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Abstract. When processing large amounts of data, the rate at which reading and writing
can take place is a critical factor. High energy physics data processing relying on ROOT is no
exception. The recent parallelisation of LHC experiments’ software frameworks and the analysis
of the ever increasing amount of collision data collected by experiments further emphasised this
issue underlying the need of increasing the implicit parallelism expressed within the ROOT I/O.

In this contribution we highlight the improvements of the ROOT I/O subsystem which
targeted a satisfactory scaling behaviour in a multithreaded context. The effect of parallelism on
the individual steps which are chained by ROOT to read and write data, namely (de)compression,
(de)serialisation, access to storage backend, are discussed. Performance measurements are
discussed through real life examples coming from CMS production workflows on traditional
server platforms and highly parallel architectures such as Intel Xeon Phi.

1. Introduction
Particles collide at the Large Hadron Collider (LHC) approximately half a billion times per second.
Each collision creates particles that decay into a complex cascade of many other particles that
are recorded by the detectors as a series of electronic signals that are then digitally reconstructed
and stored for further analysis. At the current rate, physicists have about 30 petabytes of new
data per year to analyse [2], and this rate is expected to increase ten-fold in the next decade.
Most of this data is stored and processed in ROOT’s file format [1], hence optimizing ROOT
to read and write all this data as fast as possible is of critical importance to the future of high
energy physics.

1.1. The Meaning of ROOT I/O
One of the key innovations of ROOT is its columnar data format. With ROOT, if only a
small subset of the data is needed for a given analysis, only those parts of the data file will
be read, instead of the whole file. Another important aspect of ROOT I/O is its ability to
perform serialisation and deserialisation of generic C++ objects via automatically generated
object streamers. Moreover, ROOT can compress data before writing it to disk and decompress
it before processing. Hence, ROOT I/O is much more than simply reading and writing from
a regular file; it involves also (de)serialisation and (de)compression of data. Naturally, each
of these processing phases can be parallelised independently. Since this form of parallelism is
usually performed in a way that is invisible to the user, it is referred to as implicit parallelism, or
implicit multi-threading (IMT) in ROOT. Support for implicit parallelism has been introduced
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in ROOT 6.06. Since then, many improvements on this front have been added to newer versions,
and this is what we discuss in the following sections.

2. Reading ROOT Data in Parallel
Each data set created in the ROOT file format may be read many times and by different users
in their analyses, hence data reading performance is arguably the most important aspect to be
considered when parallelising ROOT I/O and choosing what compression algorithm to use to
store data intended for physicists to use.

2.1. Reading Data Columns
ROOT uses a columnar data format, and experiments’ data files usually contain many different
columns that contain the type, energy, momentum, and other properties of particles digitally
reconstructed from collision events. One way in which it is possible to parallelise data reading is
decompressing and deserialising each column in parallel. This implicit multi-threading feature
has been introduced in ROOT 6.08. As a demonstration of the potential performance gains, two
benchmarks have been run to read, decompress and deserialise data sets from CMS (GenSim)
and ATLAS (xAOD), with approximately 70 and 200 different columns, respectively. Figure 1
shows that a speedup of about 3.5 can be obtained on a quad core laptop, a great improvement
over running the code sequentially.

Figure 1. Parallel reading of multiple data columns.

2.2. Data Decompression

Figure 2. Parallel basket decompression.

ROOT files usually store data in several compressed
blocks, also referred to as baskets. When process-
ing large files, many blocks can be decompressed
and deserialised in parallel. Since decompression is
compute-intensive, it is also possible to interleave par-
allel decompression with processing of decompressed
data. This feature, currently under development, is
planned for inclusion in ROOT 6.14. Figure 2 shows
performance gains for the current implementation on
a quad-core laptop (4 threads + hyperthreading).



3. Writing ROOT Data in Parallel
Even if reading ROOT data is much more common than writing, that is not to say that writing
performance is not important for ROOT. Event reconstruction jobs process vast amounts of data
from the detectors, so if the speed of writing out reconstructed data becomes a bottleneck, it
may reduce the overall percentage of events that can be saved for offline analysis. In addition to
allowing users to use one TFile per thread in their programs, ROOT has added new classes and
features to support parallel writing, which are discussed next.

3.1. Writing Data Columns
In a similar fashion as what has been done for reading data columns from a file in parallel, ROOT
can also serialise and compress multiple data columns in parallel when implicit multi-threading
is enabled. This feature has become available in ROOT 6.08. The performance advantages
of this parallelism have been demonstrated with a benchmark within CMSSW [3] that writes
out two kinds of data sets: an I/O intensive reconstruction data set (RECO), and a data set
with lighther I/O requirements, intended for analysis (AOD). Figure 3 shows that on the Intel
Xeon Phi codenamed Knights Landing (KNL) [4], with IMT disabled, the throughput begins to
degrade for the RECO data set after about 20 CMSSW streams (30 threads). When IMT is
enabled, however, the throughput can be more than doubled and scales better to a larger number
of threads. The number of streams is the number of framework tasks running in parallel; the
number of threads is fixed to 1.5 times the number of streams. For AOD—a slimmer kind of
data set—it is also possible to see an improvement, but since it is a less I/O intensive workload
the gains are limited, as the performance for this data set is already close to that of not writing
out any data at the end (red line in the figure).

Figure 3. Parallel writing of multiple data columns.

3.2. Writing to an Output File from Multiple Threads
Since ROOT 6.06, it has been possible to write out data in parallel to multiple ROOT files, one
per each thread of the user application. However, this creates the inconvenience of having many
files with partial data to analyse at the end, or having an extra step to merge all data into a



single file. For the user, it is much more convenient to write out data in parallel from multiple
threads into a single output file by performing the merging steps automatically in the background.
This feature has been introduced in ROOT 6.10 with the addition of the TBufferMerger [5]
class. A schematic of how it works is shown below in figure 4.

Figure 4. TBufferMerger schematic diagram. Worker threads place data in a queue, while the
output thread merges one by one each buffer from the queue into the output file.

Users create a TBufferMerger [5] instead of a TFile [6], and get from it a TMemFile-like
buffer to write into by calling TBufferMerger::GetFile(). Then, each worker thread can write
to that TMemFile-like buffer, and the effect is that data will be pushed into a processing queue
for merging into the output file. Once all data has been pushed into the queue and merged, the
output thread closes the output file and exits. The code samples below show a simple example
of filling a TTree in serial mode, and how that changes when using the TBufferMerger.

Figure 5. TBufferMerger code example.
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Figure 6. TBufferMerger writing performance to a hard-disk drive (HDD), a solid state drive
(SSD), and a non-volatile memory solid state drive (NVMe SSD).

Write performance is shown in figure 6 for different output scenarios. The benchmarks consist
in generating 1GB of pseudo-random numbers, and writing them out as a single column data
file. On the left, red lines represent writing to a solid state disk (SSD), while blue lines represent
writing data directly into system memory via tmpfs. On the right, two extremes in terms of
hardware performance are compared: a standard hard drive (HDD) and a fast non-volatile
memory solid state disk (NVMe SSD). Writing speed reaches over 320 MB/s on the SSD, which
is near the hardware limit for uncompressed data. Speedup compared with sequential code is
over three-fold on a quad core machine. When writing out compressed data, the CPU becomes
the bottleneck due to the cost of compression. Hence, the speedup is similar, but writing speed
decreases to about 50 MB/s. In this case, it is possible to scale to a larger number of threads until
the limit of the disk is reached. The speedup depends on the workload and on the performance
of the output device. On the right of figure 6, where only compressed data is written out, the
fast NVMe SSD yields four times faster performance than a standard HDD.

3.3. Concurrency Improvements
Other concurrency improvements within ROOT were made possible by the development of the
features just presented, such as reducing the usage of mutex locks in ROOT’s interpreter where
it is possible. After moving to a recent version of ROOT with these optimizations and using
the TBufferMerger class, visible performance improvements have been achieved in CMSSW’s
output module [7].

Figure 7. Concurrency optimisations in ROOT I/O.

In order to illustrate the effect of these optimizations, figure 7 shows VTune [8] screenshots



of two runs of the benchmark on the right of figure 6, which were run on a 36-core Intel Xeon
server, one before the optimisations (left), and another after (right). Each stripe represents one
thread of execution (36 threads in total for this benchmark). Brown regions denote that the
CPU is doing useful work and green regions denote that a thread is currently running, but not
doing useful work. The single-threaded region at the beginning represents ROOT’s startup, the
short threads represent data generation, and the long thread at the end is the output thread
writing to disk. Data generation threads are shorter after the optimisations due to the reduction
in the usage of mutex locks. However, from figure 7 it is clear that what affects total running
time the most is the single-threaded startup phase and the speed of the disk.

3.4. Parallel Merging of Files with hadd Tool
Finally, ROOT has incorporated several improvements to perform I/O in parallel, but users
may still have old data in multiple files that could be processed and merged into a single file for
further analysis. Since version 6.10, ROOT provides an option to the hadd tool for merging files
in parallel.

4. Conclusion
Implicit parallelism has been introduced in ROOT beginning with version 6.06. Since then, many
improvements have already been made to make ROOT I/O more performant. However, much
work still lies ahead of us, if we want to cope with the expected ten-fold increase in luminosity at
the LHC in the near future—which inevitably means similar increases in data production rate.
For instance, in ROOT 7 old interfaces will be reformed, and in ROOT 6 new features are being
added, such as more compression algorithms. Further optimizations are also planned in ROOT’s
interpreter and libraries. Nevertheless, current benchmarks show that ROOT is already not a
bad performer when I/O is considered. Other work [9] has demonstrated that ROOT fares quite
well if not even leads in performance when compared with alternatives like HDF5, protobuf,
Parquet, etc, all that while offering many features not yet available in these alternative formats.
ROOT is hence in the right path to continue to support the largest physics experiments in the
next decade and beyond.
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