Ī + 3iλ̄AγaPLΘ(λ)A + 3iχ̄γaPRΘ(χ) ,

Bba =3Θ(e)ab − ηabΘ(e)c
c + 1

2
εabcdDcΘ(A)d − 1

2
ηab
(
Ω̄IΘ(Ω)I + 2F IΘ(F )I + h.c.

)
+ ηabD

AΘ(D)A + 3iF̃ab
AΘ(D)A + 3

2
λ̄AγabΘ(λ)A

− 3LΘ(a)ba − 2ηabLΘ(L)− χ̄Θ(χ)− 3
2
χ̄γabΘ(χ) ,

Λa = 2γbD[aZb] − 3
√

2
(
Θ(Ω)IDaXI + ΩIDaΘ(F )I + h.c.

)
+ 3

2

(
1
2
γ · FA − iγ∗D

A
)
γaΘ(λ)A + 3

2
γbγaλ

AΘ(W )bA
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+ 3
2
iγ∗γ

bγaλ
ADbΘ(D)A − 6iγ∗Da

(
λAΘ(D)A

)
− 3

2

(
/v − iγ∗ /DL

)
γaΘ(χ)− 3

2
iγ∗γaχΘ(L)− 3

4
iγ∗γbcγaχΘ(a)bc − 6iγ∗Da (Θ(χ)L) ,

Da =− 2DbD[bΘ(A)a] − 2D[aDb]Θ(A)b

− 3
2
i
(

2DaXIΘ(X)I − Ω̄I
↔
DaΘ(Ω)I − 2F IDaΘ(F )I − h.c.

)
+ Θ(W )aAD

A + 3
2
iΘ̄(λ)Aγ∗γa

b
↔
DbλA

+ 3vaΘ(L) + 3vbΘ(a)ba + 3iDbLΘ̃(a)ba − 3
2
iΘ̄(χ)γ∗γa

b
↔
Dbχ . (3.2)

We will further restrict ourselves to the components up to Bab arguing that the higher
components follow from the constraint that the multiplet is a generalization of a linear
multiplet, i.e.

Dβ̇ 1

L
Dα̇Eαα̇ = 0 . (3.3)

In the Poincaré limit, L is a constant, and this equation reduces to D̄2Eαα̇ = 0. The
constraint (3.3) applies also to the gauge multiplet, replacing 1

L
with 1

D
.

3.1 Components in old minimal formulation with FI term

The values of the covariantized field equations depend on the considered action. For the
action in section 2.3 in WZ gauge we have

Θ(A)a =− 3iX0DaX̄ 0̄ + 3iX̄ 0̄DaX0 − 3
2
iΩ0PLγaΩ

0̄ ,

Θ(ψ)a = . . .+ 3
4
iξγa

(
X0PL − X̄ 0̄PR

)
λ ,

Θ(e)ab = . . .+ 3
2
ηabξ

[
X0X̄0D +

√
2iλ̄
(
PRΩ0̄X0 − PLΩ0X 0̄

)]
,

Θ(F )0 =− 3F̄ 0̄ ,

Θ(Ω)0 =3PL /DΩ0̄ − 3
2

√
2iξX̄ 0̄PLλ ,

Θ(X)0 =− 32cX̄ 0̄ + 3
2
ξ
(
−X̄ 0̄D +

√
2iλ̄PRΩ0̄

)
,

Θ(D) =− P = −3
2
ξX0X̄ 0̄ ,

Θ(λ) =3
2

√
2iξ
(
PRΩ0̄X0 − PLΩ0X 0̄

)
,

Θ(W )a =3
2
iξ
(
X̄ 0̄DaX0 −X0DaX̄ 0̄ + Ω̄0γaPRΩ0̄

)
, (3.4)

where the . . . are the expressions in (6.5) of [1], and the covariant derivatives also include
the connection for (2.23) with gauge field Wµ.

We consider the conformal gauge

Conformal gauge old minimal : X0
∣∣
�

= κ−1 , Ω0
∣∣
�

= 0 , bµ = 0 , (3.5)
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after which the conformal U(1) symmetries mix with the θ gauge symmetries, λT = −1
2
ξθ,

and as such the fields transform with a different weight under the remaining gauge symme-
tries, as in (D.4) in Appendix D. Correspondingly, we define

Aξa = Aa + 1
2
ξWa , (3.6)

which is thus inert under the remaining transformations, and also appears in the S-super-
symmetry decomposition law instead of Aa:

δ�(ε) =δQ(ε) + δS

(
η = 1

2
(iγ∗ /A

ξ − PRu− PLū)ε
)

+ δK

(
λKa = −1

4
ε̄φ̂a

)
,

PLφ̂a = PLφa + 1
2
PL(i /A

ξ
+ ū)ψa , u ≡ κF̄ 0̄ . (3.7)

Then the field equations become

κ2Θ(A)a
�
= 6Aξa ,

κ2Θ(ψ)a
�
= −1

2
γabcR̂

bc(Q)− 3
4
iξγ∗γaλ ,

κ2Θ(e)ab
�
= Ĝab + 6AξaA

ξ
b + 3ηab

(
uū− AξcAξc + 1

2
D
)
,

κΘ(F 0) = −3u ,
√

2κΘ(Ω0)
�
= PLγ

abR̂ab(Q)− 3iξPLλ ,

κΘ(X0)
�
= −3iD̂aAξa + 1

2
R̂ + 3AξaAξa − 3

2
ξD ,

κ2Θ(D)
�
= −3

2
ξ , Θ(λ)

�
= 0 , κ2Θ(W )a

�
= 3ξAξa , (3.8)

where

R̂µν(Q) =2
(
∂[µ − 3

2
iA[µγ∗ + 1

4
ω[µ

ab(e, ψ)γab + 1
2
γ[µ(−iγ∗ /A

ξ
+ ū)PL + uPR

)
ψν] ,

D̂aAξb =∇aA
ξ
b + 1

2
iψ̄aγ∗φ̂b , φ̂a = 1

2
γbR̂ba(Q) + 1

12
γaγ

bcR̂bc(Q)

Ĝab =R̂ab − 1
2
ηabη

cdR̂cd R̂ab = R(ab) − 1
2
ψ̄cγ(aR̂b)c(Q) + 1

2
ψ̄(aγ

cR̂b)c(Q) , (3.9)

and Rab is the torsionful Ricci tensor.
The first components of the Einstein curvature multiplet (3.2) in the gauge (3.5) are then

κ2Ca =6Aξa ,

κ2Za =− 3
2
γµνρR̂νρ(Q)− γaγµνR̂µν(Q) + 3iγ∗γaλξ ,

κ2Ha =− 6iD̂aū , D̂aū ≡ (∂a − 3
2
iξWa)ū+ ψ̄aPRγ · φ̂ ,

κ2Bba =3Ĝab − ηabĜc
c + 18AξaA

ξ
b + 3ηab

(
uū− AξcAξc − ξD

)
+ 3εabcdD̂cAξd − 9

2
iξF̃ab(W ) . (3.10)
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3.2 Components in new minimal supergravity

Since Aµ does not appear in the action (2.47), the first component of the Einstein multiplet,
proportional to Θ(A)a, does not get a contribution from the FI term, and the Einstein tensor
multiplet is unchanged.8

We immediately consider the conformal gauge

Conformal gauge new minimal : L|� = κ−2 , χ|� = 0 , bµ|� = 0 , (3.11)

which implies that the Poincaré supersymmetry transformations are

δ�(ε) =δQ(ε) + δS
(
η = 1

4
iκ2γ∗/vε

)
+ δK

(
λKa = −1

4
ε̄φ̂a

)
,

φ̂a = φa − 1
4
iκ2γ∗/vψa . (3.12)

and φ̂a is of the same form as in (3.9), but with

R̂µν(Q) = 2
(
∂[µ − 3

2
iA[µγ∗ + 1

4
ω[µ

abγab + 1
4
iγ∗γ[µ /H

)
ψν] ,

Ha = κ2va = e−1eaµε
µνρσ

(
κ2∂νaρσ − 1

4
ψ̄νγρψσ

)
. (3.13)

The action (2.42) in this Poincaré form is[
3L ln

L

X0X̄0

]
D

�
=

∫
d4x e

1

2κ2

[
R− 1

2
ψ̄µγ

µνρR̂νρ(Q) + 3
2
HaH

a
]

+ 3
2
εµνρσ(2Aµ −Hµ)∂νaρσ . (3.14)

The action (2.42) leads to the following field equations

Θ(L)
�
= 1

2
ηabR̂ab + 3

4
HaH

a ,

Θ(χ) =
3

2L
/Dχ+

3

2
PLχχ̄PRχ+

3

2
PRχχ̄PLχ−

3

4L2
iγ∗/vχ

�
= 3iγaγ∗φ̂a =

1

2
iγ∗γ · R̂(Q) ,

κ2Θ(e)ab
�
= Ĝab −

3

4
ηabHcH

c +
3

2
HaHb ,

Θ(a)ab
�
= 3iF̃ab(A)− 3

2
εabcdD̂cHd ,

κ2Θ(ψ)a
�
= −1

2
γa
bcR̂bc(Q) ,

Θ(A)a = − 9

8L
iχ̄γ∗γaχ+ 3va

�
=

3

κ2
Ha . (3.15)

The first components of the Einstein curvature multiplet (3.2) in the gauge (3.11) are then

κ2Ca = 3Ha ,

8Other field equations, like Θ(ψ), Θ(e), do change but these contributions cancel since the first component
of the multiplet is the same.
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κ2Za = −3
2
γa
bcR̂bc(Q) ,

Ha = 0 ,

κ2Bba = 3
(
Ĝab − 3

4
ηabHcH

c + 3
2
HaHb − εabcdD̂cHd + 3iF̃ab(A)

)
. (3.16)

4 Curved backgrounds

To obtain supersymmetric backgrounds that preserve four supersymmetries, we consider the
three curvature multiplets: Weyl, Einstein and scalar curvatures and impose that the high θ
components (in presence of auxiliary fields) are vanishing in the background. For the Weyl
multiplet, Wαβγ, the vanishing of the second component leads to the vanishing of the Weyl
tensor

Wµνρσ = 0 , (4.1)

which will be valid for all the examples below.
Since the scalar multiplet follows from the transformation of the Einstein multiplet,

the other constraints follow already from the latter. In particular we have to consider the
transformation of the fermion field Za in the Einstein multiplet:

PLδZa = 1
2
κ2PL

(
iHa − γbBba − i /DCa

)
ε+ iPL

(
−3Ca + γabCb

)
η . (4.2)

We can write the S supersymmetry parameter of (3.7) and (3.12) in a uniform way using
the values of Ca in (3.10) and (3.16):

PLη =
(

1
12

iκ2/C − 1
2
ū
)
ε , (4.3)

just taking u = 0 in case of new minimal. This leads to

PLδZa =1
2
PL
[
i(Ha + 3κ2Caū)− γbκ−2Bba − i /DCa − iγabCbū

]
ε , (4.4)

where
Bba ≡ κ2Bba + 1

6
κ4 (−4CaCb + ηabCcCc) . (4.5)

The vanishing of the right-hand side of (4.4) constrains supersymmetric backgrounds. Split-
ting in independent parts we get

Cau = 0 , Ha = 0 , Bba = 0 , DaCb = 0 . (4.6)

We can then further consider only the bosonic part of these equations.
In the previous section, we did not include here the contributions of the gauge kinetic

terms, see section 2.4. Note, however, that (2.38) implies that Ca does not have bosonic
terms from this part, and from (3.2) we see that also Ha does not get extra bosonic terms.
There will be new terms in Θ(e)ab, whose bosonic part is

ΘW (e)ba = Fc(a(W )Fb)
c(W ) + 1

4
ηabFcd(W )F cd(W )− 1

2
ηabD

2 . (4.7)

Taking also into account (2.39), this gives from (3.2) an extra contribution to Bba:

BWba = 3Fc(a(W )Fb)
c(W ) + 3

4
ηabFcd(W )F cd(W ) + 3

2
ηabD

2 + 3iF̃ab(W )D . (4.8)
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4.1 Curved backgrounds old minimal

The equations in (4.6), apart from Bba = 0, imply with the bosonic parts of the values in
(3.10):

uAξµ = 0 ,
(
∂µ + 3

2
iξWµ

)
u = 0 , ∇µA

ξ
ν = 0 . (4.9)

Then the antisymmetric part of Bba = 0, has only the terms with F̃ab(W ), which vanish
adding (3.10) to (4.8) upon use of the D field equation

D ≈ P = 3
2
ξX0X̄0 �

= 3
2
ξκ−2 . (4.10)

In this case, we get from (4.5), without taking into account the gauge terms (4.8), that
the symmetric part of Bab is

B(ba) = 3Ĝab − ηabĜc
c − 6AξaA

ξ
b + 3ηab

(
uū+ AξcA

ξc − ξD
)
. (4.11)

Hence, without matter, the vanishing of this expression leads to

Rab − 2AξaA
ξ
b + ηab(2A

ξcAξc + 3u ū− 3ξD) = 0 . (4.12)

The above equations for ξ = 0 were also obtained in section 6.1 of [1] and agree with [20–22].
Note that R+ 6AaA

a + 12u ū = 0 and ∇µAµ = 0 are the vanishing of the upper component
of the multiplet R. The equations allow supersymmetric solutions9

AdS4 : Aa ≈ 0 , R + 12u ū ≈ 0 , u 6= 0 ,

S3 × L : Aa ≈ (A0, 0, 0, 0) , u ≈ 0 , Bab ≈ 0 ,

R00 ≈ R0i ≈ 0, Rij ≈ 2A2
0δij , (i = 1, 2, 3) , R ≈ 6A2

0 ,

AdS3 × L : Aa ≈ (0, 0, 0, A3) , u ≈ 0 , Bab ≈ 0 ,

R33 ≈ R3i ≈ 0, Rij ≈ −2A2
3ηij , (i = 0, 1, 2) , R ≈ −6A2

3 , (4.13)

where A0 or A3 are constants.
For a de Sitter configuration, an extra nilpotent Volkov–Akulov field X1 was introduced

in [1] and a possible solution is

dS: F 0 ≈ κ−2λ , F 1 ≈ −1
3
κ−2µ ,

κR|last = −1
6
Rκ− 2κ3|F0|2 ≈ −2

9
κ−1µ2 , κR|first ≈ λ . (4.14)

The scalar curvature is then R ≈ 4κ2V = 4
3
κ−2µ2 − 12κ−2λ2 and thus

Ba
a ≈ R + 12uū ≈ 16κ−2µ2 , (4.15)

signals the breaking of supersymmetry.

9In [20–22] also Euclidean theories are considered by treating real supergravity fields as complex fields.
Such an extension is not included in the investigation in this paper.

19



4.2 FI term in components

In absence of matter (Si) the FI model is the Freedman model [17, 11], which has a field
equation (2.25)

T (eξV X̄0) ≈ 0 . (4.16)

This is the covariantized R chiral scalar curvature multiplet. Note that the above equation
in components and in the WZ gauge reproduces the field equations. The first component is

u = κF̄ 0 ≈ 0 , (4.17)

while the last component is proportional to Θ(X)0 in (3.4)(
∂µ + iAξµ

) (
∂µ + iAξµ

)
X̄0 − 1

6
RX̄0 + 1

2
ξX̄0D ≈ fermionic terms (4.18)

With zero fermions and in conformal gauge a de Sitter solution is obtained with

Aξµ
�
≈ 0 , R ≈ 3ξD

�
≈ 9

2
κ−2ξ2 . (4.19)

The breaking of supersymmetry is evident from

Ba
a ≈ R− 12ξD ≈ −9ξD . (4.20)

4.3 Curved backgrounds new minimal

In this case, with the values in (3.16), the first two equations of (4.6) are empty. The last
equation and the antisymmetric part of Bab imply

∇µHν = 0 , ∂[µAν] = 0 , (4.21)

The symmetric part of Bab is in this case

B(ba) = 3
(
Ĝab − 1

2
HaHb − 1

4
ηabHcH

c
)
. (4.22)

and its vanishing implies

Rab =1
2

(HaHb − ηabHcHc) . (4.23)

The trace of the latter, R + 3
2
HaHa = 0 is also the θ component of the chiral curvature.

These equations agree with the constraints in [20]. The solutions S3 × L and AdS3 × L in
(4.13) are also possible here, in this case with Aµ vanishing, and Ha/2 taking the value of
Aa of the old-minimal solutions. However, there is no room for the AdS4 solution in this
case. These are just examples of solutions of the supersymmetry-preservation conditions.
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5 Auxiliary fields and conformal compensators

We give here a summary and discussion of auxiliary field formulations of N = 1, D = 4
supergravity. First of all we repeat the argument that auxiliary field formulations that have
a consistent Lagrangian and describe pure supergravity can only have (12+12) + a multiple
of (8 + 8) degrees of freedom. This is so because additional fermions should come in pairs
of 4-component spinors in the form L = . . . + λ̄χ + . . .. This is e.g. also mentioned in [23],
where they clearly mention that their (16 + 16) set has either to be reduced to one of the
(12 + 12) sets, or it describes additional physical degrees of freedom. Similarly, the structure
in [11] with (16 + 16) fields is in fact an off-shell description of the Freedman model [17],
discussed also in this paper, and thus contains other propagating degrees of freedom.

Still there have been made claims of sets of auxiliary field different from the old minimal
[24–26], new minimal [27], or non-minimal set [28, 29]. There have been proposals for new
non-minimal sets of auxiliary fields or (16 + 16) sets. The latter suffer certainly from the
feature mentioned above that they cannot describe pure supergravity. Still one may wonder
whether the theory with extra physical degrees of freedom can be obtained using the minimal
sets of auxiliary fields.

The known sets of auxiliary fields can be obtained by coupling the Weyl multiplet to
a compensating multiplet, and perform gauge fixings. The old minimal supergravity is
obtained by using a chiral compensating multiplet [30, 31], new minimal supergravity is
obtained by a real linear compensator [32, 33] and non-minimal supergravity by a complex
linear multiplet [32, 33]. The latter has an arbitrary Weyl weight w and for generic Weyl
weight the multiplet is irreducible. For Weyl weight w = 2 the real part can be separated,
and the multiplet can be restricted to a real linear multiplet, and for w = 0, a chiral multiplet
can be separated (by acting with T on the complex linear multiplet). For these values of the
parameter the non-minimal set thus reduces to one of the minimal sets plus a meaningless
separate part.

Theories with the same set of multiplets but different gauge fixings are equivalent, i.e.
different gauge fixings can always be rephrased as field redefinitions [34]. In [35] it has been
checked that the new non-minimal sets are reproduced by a gauge fixing of a reducible set
of compensating multiplets, containing a chiral multiplet or a linear multiplet, and another
multiplet. Hence, by choosing a gauge fixing in the chiral or linear multiplet, these set of
auxiliary fields become reducible, and one can restrict to one of the minimal sets of auxiliary
fields. Later the (16 + 16) sets were brought up [36, 37]. However, it was shown again that
these are just obtained by a different gauge fixing when using together a chiral and a real
linear multiplet [38–40]. These authors reproduced the action and transformation law of the
(16 + 16) set by some gauge choice, and showed by another gauge choice that the theory can
be reduced to one of the minimal versions coupled to a physical real linear or chiral multiplet.
They even exhibited explicitly the redefinitions that are equivalent to these changes of gauge
conditions.

This shows that the known N = 1 sets of auxiliary fields can be restricted to the old
and new minimal and the non-minimal ones, each described by one irreducible compensating
multiplet. In this paper we considered old and new minimal sets. Then the auxiliary fields
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are

old minimal: (Aa, u = κF̄ 0) ,

new minimal: (Aµ, aµν) , Hµ ≡ e−1εµνρσ
(
κ2∂νaρσ − 1

4
ψ̄νγρψσ

)
. (5.1)

The actions for pure Poincaré supergravity are

κ2e−1Lom =
1

2
R− 1

2
ψ̄µγµνρDνψρ −

1

3
u ū+ 3AaAa

κ2e−1Lnm =
1

2
R− 1

2
ψ̄µγµνρ(Dν − 3

2
iγ∗Aν)ψρ +

3

4
HaH

a +
3

2
κ2εµνρσ(2Aµ −Hµ)∂νaρσ . (5.2)

6 Conclusion

We obtained the conservation laws in old and new minimal supergravity, also in case that
there are FI terms. They can be written as equations on conformal superprimary multiplets.
They follow from Ward identities that can be derived in general. Such general relations
allow us also to obtain the different components of the Einstein supermultiplet. This in turn
gives an alternative derivation of the Festuccia–Seiberg relations [20] for supersymmetric
backgrounds.

One of the main results of the present paper is the Ward Identity given by (1.16), which
shows that (1.1) is perfectly compatible with the old minimal formulation provided one
realises that the FI gauging makes the chiral compensator not inert and the mere existence
of the FI gauge field introduces eight more (4B+4F) off-shell degrees of freedom. This is
the reason why the authors of [11] called it chirally extended Supergravity, although it was
originally introduced in the context of the old minimal formulation by Stelle and West [41].
We point out that these results are the local exact nonlinear version of the linearized results
of [6] obtained by coupling the rigid S super current multiplet to linearised supergravity. A
similar modification is expected to work also for the Kähler invariance. The modification of
the super current conservation law occurs since the chiral compensator is not inert under FI
or Kähler symmetry. Such modification doesn’t occur in new minimal supergravity because
the linear multiplet compensator is inert under these gauge symmetries (see (1.25)).
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A Linear multiplet and related spinor chiral superfield

For convenience, we repeat the transformations of the independent fields of the linear mul-
tiplet

δL =
1

2
iε̄γ∗χ ,

δχ = −1

2

(
/v + iγ∗ /DL

)
ε− 2iγ∗η L ,

δaµν =
1

4
iε̄γµνγ∗χ+

1

2
ε̄γ[µψν]L . (A.1)

where

va = e−1eaµε
µνρσ

(
∂νaρσ −

1

4
ψ̄νγρψσL

)
+

1

2
χ̄γabψ

b . (A.2)

Therefore, (2.7) implies that in any action containing this multiplet

δ(ε)PLΘ(χ) = −1
2
iPLεΘ(L) + 1

4
iγµνPLεΘ(a)µν . (A.3)

First of all this implies that PLΘ(χ) is a chiral multiplet. It does not transform under
S-supersymmetry, and is thus a super-primary field. Since PLχ has (Weyl,chiral) weights
(5/2,−3/2), the field equation PLΘ(χ) has weights (3/2, 3/2), consistent with the require-
ments for a chiral multiplet [8, 9]. Furthermore we find

DαΘ(χ)α = iΘ(L) . (A.4)

Therefore it is convenient to define

W χ
α ≡ iΘ(χ)α , (A.5)

such that DαW χ
α = −Θ(L) is real. The components of this chiral multiplet are

W χ
α =

{
iΘ(χ)α,

1√
2

(PL)βαΘ(L) +
1

2
√

2
(γab)βαΘ(a)ab, −i( /DΘ(χ))α

}
. (A.6)

B Superconformal Ward identities

To derive the components of the Einstein curvature multiplet, we made use of the Ward iden-
tities that are granted by the superconformal symmetries. In our formalism Ward identities
are constructed from the action in the following way10

W (TA) =
(
δ(εA)φi

) δS
δφi

=
(
δ(εA)φi

)
Θ(φ)i + curvature terms = 0 . (B.1)

10After partial integrating terms with ∂µε
A, extra curvature terms can appear in (B.1), from (D.12) in [1].
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The φi are the independent fields of the action and TA the operator of one of the symmetries.
The Ward identities transform into Ward identities under the symmetries and are therefore
invariant. We will now summarize the Ward identities for the conformal supergravity algebra

Cov. gct: W (P )a ≡ DbΘ(e)ab + Θ(A)bRab(T ) + 3
4
Θ̄(ψ)bRab(Q)

+
[
Θ(X)IDaXI + Θ̄(Ω)IDaΩI + Θ(F )IDaFI + h.c.

]
+ Θ(W )bAFab

A + Θ̄(λ)ADaλa + Θ(D)ADaDA

+ Θ(L)DaL+ Θ̄(χ)Daχ+ 3Θ(a)bcD[aabc] , (B.2)

Lorentz: W (M)ba ≡ Θ(e)[ba] + 1
4

[
Ω̄IγbaΘ(Ω)I + h.c.

]
+ 1

4
λ̄AγbaΘ(λ)A + 1

4
χ̄γbaΘ(χ) ,

(B.3)

Dilatations: W (D) ≡ Θ(e)a
a

+
[
wIX

IΘ(X)I + (wI + 1
2
)ΩIΘ(Ω)I + (wI + 1)Θ(F )IFI + h.c.

]
+ 3

2
Θ̄(λ)AλA + 2Θ(D)ADA + 2LΘ(L) + 5

2
χ̄Θ(χ) , (B.4)

spec.conf.: W (K)a ≡ Θ(b)a , (B.5)

T -symmetry: W (T ) ≡−DaΘ(A)a + i
[
XIΘ(X)I − 1

2
Ω
I
Θ(Ω)I − 2F IΘ(F )I − h.c.

]
+ 3

2
iΘ̄(λ)Aγ∗λA − 3

2
iχ̄γ∗Θ(χ) , (B.6)

Q-susy: W (Q) ≡ −DaΘ(ψ)a (B.7)

+ 1√
2

[
ΩIΘ(X)I +

(
− /DXI + F I

)
Θ(Ω)I + /DΩIΘ(F )I + h.c.

]
− 1

2
γaλ

AΘ(W )aA + 1
2

(
−1

2
γ · FA + iγ∗D

A
)

Θ(λ)A

+ 1
2
iγ∗ /DλAΘ(D)A + 1

2
iγ∗χΘ(L) + 1

2

(
/v − iγ∗ /DL

)
Θ(χ)

+ 1
2

(
1
2
iγµνγ∗χ+ γ[µψν]L

)
Θ(a)µν , (B.8)

S-susy: W (S) ≡ γaΘ(ψ)a +
√

2
[
XIΘ(Ω)I + h.c.

]
− 2iγ∗Θ(χ)L . (B.9)

C Current conservation with gauge symmetry: elec-

trodynamics analogue

In this section, we understand the presence of the Wα contribution in (1.22) in the context of
electrodynamics. After all this contribution is not so surprising because in electrodynamics
the conservation of the gauge-invariant matter stress tensor gets a contribution

∂µTM
µν ≈ −FνρJρM , (C.1)

which just cancels the ∂µT e.m.
µν , which satisfies

∂µT e.m.
µν = 2Fνρ∂

λFλ
ρ . (C.2)

This corresponds to higher θ terms in (1.22). The term NMWα ∝ ΦMWα contains at the θ3

level the right-hand side of (C.1) since Fνρ is at the θ level of Wα and at the θ2 level of ΦM
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is the component

Bµ(Φ) = i

(
∂Φ

∂Si
∂µS

i − ∂Φ

∂S̄i
∂µS̄

i

)
= JM

µ . (C.3)

D Coupling chiral supergravity to a charged

chiral multiplet

In this Appendix we give the Lagrangian when the supergravity with FI term is coupled to
a charged chiral multiplet. The charge under the U(1) of the gauge multiplet is fixed by the
requirement that a superpotential term be invariant. This analysis extends to an arbitrary
number of charged fields [16] but here we will confine the example to a single chiral multiplet
S with a superpotential

(X0)3W (S) = `(X0)3S , (D.1)

linear in S, so that if S2 = 0 is imposed we have the Volkov–Akulov (VA) theory. The
gauge-invariant supergravity action that includes (D.1) is

L =
[
−3X0X̄0eξV

]
D

+
[
X0X̄0SS̄e−2ξV

]
D

+ `
[
(X0)3S

]
F

+ [WαWα]F , S2 = 0 , (D.2)

and the (FI) gauge transformations (1.11) contain then also a transformation for S:

X0 → X0e−ξΛ , S → Se3ξΛ , V → V + Λ + Λ̄ . (D.3)

In WZ gauge, this leads to transformations as in (2.23). Furthermore there are the conformal
U(1) symmetries, e.g. δX0 = iλTX

0. After the conformal gauge fixing that makes X real,
these transformations mix such that X0 does not transform, i.e. λT = −1

2
ξθ. The fields

that are charged under these symmetries, denoting the components of the multiplet S as
{S, PLχ, f}, are

field iλT iξθ resulting iξθ

PLψµ
3
2

0 −3
4

PLλ
3
2

0 −3
4

X0 1 1
2

0

PLΩ0 −1
2

1
2

3
4

F 0 −2 1
2

3
2

S 0 −3
2

−3
2

PLχ −3
2
−3

2
−3

4

f −3 −3
2

0

D 0 0 0

(D.4)

and opposite for the complex or charged conjugates.
The spectrum of this theory contains gravity coupled to Maxwell in de Sitter space with

a charged scalar, a spin 1/2 field and a spin 3/2 massive gravitino. The scalar disappears if
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S is nilpotent. This can be obtained by adding a chiral term [σS2(X0)3]F , with σ a chiral
multiplet with zero Weyl weight and transforming under (D.3) as σ → σ exp(−3ξΛ). Thus
the FI model can be written in a Volkov–Akulov form, as suggested in a final comment
in [11]. Deleting ξ we have the Volkov–Akulov model coupled to supergravity [42,43].

The Goldstino is then a linear combination of the gaugino λ and the VA fermion χ, since
both F and D have a non-zero value. The cosmological constant is

κ4V = 9
8
ξ2 + |`|2 , (D.5)

with an additional charged scalar contribution if S is not nilpotent. By deleting S we have
the Freedman model, while by deleting V (or setting ξ = 0) we have pure supergravity [24]
or Maxwell-Einstein supergravity with auxiliary fields [16].
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