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Field Theory and EW Standard Model.

Rohini M. Godbole

Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India.

Abstract

In this set of four lectures I will discuss some aspects of the Standard Model

(SM) as a quantum field theory and related phenomenological observations

which have played a crucial role in establishing the SU(2)L × U(1)Y gauge

theory as the correct description of Electro-Weak (EW) interactions. I will

first describe in brief the idea of EW unification as well as basic aspects of

the Higgs mechanism of spontaneous symmetry breaking. After this I will

discuss anomaly cancellation, custodial symmetry and implications of the high

energy behavior of scattering amplitudes for the particle spectrum of the EW

theory. This will be followed up by a discussion of the ’indirect’ constraints

on the SM particle masses such as Mc,Mt and Mh from various precision

EW measurements. I will end by discussing the theoretical limits on Mh and

implications of the observed Higgs mass for the SM and beyond.

1 Introduction

I am asked to discuss ’Field Theory and the EW Standard Model’ in these four lectures. The title

encompasses developments of the last 60-70 years. These lectures are happening on the backdrop of the

discovery of the Higgs at the LHC [1], the concluding finale of the establishment of the correctness of

the Standard Model as the theoretical description of EW interactions. To cover this entire journey in four

lectures, clearly I have had to pick and choose a few topics. I have done after sharing a questionnaire

with all of you.

I would like to focus on the salient and non negotiable aspects of EW phenomenology which

helped establish the SU(2)L ×U(1)Y gauge field theory as the correct theory of the EW interactions. In

this I will like to tell the story of how requirements of consistency of EW theory itself have guided us in

the development of Standard Model (SM), as we know it today, by setting up the goal posts for theory

and experiments. I will begin by discussing some aspects of the pre-gauge theory description of weak

interactions in terms of a current-current Lagrangian. As we understand today this is the effective theory

which results from the SU(2)L × U(1)Y description, when the heavy gauge boson fields have been

integrated out. It is interesting to understand the role that various features of this effective description

have played in helping us ’infer’ the more fundamental theory which is the SM. I will try to point out

some of these. I will then begin a discussion of SM as a gauge theory, by first setting up the notation of

the SM Lagrangian followed by a somewhat brief discussion of the Higgs mechanism. Then I give a very

brief summary of the successes of the SM all the way from its formulation till date. I will then discuss

relationship between the particle spectrum of the SM and the twin issues of anomaly cancellation and

custodial symmetry. I will then sketch how one can understand the development of the SM as a theory

in terms of taming bad high energy behavior of scattering amplitudes. Then will come a discussion

of the GIM mechanism and ’prediction’ of the mass of the charm quark Mc from the measured mass

difference between K0 and K̄0. This will be followed by a discussion of the experimental measurements

which established the EW part of the SM as a quantum gauge field theory based on the gauge group
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SU(2)L × U(1)Y , albeit where the symmetry is broken spontaneously. I will assume essentially that

people are aware of some of the details of the Spontaneous Symmetry Breaking (SSB) and hence will

only sketch it here. As we know establishing the SU)2)L×U(1)Y theory with SSB as the correct theory

of EW interactions was done by testing the precision measurements of various EW observables against

the predictions for the same including radiative corrections. Inclusion of these radiative corrections

is possible only in a renormalisable quantum field theory. In particular I will discuss the history of

determination of Mt and Mh from ’indirect’ effects on observables through loop corrections. In the last

lecture I will discuss various theoretical bounds on the Higgs mass and also the theoretical implications

of the observed mass of the Higgs at the LHC [2, 3] for the SM.

2 Preliminaries

2.1 Periodic table of particle physics

The SM stands on the joint pillars of relativistically invariant quantum field theories and gauge symme-

tries. The SM is a quantum gauge field theory based on the gauge group SU(3)C × SU(2)L × U(1)Y
which describes the strong and electro-weak(electromagnetic and weak) interactions. The subject matter

of these lectures is going to cover only the EW part of the SM. Gauge theory of strong interactions, QCD,

will be discussed in a different set of lectures at this school.

As things stand today, the periodic table of the SM is complete. One part of this periodic table are

the spin-12 matter particles: the quarks and the leptons and their anti-particles. Table 1 summarises the

details of the currently available information on all the matter fermions.

Table 1: Elementary fermions of the Standard Model, all of spin 1

2
. The three quark colours are indicated explicitly,

while leptons are colourless. Electric charges in units of the positron charge, are displayed on the left side. The

anti-particles form a similar table with opposite charges.
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Mu = 2 MeV Mν1 = 0− 0.13 × 10−6 MeV

Md = 5 MeV Me = 0.511 MeV

Mc = 1, 300 MeV Mν2 = 0.009 − 0.13 × 10−6 MeV

Ms = 100 MeV Mµ = 106 MeV

Mt = 173.000 MeV Mν3 = 0.04 − 0.14 × 10−6 MeV

Mb = 4.200 MeV Mτ = 1.777 MeV

Of course, a gauge field theoretic description of the interactions among these elementary particles

needs in the SM particle spectrum, also the gauge bosons which would be the carrier of the various

interactions. This leads to the second set of members of the ’periodic table’ of particle physics, viz. the

spin-1 gauge bosons: the photon, W and Z bosons and gluons. Their details are indicated in Table 2.

As we will discuss in detail later, gauge invariance, which guarantees the renormalisability of this
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Table 2: Elementary bosons of the Standard Model. There are no separate anti-particles: W− is the anti-particle

of W+ and the rest are neutral. Q indicates the electromagnetic charge of the boson in units of positron charge.

Electromagnetic and weak Strong Higgs

(Spin 1) (Spin 1) (Spin 0)

γ (photon) g (gluons) h (Higgs)

W±, Z (weak bosons)

Mγ = 0, Qγ = 0 Mg = 0, Qg = 0 Mh = 125.4± GeV, Qh = 0
MW = 80.404 GeV, QW = ±1
MZ = 90.1876 GeV, QZ = 0

theory, would require that all of the gauge bosons should be massless. Not only that, the same invariance

would require the matter fermions also to be massless. However, other than the gluon and the photon

all the other members of this periodic table (cf. tables 1 and 2) are patently massive. In fact, it is the

mechanism of Spontaneous Symmetry Breaking (SSB), which allows these particles to have non zero

masses and helps keep the theory still consistent with gauge invariance. SSB of the EW gauge symmetry

via the Higgs mechanism (or Brout-Englert-Higgs mechanism for the purists) [4], is the key ingredient

of renormalisable gauge theories of the EW interaction. This requires existence of yet another member

of the periodic table, which is the Higgs boson. This too has been included in the list of the SM bosons

in Table 2, now that its existence has been established firmly and the discovery awarded a Nobel prize!

2.2 Weak interactions: pre-gauge theory

Fermi’s theory of β decay [5], was the blueprint of the early theoretical description of the weak inter-

actions which are responsible not just for the radioactive β decays of nuclei but also for the strangeness

conserving and strangeness changing weak decays of the mesons and baryons. This culminated in the

famous V-A theory of weak interactions [6, 7]. According to this theory, the µ decay µ− → νµe
−ν̄e for

example, could be described by an effective Hamiltonian

Hµ decay
eff = −Gµ√

2

[

Jρ+†
νe J+

νµ,ρ + h.c.
]

, (1)

where

Jρ+
12 = ψ̄1γ

ρ(1− γ5)ψ2 ≡ JρCC
12 . (2)

In the same way, the β decay of the neutron could be described by an effective interaction given by

Hβdecay
eff = −GF√

2

[

Jµ+†
eν J+

µ,pn + h.c.
]

, (3)

with

Jµ+
pn = ψ̄p(1− 1.26γ5)γ

µψn (4)

In fact, it was established that when written in terms of the quarks which make up the mesons and

baryons, all the weak processes could be described in terms of a four fermion, current-current interaction

depicted in left panel of Figure 1 which shows a transition 1 → 2̄+3+4. For example, the basic transition

describing the n decay n(udd) → p(uud)+ e−+ ν̄e, is given by the current-current interaction depicted

3



1 3

42

d u

e−
νe

Fig. 1: Generic four fermion interaction responsible for the weak processes (left panel) and the basic process

describing the β decay (right panel)

in the right panel. The crux of V −A theory is that only the left chiral fermions are involved in this weak

interaction Hamiltonian. The effective Hamiltonian is then written as

H4fermion
eff = −Gµ√

2

[

Jµ+†
24 J+

31,µ + h.c.
]

= −4
Gµ√
2

[(

ψ̄3Lγ
µψ1L

) (

ψ̄4Lγµψ2L

)

+ h.c.
]

(5)

The appearance ψL = 1/2(1 − γ5)ψ in the Eq. 5, indicates that only left chiral fermions are involved

in this charged weak current. As we will see later, it is this fact that decides the representation of the

SU(2)L gauge group to which the various fermion fields belong.

We understand the electromagnetic interaction in terms of the electromagnetic current Jem
µ =

ψ̄LγµψL + ψ̄RγµψR and the electromagnetic field Aµ. The corresponding vertex is depicted in the left

panel of Fig. 2. Eq. 5 means that one can similarly think of the weak current J+
µ (for example) coupled

to a charged gauge boson (a weak boson W ) W+
µ . The basic transition brought about by the charged

current could then be depicted as shown in the right panel of Fig. 2. The electromagnetic charge of f ′

fL(fR)

fL(fR)

γµ

Jemµ = qf (ψ̄fLγµψfL + ψ̄fRγµψfR)

fL

f ′
L

Wµ

J+
µ = gweakψ̄f ′

L
γµψfL

Fig. 2: The left panel shows the usual QED vertex depicting the interaction with the QED gauge boson γµ and the

right panel shows the generic vertex describing the universal weak interaction among quarks and leptons.

differs from that of f by one unit and in case f is strange quark, the strangeness changes by one unit as

well. In that case this current indicates a transition which brings about ∆S = ∆Q = 1, where S and

Q stand for the strangeness and the electromagnetic charge respectively. While the decay of a neutron n
involves the current Jµ+

ud , the decay of Λ for example, involves the current Jµ+
us . The strength of the four-

fermion interaction is then decided by gweak of Fig. 2. Experimentally measured values of Gµ and GF of

Eqs. 1, 3 were somewhat different from each other, though very close, GF ∼ 0.98Gµ. For the effective

Hamiltonian for Λ decay, for example, the corresponding coefficient was yet again different from both

Gµ, GF , GΛ being 0.20Gµ
1. It was Cabibbo’s observation [8] that all this could be consistent with a

1The very near equality between Gµ and GF was an indication that the vector current was not affected by the strong
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completely universal charged weak current i.e., a current which has the same strength for the leptons

as well as the quarks and also for ∆S = 0 and ∆S = 1 alike, if in case of quarks, the basic charged

current in Fig. 2 describes a transition with f ′ = u, f = d′ = d cos θc + s sin θc, with sin θc ∼ 12◦.

This means that the interaction eigenstate d′ is a linear combination of the mass eigenstates d and u.

Clearly, the orthogonal combination s′ = −d sin θc + d cos θc, is an interaction eigenstate coupling with

a W± and a new quark with charge +2
3 . This thus indicates existence of the fourth quark : the charm

quark c. As we will see later its existence ensures flavour conservation of the weak neutral currents at

tree level automatically. This then helps one understand the experimentally observed suppression of the

Flavour Changing Neutral Currents (FCNC) which will be discussed in detail later. Thus the states to be

identified with the interaction eigenstates would be:

(

u′

d′

)

=

(

u
d cos θc + s sin θc

)

;

(

c′

s′

)

=

(

c
−d sin θc + s cos θc

)

At this point let us also mention one more feature of the phenomenology of quark mixing which

will be relevant later. In fact, the physics of the K0, K̄0 mesons not only revealed the existence of

suppressed nature of the FCNC but also CP violation in K0–K̄0 system. This CP violation can also be

understood as coming from the above quark-mixing but ONLY if the mixing matrix involves a phase. For

this to be possible we have to have at least three generations of quarks. This was noted by Kobayashi-

Maskawa [9]. This makes it possible to understand the CP violation observed in the neutral meson

system, in the context of a gauge theory of EW interactions, in terms of the mixing in the quark sector.

However, this requires existence of at least three generations. Thus one sees that in some sense, the need

to understand the observed phenomenology of FCNC and CP violation, in the framework of a gauge

theory, predicted the existence of the c and the t quark respectively.

For future reference note that the connection between the mass eigenstates u, d, c, s, t and b and

the interaction eigenstates u′, d′, c′, s′, t′ and b′ is given by u′ = u, c′ = c, t′ = t and





d′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 , (6)

where Vud etc. are elements of the CKM matrix V Refs. (cf. [8]– [9]). This describes the interaction

eigenstates in terms of the mass eigenstates.

At this point let us also note that the same four fermion interaction that describes the decay µ− →
e− + ν̄e + νµ can also describe, for example, the scattering processes such as νµ + e− → νe + µ−,

corresponding to 1 = e−, 2 = νµ, 3 = νe and 4 = µ− in the left panel of Fig. 1. The same effective

Hamiltonian as in Eq. 5 then also describes this scattering process as well. If one calculates the total

cross-section one gets,

σtot =
G2

µs

π
=

2G2
µmeEνµ

π
. (7)

This linear rise of scattering cross-section with s, the square of the centre of mass energy or alternatively

Eνµ , is a reflection of the ’pointlike’ nature of the Fermi interaction of Eq. 5. It can be seen, by doing

a partial wave analysis of the scattering amplitude, that this behaviour implies violation of unitarity

when
√
s ≥ 300 GeV. Of course, in practical terms it corresponds to a Eνµ ≥ 108 GeV and hence

perhaps not very relevant. However, it is the principle that matters. A cure to this problem of the

current -current interaction was indeed offered by postulating the existence of a massive, charged boson

(called the weak-boson W±) by Schwinger. This is the same W± we have already introduced while

interactions of the n and p and is the same for e− to ν transition as for n to p. This was called the ’Conserved Vector Current

hypothesis’ (CVC). In all the discussions regarding the mixing angle, we are referring to the coefficient of this conserved vector

part of the current at the hadron level.
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writing the weak vertex in Fig. 2. Thus the point interaction of Eq. 5 can be understood as an interaction

resulting from the exchange of a W± boson, in the limit of the said mass MW being much bigger

than all the energies in the system. This is depicted in Fig. 3. The observed short range of the weak

e−

νµ

νe

µ−

W

M2
W >> q2 g2W

M2
W

e− νe

µ−
νµ

Fig. 3: Contact interaction resulting from MW → ∞ limit

force causing the β decay, indicated that the W± boson is massive, unlike the photon mediating the

electromagnetic interaction which is massless. The success of the effective Hamiltonian of Eq. 5 implies

a lower bound much bigger than MeV and hence ∼ O (GeV). To summarize, we see that the requirement

that unitarity bound be respected, indicates the existence of a massive charged vector boson W± and the

four-fermion weak interactions can be understood as caused by an exchange of this massive boson. The

’massive’ nature of the exchanged boson was also consistent with the observed ’short’ range of the weak

interactions. However, if it is a gauge boson, then the massive nature will also break gauge invariance!

Further, the massive nature of the gauge boson causes problems such as bad high energy behavior of

scattering amplitudes as well as non renormalisability of the theory. How a massive gauge boson is to

be accommodated in the framework of a gauge theory is going to be the topic of discussion in the next

section.

2.3 Observations meet predictions of the SM

Before beginning with a discussion of details of a gauge theory, let us just briefly take a look how the

establishment of the SM has been a synergistic activity between theoretical and experimental develop-

ments. We saw already how the form of the pre-gauge theory, effective Hamiltonian description of weak

interactions, obtained phenomenologically from the data hinted at a possible gauge theoretic description

of the same. Equally interesting are the hints at existence of new particles given by the theory. While

some of the members of this periodic table, like the µ, were unlooked for and some like the ν were met

with quite a bit of disbelief when postulated theoretically, for most of the recent additions their existence

and in some cases even their masses were predicted if the EW interactions were to be described by a

renormalisable gauge theory.

In fact, the existence of strange particles which contain the strange quarks, coupled with experi-

mental features such as the suppression of the FCNC in EW processes alluded to before, indicated the

existence of the charm quark, as already indicated above. Further, the small mass difference between KL

and KS (or alternatively the K0–K̄0 mixing) could be used to obtain an estimate of its mass. Acciden-

tal discovery of some members of the third lepton and quark family, combined with the requirement of

anomaly cancellation, an essential feature for a renormalisable theory, meant that the remaining mem-

bers of the same family had to exist. Hence t and the ντ were hunted for very actively once the b and

the τ made their appearance! The properties of a renormalisable quantum field theory were the essential

reasons behind the belief in these predictions. The mass of the t quark could also be predicted in the SM,
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using experimental information on neutral B meson mixing and properties of the Z boson, as we will see

below.

The story is not very different for the EW gauge bosons. As was already mentioned, requiring

consistency of the pre gauge theory description of the weak interactions with unitarity, had indicated a

nonzero mass for the charged W± but had not indicated what the mass would be, except that it should

be much larger than the typical energy scales involved in the weak decays ∼ MeV. It is the unified

description of the EW interactions of the Glashow-Weinberg-Salam (GSW) model [11] that actually

gave a lower limit on its mass. Note that the correctness of the V − A nature of weak interactions and

pure vector nature of the electromagnetic interactions predicted existence of a neutral boson other than

the photon γ. In the GSW model, the masses of the W and the new Z boson required in the unified EW

theory, were all predicted in terms of the life time of the µ and the weak mixing angle θW which was

a free parameter in the model. This could be determined from measurements of rates of various weak

processes.

Not just this, the SM also predicted existence of yet another boson, this time spin 0; viz. the Higgs

boson. The mass of the said Higgs boson, however, is a free parameter in the framework of the SM.

Comparisons of the EW observables with precision measurements can constrain the Higgs mass through

the corrections caused by the loop effects which can be computed in a renormalisable quantum field

theory. One can also put limits on this parameter from theoretical considerations of consistency of the

SM as a field theory at high scales: the triviality and vacuum stability, all to be discussed in the lectures.

Let us discuss in detail the case of the t quark which is quite interesting. The existence of the t
quark and the information on its mass came from a variety of theoretical and phenomenological obser-

vations in flavour physics and physics of the W/Z bosons. As already mentioned the explanation of the

experimentaly observed CP violation in terms of the quark mixing matrix requires at least three genera-

tions of quarks. This mixing is described by the famous CKM mixing matrix Refs. [8]– [9]. So in that

sense existence of the t and b was indicated by this observation.2 Experimental manifestation of B0–B̄0

oscillations at the ARGUS experiment [10] was a harbinger of the presence of the t quark. Further indi-

cations for the expected mass actually came from precision measurements of many EW observables, ie.

properties of the Z and the W boson and the quantum corrections caused to them by loops containing

top quarks.

Experimental observation of the t quark at the Tevatron [12], with a mass value consistent with the

implications of the EW precision measurements, provided a test of the description, at loop level, of EW

interaction in terms of an SU(2)L × U(1)Y gauge field theory with SSB. Fig. 4 shows, by open circles,

evolution with time of the values of the top mass extracted indirectly by comparing the measured EW

parameters with the SM predictions. Also shown are the 95% c.l. upper limits from direct searches from

the e+e− experiments (solid line) and from pp̄ experiments (the dashed line). In the last part of the plot

the solid triangles show the mass of the top quark measured directly at the Tevatron and the ’indirectly’

extracted values of Mt at the same time. The remarkable agreement between directly measured and the

’indirectly’ extracted values around the time of the discovery, was a test of the SM at loop level.

Once this was achieved, the same information could be used to obtain constraints on the Higgs

mass, now looking at quantum corrections to the W,Z mass as well as to the Z couplings, caused by

loops containing the Higgs boson. Finally finding a Higgs boson in 2012 [2] with a mass consistent with

these constraints was the biggest success of the SM 3 Fig. 5 reproduced from the Gfitter webpage [14]

illustrates this. The various dark and light shaded regions correspond to 68% and 95% c.l. contours in all

cases. The green bands between the vertical and horizontal lines indicate experimentally measured values

of Mt and MW . The region shaded in blue (the long and narrow ellipses) indicates the region allowed in

2The requirement of anomaly cancellation for the gauge theory of EW interactions to be renormalisable, further indicated

existence of an additional generation of leptons, τ, ντ as well.
3 Knowledge of QCD, the part of the SM which we are not discussing in these lectures, was essential in making precision

predictions for the Higgs signal and hence to this mass determination!
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Fig. 4: Comparison of the limits on the mass of the top quark from direct searches at the e+e− collider (solid

line) and the hadronic colliders (red dashed line) with the indirect limits, indicated by open circles, coming from

precision EW measurements as a function of time. The dot dashed line is an indirect lower limit obtained from the

observed rates of inclusive W/Z production in pp̄ colliders.The solid triangles indicate directly measured values

of the mass of the observed t-quark. This is taken from [13].

the Mt–MW plane, by fits of the SM prediction for precision measurements of EW observables where

the Higgs mass [2] information is used. The big elliptical regions, one of them open at one end, shaded

in light and dark grey, are the ones allowed when none of the mass measurements are used as input and

one lets the EW precision data choose the best fit values. Consistency of the values obtained in these

fits with each other and with the experimental measurements indicated by the small oval with dark and

pale green regions, leaves us with no doubt about the correctness of the SM. This tests the correctness of

quantum corrections to MW coming from the loops containing the t and h; hence of the quantum field

theoretic description of the EW interactions as a gauge theory.

Alongside this spectacular testimonial of the correctness of the EW part of the SM, is also the

equally impressive demonstration of a highly accurate description of all the CP violating phenomena

in terms of the flavour mixing in the quark sector. In the three flavour picture the 3 × 3 CKM matrix

is unitary. Making detailed fits of theoretical predictions to a large variety of data on meson mixing

and decays, to determine the elements of the CKM matrix with high precision, is an involved exercise

as it requires a synthesis of a variety of theoretical tools and high precision data. These elements are

parameterised in terms of two parameters : ρ̄ – η̄ [3]. Fig. 6 taken from PDG-2015 shows the constraints

in the ρ̄ – η̄ plane from a variety of measurements around the global fit point. Various shaded areas

indicate the regions allowed at 95% c.l. from a given measurement. The unitarity of the CKM matrix is

indicated by the fact that the ’tip’ of the unitarity triangle lies in the small intersection region allowed by

all the various measurements. Since for many of these observables their relationship with the parameters

of the SM is given by loop computations, this success too provides a test of the SM as a quantum gauge

field theory.
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3 SU(2)L × U(1)Y gauge theory

3.1 Gauge principle

Gauge principle is the basis of the theoretical description of three of the fundamental interactions viz.

strong, weak and electromagnetic, among the quarks, leptons and the force carrying gauge bosons. QED

is the first gauge theory to be established. We therefore can begin our discussion of gauge theories, by

looking at QED: a theory of a Dirac fermion field ψ(x ≡ ~x, t) of charge e. For a free Dirac fermion

of mass m the Lagrangian density consists of the kinetic term supplemented with the mass term and is
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given by

Lf = iψ̄γµ∂µψ −mψ̄ψ.

However, this Lagrangian density is not invariant under a local U(1) gauge transformation,

ψ(x) → eiαψ(x),with α = α(x). (8)

Note that this non invariance of the Lagrangian density is true only for the local gauge transformation

with α = α(x). To construct a gauge invariant Lagrangian density, one needs to introduce a vector field

Aµ and generalise the derivative ∂µ → ∂µ + iqf |e|Aµ where qf is the charge of the fermion in units of

positron charge |e|. Thus for the electron, the covariant derivative is

Dµ = ∂µ − ieAµ (9)

Combining this generalization of the kinetic term for the fermion, with the gauge transformation of the

vector field

Aµ → Aµ +
1

e
∂µα(x), (10)

one can show that (∂µ − ieAµ)ψ → eiα(x)(∂µ − ieAµ)ψ. Thus, under the gauge (phase) transformation

of the fermion field, the vector field too has to transform with the same transformation parameter α(x).
Note now that the Lagrangian density

LQED = iψ̄γµDµψ −mψ̄ψ − 1

4
FµνF

µν = iψ̄γµ(∂µ − ieAµ)ψ −mψ̄ψ − 1

4
FµνF

µν

= iψ̄γµ∂µψ −mψ̄ψ − 1

4
FµνF

µν + e ψ̄γµψAµ

= Lf + Lgauge + e ψ̄γµψA
µ = Lf + Lgauge + Lint, (11)

with Fµν = ∂µAν − ∂νAµ, is gauge invariant. Note that a mass term for the vector field viz. M2
AAµA

µ

will break this gauge invariance (cf. Eq. 10). Further, this Lagrangian density is just the sum of three

Lagrangian densities: Lf for the free fermion field ψ of mass m as given by the first two terms in the

third line of Eq. 11, Lgauge for free massless gauge field Aµ given by the third term and the interaction

term Lint being given by the last one. Note that the form of the interaction of the fermion with the gauge

field is completely fixed by the form of the covariant derivative Dµ. Further, the mass term

mψ̄ψ = m(ψ̄LψR + ψ̄RψL)

will not be invariant under an U(1) local gauge transformation similar to that given by Eq. 8 if, for

example, the left and right chiral fermions have different U(1) charges. This will be the case with U(1)Y
gauge group of the Standard Model, as we will see very soon.

Note also the interaction term given by:

LQED
int = eψ̄γµψAµ = eJµ,emAµ. (12)

The current Jem
µ of Eq. 12 is the vector bilinear constructed out of the fermion fields ψ and ψ̄. As opposed

to this, the weak current J±µ
12 defined in section 2.2 contains a linear combination of both the vector and

axial vector bilinears. This phenomenologically ascertained form of the weak current therefore pointed

already towards a gauge theory of weak interactions albeit with parity violation. The form of this chirality

conserving current indicated existence of two charged vector bosons which however couple only to left

chiral fermions. Thus the V –A form of the current-current interaction already gives indications about

the representation of this gauge group, to which different types of fermions should belong since, as seen

above, in a gauge theory it is this representation that decides the interaction of the fermions with the

vector gauge bosons. The similarity and the differences in the nature of the weak and electromagnetic

10



current and description of electromagnetic interactions in terms of a U(1) gauge theory, paved the way

towards an unified description of electromagnetic and weak interactions as the electro-weak gauge theory

based on the gauge group SU(2)L × U(1)Y .

Before we formally write down the complete Lagrangian density for the EW part of the SM, let us

discuss the generalisation of the above discussion to non ablian gauge transformations. To that end let

us begin by summarising some of the relevant observations for QED, which we have stated above. The

local phase transformations given by Eq. 8 form an unitary group and is called U(1). The Lagrangian

density of matter fields is invariant under this U(1) transformation only if there exists a vector field

which simultaneously transforms with the same transformation parameter and the matter field interacts

with this vector field in a specific manner. We consider now, a generalisation of this simple symmetry

transformation of Eq. 8 to a case where matrix valued analogues of this simple phase transformations

act on a set of fields and again the elements of the matrices can depend on the space time coordinates

of the point : ~x, t. Again, invariance of the matter Lagrangian density under this local transformation

requires a set of spin 1, vector fields which transform under the local gauge transformation according

to a generalisation of Eq. 10 in addition to a modification of the kinetic term of the matter fields by

replacing ∂µ by the covariant derivative Dµ as done above. Thus there exists now a multiplet of gauge

bosons. Another curious property of the Lagrangian density involving these gauge fields is that even

in absence of matter fields and interactions, the equations of motion are non linear. This in turn means

that the associated spin 1 particles interact with each other in the absence of matter. Further, unlike the

phase transformations of the QED, these matrix valued transformations do not commute with each other.

Hence these generalized gauge theories are also called non-abelian gauge theories.

Lagrangian density of a free, massless non-Abelian gauge theory is given by

Lnonabelian = −1

4
F a
µνF

a,µν (13)

with

F a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW c

µW
c
ν (14)

Here fabc are structure constants which are specific to each gauge group defined by,

[T a, T b] = ifabcT c, (15)

T a being the generators of the gauge transformation. fabc are called the structure constants. T a are called

generators because, in general if Φ represents a matter field (spin 1
2 or spin 0) transforming according to

a representation TIJ of the gauge group then

ΦI → exp−ig(Ta)IJα
a(x) ΦJ , (16)

where g is the coupling constant. The repetition of index a indicates sum over all the generators of the

transformation. The covariant derivative is then given by

DµΦI = ∂µΦI − igV a
µ (T

a)IJΦJ , (17)

where V a
µ denote the associated spin 1 vector fields. The kinetic term for the matter fields, defined in

terms of the Dµ along with the one for massless gauge fields given by Eq. 13, are both invariant under

the gauge transformation if the gauge field also transforms as

V a
µ → V a

µ +
1

g
∂µα

a + fabcV a
µ α

c. (18)

Again the couplings of the matter particles with the gauge bosons V a
µ , are then given by the kinetic term

written down using the covariant derivative given by Eq. 17, just like we did in Eqs. 11 and 12. We can

11



then write down currents JV
µ analogous to Jem

µ of Eq. 12. This is completely determined once we specify

the gauge group, i.e., T a, the representation of the gauge group to which the matter particles belong and

the coupling g.

When a = 1, i.e., when there exists only one gauge boson, these gauge transformations and

covariant derivative given by Equations 16–18 reduce to those for simple phase transformation corre-

sponding to the U(1) case, viz., Equations 8–10. For the case where a is different from 1, because of

the commutator relation, the normalisation of the charge g is fixed for all the representations. For U(1)
gauge transformation on the other hand the normalisation of the charge can be different for different

representations. For future reference, let us also note here that for the SU(2) gauge group we have

T a =
τa

2
and fabc = ǫabc, a = 1− 3

where τa, a = 1 − 3 are the Pauli matrices and ǫabc is the constant, completely antisymmetric tensor.

Hence, for SU(2) the index a takes values 1–3 in Eq. 16.

3.2 GSW model

Let us first write down the gauge boson and matter particle content for the GSW model along the in-

teractions among all these. The gauge group for the GSW model is SU(2)L × U(1)Y . The subscript

L means that the gauge transformations corresponding to this gauge group are non trivial ONLY for

the left chiral(handed)4 fermions and the right chiral fermions remain unchanged under it. The direct

product means that these two groups are independent, i.e., the left handed fermions belonging to a given

representation of SU(2)L will all have the same value of the charge under U(1)Y . Thus ONLY the left

chiral fermions belong to the nontrivial representation of the SU(2)L group and the right chiral fermions

are singlets under the SU(2)L gauge group. Therefore these have NO interactions with the gauge bosons

corresponding to the SU(2)L gauge group.

3.2.1 Particle content and Currents of the GSW model

For the SU(2) group, each representation is labelled by two quantum numbers TL and T3L, where TL
takes integral or half integral values: 0, 1/2, 1, 3/2... etc. and for a given TL, T3L takes values from −TL
to +TL in steps of 1. Thus number of fields belonging to representation labelled by TL is then 2TL + 1.

For singlet representation TL = 0 and for the doublet it is 1/2. Thus a doublet of SU(2)L contains two

members with T3L = ±1/2. The gauge bosons belong to the T = 1 representation (called the adjoint

representation) and hence they are three in number called W a
µ , a = 1 − 3. The U(1)Y gauge group

has only one generator like the QED case discussed above. We denote the corresponding single gauge

boson Bµ. The corresponding current is JY
µ and the charge is called “hypercharge”. The electromagnetic

charge of a charged fermion is independent of its chirality. On the other hand, the two left chiral fermions

of different electromagnetic charges have to have the same U(1)Y charge. Thus it is clear that the U(1)Y
can not be identified with U(1)em, i.e., the hypercharge is different from the electromagnetic charge.

Thus U(1)em arises out of a linear combination of U(1)Y and a U(1) subgroup ofSU(2)L.

First let us discuss the physics in terms of W a
µ , a = 1 − 3 and Bµ. The gauge groups, the

corresponding spin-1 huge bosons and the couplings are indicated in Table 3. As we will see in a minute,

if the left handed fermions belong to the doublet representation of SU(2)L, the corresponding charge

changing gauge current JW
µ we would construct from the covariant derivative, has the same form as the

JCC
µ of Eq. 2, of the V − A current Lagrangian describing the charge changing weak interactions. Let

Y
2 denote the charge of the fermion under the U(1)Y gauge group. The corresponding transformation is

given by

ψ → e−i(g1Y/2)αY (x) ψ (19)

4The word handedness and chirality can be used interchangeably for massless fermions.
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Gauge Group Gauge Boson Fields Coupling

SU(2)L W a
µ , a = 1, 2, 3 g2

U(1)Y Bµ g1

Table 3: Gauge group, gauge bosons and couplings for the GSW model

whereas, for a SU(2)L doublet the gauge transformation is given by

Ψ =

(

f1
f2

)

→ Ψ′ = e−ig2(τa/2)αa(x)Ψ. (20)

f1 and f2 are the T3L = ±1/2 members of this doublet Ψ respectively. τa/2 are the generators T a for

the 2-dimensional fundamental representation.

The fermion content of the GSW model can then be written as shown in Table 4. All the left chiral

Quarks Leptons

(

u
d

)

L

(

c
s

)

L

(

t
b

)

L

(

νe
e−

)

L

(

νµ
µ−

)

L

(

ντ
τ−

)

L

uR, cR, tR eR, µR, τR
dR, sR,bR

+anti-quarks + anti-leptons

Table 4: The fermions and the representation of SU(2)L to which they belong.

fermions belong to the doublet representation, with the up-type quarks and neutrinos having T3L = 1/2
and d-type quarks and negatively charged leptons having T3L = −1/2. Note that according to this

there are no right handed neutrinos in the particle spectrum of the SM. The colour gauge group SU(3)c
commutes with the electroweak gauge group : SU(2)L × U(1)Y . Hence the electroweak interactions of

a quark are independent of its colour. Therefore we suppress here the colour index.

As already discussed U(1)em is a linear combination of U(1)Y and a U(1) subgroup of SU(2).
This is really the essence of Electro-Weak unification and is embodied in Glashow’s observation:

Qf = T3L + Y/2. (21)

Here Qf is the electromagnetic charge in units of |e|, where e is electron charge, T3L and Y/2 denote the

SU(2)L and U(1)Y charges respectively. Writing the electromagnetic charge as a linear combination

of T3L and the hyper-charge Y , embodies the fact that the carrier of electromagnetic interactions, the

photon Aµ will appear as a linear combination of the neutral vector boson W 3
µ and the U(1)Y gauge
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boson Bµ. We can discuss this mixing without making any explicit reference to the Higgs sector. This is

what we will do first and then summarise the details of the SSB. Note that the three gauge boson fields

W 1
µ ,W

2
µ ,W

3
µ : all couple only to left handed fermions and Bµ couples to both the left handed and right

handed fermions. Bµ and W 3
µ mix, giving one zero mass eigenstate γ. One then identifies the other one

with a new neutral vector boson called Z . One can schematically represent this as shown in the diagram

in Fig. 7. Note here that one can discuss this simply at the level of currents which give interactions among

matter and gauge bosons in terms of the gauge principle enunciated in Section 3.1, without making any

reference to a specific model which will generate these mixing and masses. The essence of this mixing

Fig. 7: A schematic description of mixing between the W 3
µ and Bµ. This is taken from [15].

is to define two fields Aµ and Zµ as a linear combination of Bµ and W 3
µ as:

Aµ = cosθWBµ + sin θWW
3
µ , Zµ = − sin θWBµ + cos θWW

3
µ (22)

Here, θW , called the ‘weak mixing angle’, is just an arbitrary parameter denoting the mixing between the

W 3
µ and Bµ. To see how the electric charge e is related to g1, g2 and sin θW , let us construct the currents

JW
µ and JY

µ the way electromagnetic current was constructed in Section 3.1. To do this we need to know

the Y values for the different fermion fields written in Table 4. Let us consider a single generation of

leptons: e−, νe. Eq. 21 means that the lepton doublet L1
L =

(

νe
e−

)

L

has Y = −1 and e1R = eR which

is an SU(2)L singlet has to have Y = −2. Let us indicate the three lepton doublets written in the last

three rows of the Table 4 by Li with i = 1, 3 respectively. We also use Qi
L with i = 1, 3 to indicate the

doublets

(

ui

di

)

L

where u1 = u, d1 = d etc., as written in the first three rows of the same table. For the

quark doublets Qi the hypercharge Y has value 1/3. For all the right handed quarks the hypercharge is

twice the quark charge and Y = 2Qq, since the value of T3L is zero for all the right handed fields.

Following the discussions in Section 3.1, let us start from the kinetic part of the Lagrangian for

all the fermions in Table 4, to construct the physical currents of the GSW model. For the quarks it is

simplest when written in the gauge eigenstate basis u′i, d′i, i = 1, 3. The kinetic term for a fermion field

ψ is given by

Lfermionkin = iψ̄L ∂/ψL + iψ̄R ∂/ψR, (23)

For the SU(2)L × U(1)Y gauge theory the ∂/ is to be replaced by the covariant derivative. This can be

written in terms of the hyper charges for the fermions given in the earlier paragraph. For a fermion f
which is a member of the doublet Ψ this is given by:

∂µΨL → DµΨL = ∂µΨL − i
g1YΨ
2

BµΨL − ig2W
a
µ

τa

2
ΨL. (24)

14



where ΨL = Li
L,QL and YΨ is the hypercharge for the doublet Ψ. For the case of SU(2)L singlets the

covariant derivative is given by

DµfR = ∂µfR − i
g1YfR
2

BµfR. (25)

The kinetic terms for all the fermions can be written as:

Lfermkin =
3
∑

i=1

[

iLi
LD/Li

L + ieiRD/ e
i
R + iQ′i

LD/Q
′i
L + iu

′i
RD/u

′i
R + id′iRD/d

′i
R

]

. (26)

Since there are no right handed neutrinos in the strictest version of the SM, for the lepton sector the mass

basis and interaction basis are the same. Using the expressions for the covariant derivative Dµ of Eqs. 24,

25, along with Eq. 6, we find the interaction Lagrangian to be

∆Lint =
1

2
g1J

µYBµ + g2

( 1

2
√
2
(Jµ+W+

µ + Jµ−W−
µ ) + Jµ 3W 3

µ

)

(27)

where:

Jµ+ = 2
(

ν̄iL γ
µeiL + ūiL γ

µVijd
j
L

)

, Jµ− = (Jµ+)†,

JµY = −ν̄iL γµνiL − ēiL γ
µeiL − 2ēiR γ

µeiR +
1

3
ūiLγ

µuiL +
1

3
d̄′iLγ

µd′iL +
4

3
ūiRγ

µuiR − 2

3
d̄′iRγ

µd′iR,

Jµ3 =
1

2
ν̄iL γ

µνiL − 1

2
ēiL γ

µeiL +
1

2
ūiL γ

µuiL − 1

2
d̄′iL γ

µd′iL,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ). (28)

The couplings must now be rewritten so that one linear combination of Bµ,W
3
µ couples to the electro-

magnetic current and an orthogonal one couples to Jµ 3. For this purpose we may ignore the terms in

∆L depending on W±. For the remaining part, we may think of the physical fields Aµ, Zµ as the result

of a rotation in the Bµ,W
3
µ plane, as already discussed in Eq. 22. We write the inverse rotation:

W 3
µ = cos θWZµ + sin θWAµ, Bµ = − sin θWZµ + cos θWAµ (29)

Inserting into the Lagrangian Eq. 27, we find:

∆L(Bµ,W
3
µ) =

[

1

2
g1 cos θW JµY + g2 sin θW Jµ 3

]

Aµ +

[

−1

2
g1 sin θW Jµ Y + g2 cos θW Jµ 3

]

Zµ

(30)

The expression in the first square bracket in Eq. 30 must be equal to eJµ emAµ where e is the unit of

electric charge and Jµ em is given by an expression for all the charged fermions according to Eq.12 and

can be written as

Jem
µ = −ēiLγµeiL − ēiRγµe

i
R +

2

3

(

ūiLγµu
i
L + ūiRγµu

i
R

)

− 1

3

(

d̄′iLγµd
′i
L + d̄′iRγµd

′i
R

)

. (31)

This can happen only if

e = g1 cos θW = g2 sin θW (32)

It follows that:

tan θW =
g1
g2
, e =

g1g2
√

g21 + g22
(33)

Inserting this into Eq. 30 we learn that the coupling of the Z-boson is:

1
√

g21 + g22

(

−1

2
g21J

µY + g22J
µ 3

)

Zµ ≡ gzJ
µNCZµ (34)
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Thus the weak neutral current is given by:

gzJ
NC
µ =

1
√

g21 + g22

(

−1

2
g21J

Y
µ + g22J

3
µ

)

(35)

where gz is the coupling constant we associate to the Z-boson. This is a convention, because only the

combination gzJ
NC
µ appears in formulae. For convenience we choose:

gz =
g2

cos θW
=
√

g21 + g22 (36)

With this, the weak neutral current is:

JZ
µ = JNC

µ = −1

2

g21
g21 + g22

JY
µ +

g22
g21 + g22

J3
µ

= −1

2
sin2 θWJ

Y
µ + cos2 θWJ

3
µ = J3

µ − sin2 θWJ
em
µ (37)

where we have written two different forms that are both useful.

Taking a look at the first of Eqs. 28 show us that the charged currents Jµ± involve only the left

chiral fermions and have the so called V(ector)−A(xial vector) structure. Jem
µ given by Eq. 31 has pure

vector nature. Eqs. 28 and 37 clearly show that, unlike the W± bosons, the Z-boson does not have V−A

couplings with the fermions. It must be kept in mind that when coupling it to Zµ, this current should be

multiplied by gz =
g2

cos θW
. Note that the expression of the current will remain the same even when it is

written in terms of the mass eigenstates di of instead of d′i.

The weak neutral current can also be written in terms of the T3 and Y of the various fermions and

also as a combination of V and A currents as follows.

JZ
µ =

∑

f

JZ,f
µ =

∑

f

[

f̄γµfLg
f
L + f̄ γµfRg

f
R

]

=

[

1

2
gfV f̄ γµf − 1

2
gfAf̄ γµγ5f

]

. (38)

Here the sum is over all fermions f i = ui, di, ei, νi, i = 1− 3. The couplings gfL, g
f
R, g

f
V , g

f
A can be read

off from Eqs. 28 and 37 to be

gfL = T3(fL)− sin2 θW Qf , gfV = T3(fL) + T3(fR)− 2 Qf sin
2 θW

gfR = T3(fR)− sin2 θW Qf , gfA = T3(fL)− T3(fR)
(39)

In the above equation, we have written down T3(fR) explicitly, which in the GSW model is zero, with

a view to generalize the expressions for the weak neutral current, should the fermions belong to other

representations of SU(2)L × U(1)Y , other than the one in the GSW model. Recall that Qf is the elec-

tromagnetic charge of the fermion in units of positron charge.

Note now that the form for the neutral current of Eq. 38 is exactly the same, for all the fermions

of a given electrical charge and given values of theSU(2)L quantum numbers. Since in the GSW model,

all the quarks or leptons of a given electric charge and handedness belong to the same representation of

SU(2) the weak neutral current automatically conserves ’flavour’, be it the leptonic one or the quark one.

This is indeed quite reassuring since the experiments had shown that while ’flavour’ changing charged

weak current (Eq. 28) exist, decays caused by ’flavour’ changing weak neutral current, FCNC mentioned

before, are either forbidden or suppressed by orders of magnitude. Their absence at the tree level is

automatically guaranteed in the GSW model, just by the particle content. The values of gfA, g
f
V , g

f
L, g

f
R

for the fermions of the GSW model are given in the Table 5.
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f ν e− u d

gfL
1
2 −1

2 + sin2 θW
1
2 − 2

3 sin
2 θW −1

2 +
1
3 sin

2 θW

gfR 0 sin2 θW −2
3 sin

2 θW
1
3 sin

2 θW

gfA
1
2 −1

2
1
2 −1

2

gfV
1
2 −1

2 + 2 sin2 θW
1
2 − 4

3 sin
2 θW −1

2 +
2
3 sin

2 θW

Table 5: The values of axial and vector neutral current couplings gfA, g
f
V for the fermions of the GSW model. Also

given are the neutral current couplings gfL, g
f
R for the left and right handed fermion fields.

Thus we see that in the GSW model, the weak neutral current couplings are completely determined

by g2 and sin θW . The weak neutral current involving νi is pure left handed just like the corresponding

charged current, where as for the charged fermions the V -A mixture depends on the electromagnetic

charge of the fermion because the relative weight of L and R currents is decided by the hypercharge Y .

While the strength of the axial current is completely decided by the T3 value of f iL, the vector coupling

depends on the weak mixing angle θW . As we will see later, the experimentally determined value of

sin2 θW ∼ 0.25. As a result the weak neutral current coupling of the charged lepton (e, µ, τ ) is in fact

close to zero.

The interaction of all the quarks and leptons with the electroweak gauge bosons is encoded in the

currents Jem
µ , J±

µ and JZ
µ given by Equation31, first of Equations 28 and Eq.38. In low energy reactions,

the appropriate way to adjudge the strength of processes mediated by the weak neutral current is to derive

the current-current form of the interaction Lagrangian starting from Eq. 38. This is done by considering

the matrix element of a four fermion scattering process and taking the limit in which the mass of the

exchanged gauge boson is infinite. Let us consider the scattering process f1 + f2 → f1 + f2 through

the exchange of a massive W± (i.e., via charged current:CC) as indicated in the left panel of Fig. 8. The

mW → ∞
W

f2 f1

−igµν
m2

W−q2

f2

f1 f2

f1

g2
2
√
2
J+
µ

f1 f2

g2
2
√
2
J−
ν

g22
8m2

W
= Gµ√

2

J+
µ J

µ−

mZ → ∞

f1 f1

Z

f2 f2

−igµν
m2

Z−q2

gzJ
Z,f2
ν

Gµ√
2

m2
W

m2
Z cos2 θW

= Gµ√
2
ρ

f2 f2

f1f1

JZ,f1µ JµZ,f2

gzJ
Z,f1
µ

Fig. 8: Effective current current interactions for charged and neutral current processes in the left and right panel

respectively.
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effective current-current Lagrangian for the scattering process of Fig.8 can then be written as

LCC
eff = − g22

8M2
W

J+
µ J

−µ = −Gµ√
2
J+
µ J

−µ (40)

with J±
µ as given by Eq. 28. On comparing with the current-current interactions of the pre gauge theory

days, one then gets:

Gµ√
2
=

g22
8M2

W

=
e2

8M2
W sin2 θW

, (41)

where GµVud = GF . It can be noted here that since | sin θW | < 1, the experimentally measured value of

Gµ and e, tells us that MW > 37.43 GeV. For the limiting value of sin θW ∼ 1 we get MW ∼ 100 GeV.

One can similarly write down the effective neutral current interaction effective Lagrangian under

the approximation that the Z boson mass is large, by considering the four-fermion scattering process

shown in the right panel of Fig. 8. This is given by

LNC
eff = −g

2
z

2





∑

f

JZ,f
µ









∑

f

Jµ,Z,f



 (42)

If one calculates the matrix elements for scattering process νe + e− → νe + e− taking place via the

interaction of Eq. 40 and Eq. 42 respectively, viz., MCC and MNC , it can be seen that their ratio is

given in terms of MZ ,MW and sin θW as:

MNC

MCC
=

M2
W

M2
Z cos2 θW

≡ ρ. (43)

Note further, that this effective Lagrangian involves couplings g2, g1 and MW ,MZ . More directly we

can use the two measured couplings Gµ and αem along with ρ and one arbitrary parameter of the model

the weak mixing angle sin θW . MW ,MZ are then given in terms of these and we have traded g1, g2 for

Gµ and αem. We will come back to this later in our discussion of the experimental validation of the SM.

Note also that in these discussions we have completely sidestepped the issue of how the non-zero

masses for the gauge bosons and the fermions written can be made consistent with gauge invariance. In

case of the gauge bosons the loss of gauge invariance also means loss of renormalisability and hence

consequently of the ability to make any predictions. So one of the problems to be addressed is how to

generate the mass terms below in a gauge invariant manner.

Lmass =
1

2
M2

ZZµZ
µ +M2

WW
+
µ W

−µ +
∑

i

mi

[

ψ̄iLψiR + ψ̄iRψiL

]

. (44)

It should be noted that the sum in Eq. 44 is over all the fermions except the neutrinos which are assumed

to be massless here in this discussion.

3.2.2 SSB and generation of W/Z masses.

Before we move on to discuss more about the novel phenomenon of the existence of the weak neutral

current, which was but the first step in testing and establishing the GSW model, let us first look at the

issue of how nonzero masses for the gauge bosons and all the fermions can be generated in a gauge

invariant manner. This is achieved [4] through the famous SSB mechanism [16].

One starts with the SU(2)L ×U(1)Y gauge invariant Lagrangian, for the nonabelian gauge fields

W i
µ, i = 1, 3 and the abelian gauge field Bµ, analogous to Eqs. 13 and 11 respectively.

Lmassless = Lgauge + Lfermikin
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= −1

4
BµνB

µν − 1

4
F a
µνF

a,µν + Lfermikin.

Here Bµν = ∂µBν − ∂νBµ and F a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW c

µW
c
ν with fabc = ǫabc. Further,

Lfermkin is given by Eq. 26.

The considerations of SSB begin by considering a complex scalar field Φ, which is a colour singlet

and an SU(2)L doublet with hypercharge Yφ = 1, given by

Φ =

(

φ1
φ2

)

≡
(

φ+

φ0

)

where φi = Re(φi) + iIm(φi) and similarly for φ+, φ0. Thus we have four real scalar fields and the

Lagrangian we consider is,

LΦ = (DµΦ)
†DµΦ− V (Φ) = (DµΦ)

†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2, (45)

with µ2 > 0. Note that compared to the Lagrangian for a free complex scalar field, this has the wrong

sign for the quadratic term. So µ is not the mass and we can not interpret the excitations of the field Φ as

propagating degrees of freedom. But it is precisely this wrong sign that is required for the spontaneous

symmetry breaking to occur.

Fig. 9: A sketch of the mexican hat potential

Let us look at Figure 9 which shows a sketch of a similar potential, but for a single complex scalar

field φ: V (φ) = −µ2φ†φ + λ|φ†φ|2. This shows clearly that classically the point ℜeφ = ℑmφ = 0
is in fact a maximum and there exist a continuum of minima where the field is nonzero, all related to

each other by the symmetry transformation of the Lagrangian, which is a U(1) transformation for the

case shown in Fig. 9. SSB occurs when the quantum field configuration is such that the field has a

nonzero vacuum expectation value corresponding to one of these minima, thus breaking the symmetry.

The system is then described by the fluctuations of the fields around this minimum.

For the V (Φ) of Eq. 45 the minimum occurs for

Φ†Φ =
µ2

2λ
≡ v2

2
. (46)

The SU(2) symmetry is broken when the vacuum field configuration chooses a particular direction in the

φ1, φ2 space. The choice of the representation of the Higgs field decides pattern of symmetry breaking.

For the case of SU(2)L×U(1)Y case under consideration, the unbroken symmetry should correspond to
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the U(1)em invariance since the γ is massless. Glashow’s partial symmetry breaking withQ = T3L+Y/2
aids in deciding how to implement and helps us decide which of the four scalar fields can acquire a

nonzero vev. The charge operator should annihilate the vacuum and hence only the electrically neutral,

real scalar field can have a nonzero vev. The required symmetry breaking pattern is guaranteed (with the

choice YΦ = 1) by

< 0|Φ|0 >=< Φ >0=

(

0

v/
√
2

)

(47)

As follows from Eq. 46, v =
√

µ2

λ . Since Φ is a SU(2)L doublet clearly this choice for the vev means

that the vacuum configuration breaks the symmetry and chooses a particular minimum from amongst the

continuum of minima, similar to the situation depicted in the picture in Fig. 9. Since the electromagnetic

charge still annihilates the vacuum, the symmetry breaking pattern is SU(2)L × U(1)Y → U(1)em

One can rewrite the field Φ using the following parameterisation in terms of θa, a = 1, 3 and h all

of which have vacuum expectation value to be 0.

Φ(x) =
1√
2

(

θ2 + iθ1
v + h(x)− iθ3

)

. (48)

If θa(x), h(x) are small then we get

Φ(x) = exp(iθaτ
a/v)

(

0

v/
√
2 + h(x)/

√
2

)

. (49)

This is then an expansion of the field Φ in terms of the fluctuations around the minimum. One recognizes

the factor outside as that for a gauge transformation for a SU(2)L doublet. Comparing this expression

with Eq. 16 we see immediately that by doing a gauge transformation Φ′ = − exp(iθaτ
a/v)Φ we get,

Φ′(x) =

(

0

v/
√
2 + h(x)/

√
2

)

(50)

This gauge is called the Unitary gauge. Equation 47 also means that the vev is zero for field h. The three

scalar degrees of freedom θi in fact have disappeared from the spectrum in this gauge. Indeed these three

correspond to three Goldstone Bosons corresponding to the three generators of the symmetry group that

are broken spontaneously.

Let us now evaluate LΦ of Eq. 45 in the unitary gauge using Φ′ from Eq. 50. We use

DµΦ = ∂µΦ− i
g1
2
BµΦ− ig2W

a
µ

τa

2
Φ. (51)

The covariant derivative term in Eq. 45 gives rise to terms quadratic in the gauge boson fields which are

given as below:

∣

∣

∣

∣

∣

(

g1
2
Bµ + g2

τa

2
W a

µ

)

(

0
v√
2

)∣

∣

∣

∣

∣

2

=
g22v

2

8

(

W a
µW

aµ
)

+
g21v

2

8
BµB

µ

−g1g2v
2

4
W 3

µB
µ

=
g22v

2

4
W+

µ W
−µ +

v2

8

(

g1Bµ − g2W
3
µ

)2

=
g22v

2

4
W+

µ W
−µ +

(g21 + g22)v
2

8
ZµZ

µ (52)

20



This then tells us directly that three of the four gauge bosons become massive: the W± and one linear

combination of Bµ,W
3
µ which we call Zµ and the orthogonal linear combination remains massless. This

also tells us

M2
W =

g22v
2

4
, M2

Z =
(g21 + g22)v

2

4
=

M2
W

cos2 θW
. (53)

Identifying g1Bµ − g2W
3
µ with Zµ with proper normalisation we see that expression for Zµ is the same

as that given in Eq. 22 and tan θW same as that in Eq. 33.

The new thing compared to the earlier discussion of the GSW model, is that now one has a model

for generating masses for the gauge bosons from the gauge invariant kinetic term of the scalar field. The

combination Aµ remains massless as it must. The fact that the same linear combination which has mass

zero also has the couplings to fermions that a photon field Aµ must have (cf. Eqs. 30,31) means that the

SSB has achieved the desired symmetry breaking pattern. Further, in the earlier discussion MW ,MZ

were unknowns, put in by hand; but now we find that the two are related to each other.

Another fact worth noticing is that the value of the vev v gets determined in terms of measured

value of Gµ. Using the expression for MW in Eq. 53 and that for Gµ in Eq. 41, we get

v =

(

1√
2Gµ

)1/2

≃ 246 GeV. (54)

Using the expression for g2 in terms of e and sin θW and Eq. 53, one can then see that,

MW =

√

π√
2Gµ

αem

sin2 θW
=

37.3

sin θW
GeV; MZ =

37.3

sin θW cos θW
GeV. (55)

This is the promised reduction in the number of free parameters. Now everything in the GSW model is

predicted in terms of the two known constants αem, Gµ and one free parameter sin2 θW . An accurate

determination of Gµ is possible via life time of the muon, τµ. Since | sin θW | < 1 this also means we

have an automatic lower limit on the masses of the W,Z bosons of 37.3 GeV.

We further notice from Eq. 53 that the ratio ρ defined in Eq. 43 is predicted to be unity in the GSW

model and we have

ρ =
M2

W

M2
Z cos2 θW

= 1.

Noting, in addition, from Table 5 that gfA, g
f
A are numbers of O(1), we can then conclude from Eqs. 40–

42 that one should expect the ν induced scattering processes via neutral current interactions to happen

at rates similar to those via charged current interactions. This conclusion is of course independent of the

actual values of MW ,MZ with the proviso that the energies are much smaller compared to these masses.

Thus the GSW model not only predicted the existence of a weak neutral gauge boson and weak neutral

current processes mediated by it, but it also predicted their strength to be O(Gµ).

The experiments with the bubble chamber Gargamelle at CERN, found evidence for the processes

induced by neutral current interactions as predicted by the GSW model. The energies involved were

smaller than the lower bound on the W/Z masses implied by Eq. 55. Hence one can use the effective

lagrangian description of Eqs. 40 and 42. In addition, measurements of cross-sections for neutral current

processes further showed the ratio ρ to be close to 1. Thus these provided both the qualitative and

quantitative support for the GSW model. This was before W,Z were experimentally discovered and

their masses measured.

It was further seen that the model prediction of ρ = 1 is true even with additional Higgs fields as

long as the scalars responsible for the SSB belong to the doublet representation. This can be understood

in terms of an accidental symmetry that the scalar potential V (Φ) seems to have for this choice of the

representation of the Higgs field. We shall discuss later this symmetry called the Custodial Symmetry.
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After working out the remaining terms also in terms of the field Φ′ in the unitary gauge we get,

LU
Φ′ =

[

M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ

](

1 +
h

v

)2

+
1

2
(∂µh)

2 + µ2h2 − λvh3 − λ/4h4

= LV V h + Lh. (56)

The first two terms are the mass terms for the W,Z as well as the term describing the interaction between

a pair of gauge bosons and the h. The form of this term makes it very clear that the strength of the V V h
coupling is simply proportional to the mass of the corresponding gauge boson. This proportionality

between the mass and the coupling is the most critical prediction of the SSB.

The remaining terms describe now a real, scalar field which is a propagating degree of freedom

with mass Mh =
√

2µ2. Since v =
√

µ2/λ, the mass of the Higgs boson is given in terms of self

coupling λ. This being an arbitrary parameter of the Higgs potential, not fixed by any condition, Mh too

is a free parameter of the SM, with no prediction for it. We will come back to this later when we look at

theoretical constraints on the Higgs mass!

In the unitary gauge now the propagating degrees of freedom are the three massive gauge bosons

W±, Z , one massless gauge boson γ and ONE propagating massive scalar. A massless vector boson

has two degrees of freedom corresponding to the two degrees of polarisation it can have whereas a

massive gauge boson has three degrees of freedom as it can also have longitudinal polarisation. Out

of the four scalar degrees of freedom only one, h, is left in the particle spectrum and the other three

provide the remaining degrees of freedom corresponding to the longitudinal polarisation necessary for

the three gauge bosons to be massive. The total number of bosonic degrees of freedom before SSB are

twelve: eight corresponding to four massless gauge boson fields W a,a=1,3
µ , Bµ and the four scalars in

Φ. After the SSB one has again twelve bosonic degrees of freedom : nine corresponding to the three

massive gauge bosons W±, Z , two corresponding to the massless photon γ and one corresponding to the

massive neutral scalar h. In the unitary gauge the particle spectrum contains only the physical fields and

the Goldstone boson fields θa, a = 1, 3 of Eq. 48, are absent from the spectrum. The same is depicted

somewhat pictorially below:

Lmassless
gauge + LΦ Lmassive

gauge + Lh

4 massless 4 scalar
SSB,Unitarygauge−−−−−−−−−−−−→ 3 massive, 1 massless 1 physical

gauge bosons fields gauge bosons scalar

8 d.o.f. 4 d.o.f. 11 d.o.f 1 d.o.f.

Table 6: Bosonic degrees of freedom before and after the SSB.

3.2.3 SSB and generation of lepton masses

It was really Weinberg’s genius that he saw that exactly the same mechanism can be used effectively to

give masses to all the fermions. He did so by postulating a gauge invariant term for interaction between

the fermionic matter fields and the Higgs field! For the electron, it can be written as

Le
yukawa = −f∗eL̄′

1LΦe
′
1R + h.c. (57)

The ’prime’ on the lepton fields are to indicate that these the interaction eigenstates. One can also see

clearly that this is a singlet under SU(2)L and U(1)Y ). Using Φ′ of Eq. 50, we get we get

Le,U
yukawa = −f

∗ev√
2
(ē′Le

′
R)(1 + h/v) + h.c. (58)
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The first term in the bracket is clearly the mass term. Hence we have

me = +f∗ev/
√
2 e′ = e (59)

Second term in the bracket also then tells us that the hee coupling is just me. One can do the same for all

the charged leptons. Thus the gauge invariant Lagrangian Li
yukawa, gives rise to the mass term for the

leptons.

The original paper by Weinberg [11] talked only of leptons. With some extra work the procedure

works for the case of quarks as well. The most general Yukawa interaction can be written as,

Lq
yukawa = −f∗dij Q̄

′i
LΦd

′iR − f∗uij Q̄′i
LΦ̃u

′j
R + h.c. (60)

where Φ̃ = iσ2Φ
∗. We want the L to be invariant under SU(2)L ×U(1)Y transformations. The SU(2)L

invariance is guaranteed by construction. Recall, for the right handed quark fields the hyper charges are

Y = −2
3 and 4

3 for the down-type and up-type quarks respectively whereas Q̄i′ has Y = −1
3 . As a result,

the second term involving up-type quarks in Lq
yukawa is invariant ONLY if the hypercharge of the scalar

doublet has Y = −1. The most economical choice for such a field is then Φ̃. Again the ′ for the quark

fields indicate that these are interaction eigenstates. In the unitary gauge, using Φ′ of Eq. 50 we get,

Lq,U
yukawa = −

f∗dij√
2
v d̄′iL(1 + h/v)d′jjR −

f∗uij√
2
v ū′iL(1 + h/v)u′jR + h.c. (61)

We see that after the SSB, the SU(2)L ×U(1)Y gauge invariant Lagrangian Lq
yukawa of Eq. 60 contains

mass terms for both the up-type and down-type quarks. These are matrices in the generation space and

are given by;

md
ij =

f∗dij√
2
v , mu

ij =
f∗uij√
2
v. (62)

Since in general f∗dij , f
∗u
ij are completely arbitrary matrices in the generation space, these mass matrices

are not diagonal in the basis d
′i, u

′i, in the most general case. The states d
′i, u

′i, i = 1− 3 are therefore

clearly not mass eigenstates. di, ui, i = 1, 3 are thus linear combinations of d
′i, u

′i, i = 1, 3. In the

most general case, after diagonalisation of both the md,mu matrices given above, we can write the weak

charged current in terms of the mass eigenstates ui, di as indicated in Eqs. 27 and 28. An alert reader

might have wondered why one does not have such a mixing matrices for the charged leptons. This has

to do with the fact that the mixing matrix V given in Eq. 6, arises from a mismatch in the matrices

which diagonalise the d and u mass matrices, and will be different from each other in the most general

case. However, for the charged lepton case, the neutrinos being massless, the corresponding mismatch

between matrices diagonalising the charged lepton and neutrino mass matrices, can not have any physical

implications.

3.2.4 Flavour changing neutral currents

An alert reader might wonder why we emphasize the issue of FCNC so much. To appreciate this, we have

to discuss briefly one more puzzle that the weak decays of the K mesons had presented to the theorists

during the development of a theory of weak interactions. Let us consider the leptonic decay of K+ →
l+νl. The big difference in the measured branching ratios for the leptonic decays lνl, (63.55 ± 0.11)%
and (1.581± 0.007)× 10−5 for l = µ, e respectively, can be understood in terms of the V −A structure

of the leptonic current in first of the equations in Eq. 28. The K± were known to have a non-leptonic

decay as well, with a branching ratio of about 25%. On the other hand, the K0 mesons were found to

decay only in the non-leptonic final states. For example, even today only an upper limit of 9 × 10−9 is

available for the branching ratio for K0
S → µ+µ−, meaning thereby that this decay is not yet seen. This

big difference in the leptonic branching ratios for the K± on the one hand and K0
S on the other, was
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interpreted as suppression of strangeness changing weak neutral current as compared to the strangeness

changing, weak charged current. However, there was no ’understanding’ as to why this should be so.

So after the postulation of weak neutral currents in the GSW model, it was an obvious question to ask

whether the model provides a ’natural’ understanding of the observed fact of suppression of the flavour

changing weak neutral currents.

Weak decays of hadrons can be understood (and calculated) in the framework of the quark model

and W± bosons. The left panel of Fig. 10 shows the diagram which needs to be computed for (say)

the ∆S = 1 weak decay, K+ → νll
+ taking place via charged current. The hadronic decays of the

u

s

K+

l+

νl

W

Weak CC

d

s

K0
S

µ+

µ−Z

Weak NC

Fig. 10: Leptonic decay of mesons via currents. The blob indicates that the quarks are bound in the K mesons.

K± mesons can then be understood in terms of hadronic decays of the W±. Both the non-leptonic and

leptonic decays of the K± thus happen at the weak rate; amplitude being proportional to Gµ, the relative

branching ratios being controlled by those of the W± which are known in the GSW model.

The existence of the weak neutral Z boson, in principle, could have given rise to weak leptonic

decay of K0
S mediated by the Z as depicted in the right hand panel of Fig. 10 with rates similar to the

charged weak current processes, should a u − d − Z vertex exist. This too would be then a ∆S = 1
process. The happy instance of absence of such a term in the JZ

µ of Eq. 38, explains the absence of pure

leptonic decays of K0
S via the weak neutral current at the tree level. This is then consistent with the

experimentally observed suppression of such decays. As has been already mentioned, absence of this

current is due to the fact that the fermions of the SM with a given electromagnetic charge and handedness,

belong to the same representation of the EW gauge group. Thus, the observed suppression of the FCNC

decays, in fact indicated the need of the existence of the c quark with Q = 2
3 , which is a T3 =

1
2 member

of the SU(2) doublet along with the s quark. The mere presence of a c-quark in the spectrum is enough to

achieve this absence of the FCN. Further, this result is independent of the masses of the quarks involved.

Even though such a decay is forbidden at the tree level by the absence of FCNC couplings in

Eq. 38, it can take place through loop processes at a higher order in Gµ through the charged current (CC)

interactions. In a renormalisable gauge theory such as the GSW model, one should be able to compute

the rate at which it is predicted to occur. This can then be compared with the observed suppression of

less than one part in 109.

Fig. 11 depicts two of the possible four box diagrams which would give rise to this decay at the

loop level, in a world with only four quarks u, d, s and c. The difference between the left and the right

panel is in identity of the charge +2
3 quark which is exchanged in the t-channel. There will also be two

more diagrams where the W ’s form the vertical legs of the box. One calculates these loops explicitly

in a gauge theory with SSB as it is renormalisable. In a world with only 3 quarks, one would compute

only the diagram in the left panel where the u quark is exchanged in the t channel and the amplitude of

a second diagram where it is W which is exchanged in the t channel and u forms the horizontal leg of

the box. Recall we already know that for a unified theory MW > 37.3 GeV. The loop amplitude, can

then be computed in the approximation m2
u << M2

W . The amplitude of the box will be proportional to

G2
µ sin θc cos θc × loop function, modulo the wave function factors which will describe how the s̄ and
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νµ

W−

u

W+s

d

µ+

µ−
cos θc

sin θc

O(G2
F sin θc cos θcm

2
W ) ∼ GF sin θc cos θcGFm

2
W

K0

νµ

W−

c

W+s

d

µ+

µ−− sin θc

cos θc

O(G2
Fm

2
W sin θc cos θc) ∼ 10−5GF sin θc cos θcm

2
W

K0

Fig. 11: One loop diagrams giving rise to K0
S → µ+µ−

d quarks are held together to form a K̄0
S . One then gets

Mloop
µµ (K0 → µ+µ−) ∝ g22

M4
W

cos θc sin θc g
2
2 ×M2

W (1 +O(m2
u/M

2
W ) (63)

The factors of sin θc, cos θc that appear at various vertices in these diagrams are a reflection of Cabibo

mixing. In the limit where all the masses can be neglected, the loop function can only involve M2
W , which

is what explicit computations will yield. The M4
W in the denominator comes from the W -propagators.

Remembering the relation between Gµ and M2
W (Eq. 41), we then find that the amplitude can be written

as:

Mloop
µµ (K0 → µ+µ−) ∼ G2

µ cos θc sin θcM
2
W . (64)

Let us compare then the order of magnitude for this amplitude with the one expected for the non leptonic

K0

s

W

u

d

d

π+

π−

Fig. 12: One loop diagrams giving rise to K0
S → π0π0

weak decay K0
S → π0π0. The latter takes place not through a loop diagram but via the weak charged

current at tree level and occurs at O(Gµ). A possible digram is shown in Fig. 12. Amplitude for this de-

cay will be proportional to Gµ sin θc cos θc, modulo the aforementioned wave function factors describing

qq̄′ bound state. If it were not for the factor of M2
W (MW > 37.3 GeV2), the additional factor of Gµ

present in the loop amplitude of Eq. 64, could have suppressed the Mloop
µµ by a factor 10−5 compared to

the charged current induced, tree level amplitude for K0 → π0π0. Thus the rate for the µ+µ− decay

could have been suppressed to the experimentally observed low level as compared to the π0π0 decay.
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However, the factor M2
W removes this suppression of the Mloop

µµ (K0 → µ+µ−). As a result, in the three

quark picture, the amplitude for the µ+µ− decay is suppressed though not hugely compared to the π0π0

decay which in turn occurs at the usual weak rate. This then is in contradiction with the experimentally

observed branching ratio of about ∼ 31% for the π0π0 final state and the observed upper limit on the

branching ratio for the µ+µ− channel of 10−9.

When one adds to the loop amplitude of Eq. 63 the contribution coming from c loop as well,

something interesting happens. Due to the relative negative sign of the term containing sin θc, we note

that the amplitudes from the two box diagrams in the left and right panel of Fig. 11, will cancel each

other exactly in the case where the masses of the u and c quarks are equal. The large term independent

of the mass of the quark in the loop thus cancels between these two diagrams! The non leading terms

dependent on the mass of the quark in the loop, will give zero when mu = mc and will be proportional

to m2
c −m2

u. So the factor with mass dimension two, in the amplitude Mµµ is no longer the large M2
W ,

but m2
c −m2

u ∼ m2
c . Thus, in the four quark picture, the observed suppression happens due to the very

existence of the charm quark and is guaranteed here by the orthogonality of the quark mixing matrix.

Further, any deviation from zero for the branching ratio will then depend on the difference in the masses

of the quarks being exchanged in the loops and in fact can give indirect information on these, in the

framework of a gauge theory when the various parameter values g1, g2, v and mixing angles are known.

However, particularly in the case of K0 → µ+µ− no firm constraint on the charm mass can be drawn

due to the existence of additional contributions to this process which do not come from the weak charged

current interactions along with some accidental cancellations.

A similar suppression of FCNC is also observed experimentally in the the K0-K̄0 mixing which

is a ∆S = 2 transition. In principle, this could occur at higher order in the CC weak interactions which

are strangeness changing with ∆S = 1. The KL–KS mass difference is ∆mK = |mKL
− mKS

| =
(3.484 ± 0.006) × 10−12 MeV, with ∆mK

m
K0

≃ 8.5 × 10−15. Recall here that the strength of weak

interactions is given by Gµ ∼ 1.01×10−5

m2
p

. The strength of the ∆S = 2 transition which causes the K0–

K̄0 oscillations and gives rise to the KL–KS mass difference, is thus clearly weaker than that expected

from just two insertions of the CC weak interaction and is thus suppressed perhaps even further. In the

early days of gauge theory it was not clear whether the K0–K̄0 mixing is caused by a new interaction

weaker than the weak or whether it can be understood as a higher order effect of the |∆S| = 1 weak

charged current interaction.

In a gauge theory one can compute the expected value of this mixing in terms of loop diagrams

very similar to those shown in Fig. 11, where at the right hand end of the box the νµ is replaced by a

u or c-quark line and the µ+, µ− lines are replaced by the d̄ and s quark line which are bound in a K̄0

meson. Again, we show only two of these diagrams contributing to it and that too in the 4-quark picture,

in Fig. 13. Again one can make very similar observations as before. If the model had only three quarks

u, d, s then only the digram involving the u quarks would have contributed and it is very clear that the

predicted K0–K̄0 mass difference will not be proportional to G2
µ in the limit that u, d, s quark masses are

much smaller thanMW . As a result this contribution would have been much bigger than the experimental

measurement mentioned above. On the other hand, in the four quark picture, if the masses of u and c
quarks were equal the contribution from the two diagrams will just cancel each other due to the factors

of cos θc and sin θc appearing with appropriate signs and will be zero in this limit of mc = mu. Further,

the actual value of the predicted mass difference will now depend on mc,mu as well as experimentally

measured values of Gµ, θc etc. The observed mass difference could then be interpreted as an upper limit

on the mass difference mc −mu and further as a limit on mc of about a few GeV neglecting mu. This

is perhaps the first example of prediction of the ’scale’ of new physics (in this case the charm quark)

through virtual effects on quantities measured at energies much below the scale.

There are two parts to this calculation. One is evaluation of the transition amplitude indicated

by the box diagram drawn involving the W ’s and the quark lines, and the other is conversion of that
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c

W−

u

W+s̄

d

d̄

s

K0
K̄0

∆S = 2

Fig. 13: One loop diagrams giving rise to K0 − K̄0 mixing.

amplitude into mass difference between the mesons. This requires evaluation of the matrix element

between the meson states of the effective Lagrangian which in turn has been extracted from the transition

amplitude at the quark level. One can relate the former to the meson wave function factor encoded in the

decay constant fK which in turn can be extracted from the measured life times of the kaons. The loop

calculation, yields a result for the mass difference ∆MK = |MK0
−MK̄0

|,

∆MK

MK
=

2

3

G2
µ

4π2
m2

c cos
2 θc sin

2 θcf
2
K (65)

In principle, the large mass of the t quark means that this could change substantially in the six-quark

picture. A calculation of the mass difference in the six-quark case can be shown to be

∆MK

MK
=

2

3

G2
µ

4π2
m2

c cos
2 θc sin

2 θcf
2
KX (66)

with

X = (sin2 θc cos
2 θc)

−1ℜe
[

(VcsV
∗
cd)

2 +
m2

t

m2
c

(VtsV
∗
td)

2 + VcsV
∗
cdVtsV

∗
td

2m2
c

m2
t −m2

c

ln

(

m2
c

m2
t

)]

(67)

For the four-quark case the CKM matrix is just a 2 × 2 matrix and hence Eq. 66 just reduces to Eq. 65.

For the six quark case, indeed X in Eq. 67 contains terms ∝ m2
t . These terms can, in principle, dominate

the mass difference ∆MK . However, since the elements of the CKM matrix which connect the third gen-

eration with the first and the second generation, Vtd, Vts, are extremely small, the dominant contribution

to ∆MK

MK
is still given by Eq. 65.

In fact, even without calculating the loop one could try to estimate the size of expected value of

∆mK assuming that the ∆S = 2 transitions are caused by an interaction with strength proportional to

G2
K = G2

µ sin
2 θc. Since Gµ has mass dimension −2, we need to add appropriate factors of the only

mass available at the meson level, viz. mK . Thus the expected mass difference is

∆MK

MK
= G2

µ ×m4
K = (1.01 × 10−5)2 ×

(

mK

mp

)4

sin2 θC ≃ O(10−14) (68)

which is indeed the right order of magnitude. This thus means that this amplitude must be ∝ G2
µ sin

2 θc
and can NOT be ∼ O(Gµ).

Thus one sees that the suppression of FCNC that has been observed experimentally is ’understood’

neatly, both at the tree and loop level in a gauge theory, in terms of the chosen particle spectrum of the
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SM. At the tree level case it is just guaranteed by the representation of the group to which quarks of a

given electromagnetic charge and handedness belong where as at the loop level it is the orthogonality

of the mixing matrix. I.e, the mere presence of charm quark in the spectrum is sufficient to achieve

both. The latter observation is the celebrated GIM mechanism [17]. In the six quark case, it is not the

orthogonality of the mixing matrix but the Unitarity of V matrix that guarantees the GIM cancellation.

Further, the actual observed suppression can give a hint about the masses of the quarks involved. In fact,

the first ’prediction’ [18] for the charm mass around a scale <∼ a few GeV was made, using the GIM idea

by comparing the observed ∆M , with the one calculated theoretically. The uncertainties in the upper

limit were mainly due to the gaps in the theoretical understanding of strong interactions at the time. As

explained above, while in principle this ’prediction’ could have had ’large’ corrections, for the values of

the mixing matrix elements realised in nature, the prediction was correct.

3.2.5 Anomaly cancellation

As we have seen above, the GSW model contains both the vector and the axial vector currents. This

causes a problem when we try to renormalise the theory and do loop computations. The gauge invariance

of axial vector currents of the type

J5
µ = ψ̄γµγ5ψ

′,

(ψ′ = ψ for neutral currents) is not preserved by dimensional regularization due to the presence of γ5 in

the current. This means that even though,

∂µJ
µ
5 = 0

classically, at loop level due to the non invariance of the regulator,∂µJ
µ
5 6= 0 and the RHS develops a

nonzero term on the RHS. Hence, this axial gauge current is no longer conserved. The current is said

to be ‘anomalous’. As we know from Noether’s theorem if the current is not conserved, it means gauge

invariance is broken. Gauge symmetry along with Higgs mechanism is needed to have a consistent quan-

tum theory with massive gauge bosons. Thus if the theory has an anomalous current (or has anomaly) the

theory may not make sense at quantum level. It was shown by Adler and Bell-Jakciw, that there is only

one type of loop diagram with a logarithmic divergence which can make ∂µJ
µ
5 non- vanishing and poses

a danger to the conservation of the axial gauge current. This is a triangle diagram with a fermion loop

and two gauge boson legs and one current insertion; equivalently one can also consider a fermion loop

with three gauge boson legs. In the GSW model with its SU(2)L gauge bosons which have couplings

only to left chiral fermions and the U(1)Y gauge bosons which have unequal couplings to the left and

right chiral fermions, these triangle diagrams are in general not zero. Further, one can show that the

anomalous contribution is independent of the mass of the fermions in the internal loop.

There are in fact four types of triangle diagrams we need to consider out of which three are shown

in Fig. 14. Consider the diagram in the left most panel which contains matrix element of a pure V − A

∂µJ
µa
5

W c
ν

W b
ρ

∂µJ
Bµ
5

W b
ν

W a
ρ

∂µJ
Bµ
5

Bν

Bρ

Fig. 14: Triangle diagrams with anomalies.

current insertion along with two SU(2)L gauge boson legs. Only left handed fermions contribute to this
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anomaly and it can be shown that

∂µJ
µa
5 ∼ trτa{τ b, τ c}ǫαρβνF b

αρF
c
βν . (69)

Here the ’tr’ refers to the trace over representation matrices and indicates the sum over all the fermions in

the representation. Since {τ b, τ c} = 2δbc and τa are traceless matrices this anomaly is zero identically.

In fact, the diagram with just one SU(2)L V–A current insertion not shown here will also give zero

contribution to the anomaly due to the traceless property of τa, a = 1, 3 matrices. The central diagram

also gets contribution only from the left chiral fermions and is given by

∂µJ
µ
5 ∼ tr(YL)ǫ

αρβνF a
αρF

a
βν (70)

The notation tr(YL) indicates that only the left chiral fermions contribute to this quantity and sum is to

be taken over one SU(2)L representation. The contribution of the rightmost diagram in Fig. 14 is given

by

∂µJ
µ
5 ∼ tr

(

Y 3
L − Y 3

R

)

ǫαρβνBαρBβν . (71)

We see that for a single lepton generation the anomaly of Eq. 70 is proportional to 2 × YL = −2.

Summing over all the lepton doublets it will have a value −6. However, one notices that, for a single

quark generation it is 2× 1/3. The three colours add another factor of 3. Thus we find,

tr(YL)|l + tr(YL)|q = −2 + 3× 2× 1/3 = 0.

Thus this anomaly vanishes identically for the particle content of the left chiral fermions in the GSW

model. Further, we also notice that while (2Y l
L)

3 − (Y e
R)

3 = −2 + 8 = 6 is not zero, it is again

compensated by the value for the quark doublets which is 3× (−2/27−
(

4
3

)3
+
(

2
3

)3
) = −6. Thus again

tr
(

Y 3
L − Y 3

R

)

|l + tr
(

Y 3
L − Y 3

R

)

q
= 6− 6 = 0.

Hence contributions to both the anomalies, from loops of fermions of one quark and one lepton doublet

of the GSW model, are equal and opposite in sign. This means that the numbers of the lepton and quark

doublets have to be exactly equal so that the anomalies do not spoil the gauge invariance of the GSW

model and hence the renormalisability.

3.2.6 Custodial Symmetry

Let us discuss further the ρ parameter. To that end let us understand in a little more detail the origin

of the prediction of unity for ρ defined Eq. 43. Let us begin first writing down the most general gauge

boson mass terms that one could generate by spontaneous symmetry breaking. In the W a
µ , a = 1, 3 and

Bµ basis this can be written as









M2
W 1 0 0 0
0 M2

W 2 0 0
0 0 M2

W 3 MWB

0 0 MWB M2
B









(72)

The mass terms MW a, a = 1 − 3,MB and MW 3B arise from the covariant derivative term DµΦ
†DµΦ

(cf. Eq. 51), after the field Φ acquires a non zero vev. The expressions for MW 3B , MW a , a = 1, 3 and

MB that one would get as a result by expanding the field around the minimum, will depend on the weak

isospin charges T, T3L of the field Φ. Demanding that the EW minimum conserves electromagnetic

charge, as it must because SU(2)L ×U(1)Y breaks to U(1)em after Φ acquires the nonzero vev, implies

that the T3L value of field which acquires the nonzero vev will be given by Q = 0 = T3L + Y/2.

While various entries in this mass matrix will then depend on the isospin and the hyper charge of the Φ,
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conservation of the electromagnetic charge will mean that the mass matrix will have a block diagonal

form. The same also implies m2
W 1 = M2

W 2 = M2
W where MW is the mass of the W± boson, defined

via the last of equations in Eq. 28. The W 3
µ and Bµ will mix. Irrespective of the representation to which

the scalar Φ belongs we are interested in the symmetry breaking patterns where SU(2)L×U(1)Y breaks

to U(1)em on , on Φ achieving a nonzero vev. Hence one of the eigenvalue of the 2 × 2 block diagonal

matrix aught to be 0. The value of MZ as well as the ρ parameter will thus depend on the representation

of Φ. In fact, it is possible to write a general expression for ρ.

For the present, let us continue with this general form of the matrix without committing to a

representation for Φ. Again defining Zµ, Aµ as in Eq. 29, to be the eigenstates of the above block

diagonal mass matrix, it is easy to see

M2
γ =M2

W 3 cos
2 θW +M2

B sin2 θW + 2M2
WB sin θW cos θW = 0

M2
Z =M2

W 3 cos
2 θW +M2

B sin2 θW − 2M2
WB sin θW cos θW

0 = (M2
W 3 −M2

B) sin θW cos θW +M2
BW (cos2 θW − sin2 θW )

(73)

This also means M2
B +M2

W 3 =M2
Z +M2

γ =M2
Z , as it should be since the trace of a matrix is equal to

sum of the eigenvalues. Thus we can eliminate M2
B in favor of M2

Z . Using Eq. 73, we can easily see that

−M2
WB =

M2
W 3(sin

2 θW − cos2 θW ) +M2
Z cos2 θW

2 sin θW cos θW
=

(2M2
W 3 −M2

Z) sin θW cos θW

cos2 θW − sin2 θW
(74)

Thus cos θW can be expressed in terms of M2
W 3 and M2

Z . On comparing Eq. 52 with Eq. 72, we see that

for the case of the Higgs doublet we would have

M2
W 1 =M2

W 2 = M2
W 3 =

g2
2
v2

4 , M2
B =

g2
1
v2

4 ,

MWB = −g1g2v
2

4
(75)

Using Eq. 74, we then get MW =MZ cos θW , precisely the result of Eq. 53. Thus, we see that the ρ = 1
prediction is tied to the equality of M2

W a , a = 1, 3 terms in Eq. 72.

In fact a closer inspection of the scalar potential of Eq. 45 reveals that this equality of all m2
W a is

in fact due to an accidental symmetry of the scalar potential for doublet Φ. The doublet Φ contains, in

all, four real fields as φ+, φ0 are both complex fields. Writing,

Φ =









ℜeφ+
ℑmφ+
ℑmφ0
ℜeφ0









(76)

we can see that the scalar potential

V (Φ) = −µ2
[

(ℜeφ+)2 + (ℑmφ+)2 + (ℜeφ0)2 + (ℑmφ0)2
]

+λ
[

(ℜeφ+)2 + (ℑmφ+)2 + (ℜeφ0)2 + (ℑmφ0)2
]2

(77)

has an O(4) symmetry under a rotation of the vector Φ of Eq. 76.

Upon SSB, the lowermost component of Φ acquires a non zero vev v√
2
, whereas all the three

components have zero vev.. Hence the scalar potential loses this O(4) symmetry. However, there is

still a left over O(3) symmetry corresponding to rotations of the first three components of Φ. among

each other. It is this left over O(3) symmetry, called the Custodial Symmetry, which reflects itself in the

equality of the masses M2
W a for a = 1, 3 in the matrix Eq. 72, yielding ρ = 1.
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This also means that even though in the original formulation we had discussed the case of just a

single Higgs doublet Φ being involved in the SSB, as long as we use only doublet fields, Eq. 43 is always

guaranteed. Of course the statement is true only at the tree level. The custodial symmetry, is isomorphic

to an SU(2) involving the W a. This SU(2) is broken by the different masses of the fermions of a

SU(2)L doublet. The value of ρ can change due to contributions coming from loops (as we will discuss

in the next section) and also if there exist Higgs belonging to a representation of SU(2)L other than the

doublet.

3.2.7 High energy scattering

Recall the discussion around Eq. 7. We saw there how the postulate of massive vector boson was inspired

by the demand to restore unitarity to the ν induced processes. For example, the amplitude (say) for

νe → νe scattering calculated in Fermi theory (current-current interactions) violates tree level unitarity

for
√
s<∼300 ∼ G

−1/2
µ GeV. Hence, one could also take this value as an upper bound on the mass of the

’massive’ W boson.

However, theories with massive vector bosons have problems with gauge invariance and hence

renormalisability. The SSB via Higgs mechanism solved the problem by generating these masses in a

gauge invariant manner. This then meant that the theory has renormalisability even with massive gauge

bosons. In fact, as we will discuss below, we can see explicitly that gauge invariance also renders nice

high energy behaviour to all the scattering amplitudes of the EW theory.

The existence of massive vector gauge bosons restore unitary behavior to processes like (say)

νµ+ e− → µ−+ νe. But now due to the same non zero mass of the W bosons, amplitudes for processes

involving longitudinal W ’s have a bad high energy behaviour. For example, the matrix element for the

process νeν̄e →W+W− through a t-channel exchange of an e, shown in the left panel of Fig. 15, grows

too fast with energy and violates unitarity. One can show that

M(νeν̄e →W+W−) ∼ 8
g22
M2

W

Ep′ sin θ, (78)

whereE is the energy of the incoming νe and p′, θ are the momentum and the angle of scattering of theW
boson in the final state. Here we write only the dominant term of the amplitude involving the longitudinal

gauge bosons, which is the one with bad high energy behavior. If one does a partial wave analysis of this

amplitude, one finds that this amplitude will violate partial wave unitarity, for s <∼
M2

W

2g22
However, what

is interesting is that the contribution to the matrix element of the process νeν̄e → W+W−, from the s
channel exchange of a Z boson, shown in the right panel of Fig. 15 has exactly the same magnitude as the

t channel contribution written above but opposite in sign. This happens only if the strength and structure

of the couplings of the Z with a ν and W pair is exactly the same as given by the SU(2)L×U(1) theory.

Thus the violation of unitarity in the amplitude νeν̄e → W+W− due to the longitudinal gauge boson

scattering is cured in a gauge theory.

In fact, the GSW model contains more such amplitudes which, in principle, could have had bad

high energy behaviour but which are rendered safe by the particle content and the coupling structure of

the SM. It was demonstrated [19] that in the GSW model where the masses are generated through SSB

by a Higgs doublet (SM), ALL such amplitudes satisfy tree level unitarity. In fact the leading divergence

of the M(WW →WW ) which goes like s2 and hence is much worse, is also cured by the Z exchange

contribution and the contribution of the quartic coupling among the W bosons which arise from the non

abelian gauge invariance of the theory. Further, the divergent term proportional to s is cancelled by the

contribution of the process W+W− → h → W+W−, where the Higgs boson is exchanged in the s-
channel. Also if one were to calculate high energy behavior of the amplitude e+e− → W+W− obtained

by replacing the νe, ν̄e in the initial state in Fig. 15 by e−, e+, then the same cancellation between the

divergent parts of the t-channel and s-channel amplitudes is seen to take place.
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Fig. 15: Gauge theory restoration of tree level unitarity to the νeν̄e →W+W− process.
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h
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W−

Fig. 16: e+e− →W+W− process in the SM

After this observation, a variety of authors [20] investigated the conditions necessary for cancel-

lation of these divergences so that the amplitudes will satisfy tree level unitarity. In fact their analysis

indicated that this requires existence of partial wave contributions in the spin 1 and spin 0 channel, with

the couplings of these particles exchanged in the s-channel to be precisely those that are given the SM.

Recall here that this proportionality of the coupling of the Higgs to the masses of the particles to which

it couples is the key prediction of the SSB by Higgs mechanism. The other couplings are of course given

by the gauge invariance itself. Thus one could have derived the existence of the Higgs boson as well as

the structure of the couplings of the fermions and the gauge bosons to it, without making any reference

to the Higgs mechanism and hence the renormalisability.

The fact that the two different requirements, unitarity and renormalisability, lead us to the same

result, indicates that there must be a deep connection between the two. In fact, for the νeν̄e → W+W−

scattering, there is a residual logarithmic violation of unitarity that is left after all the cancellations, which

gets cancelled by the scale dependence of g2 which is a loop effect which can be computed reliably only

in a renormalisable theory.

3.3 Predictions of GSW model

Here we summarize some of the qualitative and quantitative implications of the SU(2)L × U(1)Y in-

variance. Note that almost all of them are result of the invariance and hence not specific to the actual

mechanism of symmetry breaking as long as it preserves the symmetry.

1. First and foremost, this is a unification of weak and electromagnetic interaction: i.e., e, g1, g2 all
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are of similar order and the apparent difference in strengths of electromagnetic interactions (αem

and Gµ), is only caused by the large value of the masses of the weak gauge bosons compared to

that of the massless photon. The model predicts existence of a new weak gauge boson Z and that

of the weak neutral current (cf. Eq. 38) mediated by it, analogous to the weak charged current

of Eq.28 mediated by the W . Further, the strength of this new weak interaction is similar to that

of the charged current weak interaction. This is particularly transparent once we use the ρ = 1
prediction of the GSW model wherein W/Z masses are generated by SSB using a Higgs doublet.

2. Further, FCNC currents are absent at tree level if and only if all the quarks of a given electrical

charge belong to the same representation of SU(2)L. Thus the experimentally observed absence of

FCNC implied existence of the charm quark c, in addition to the already known u, d and s quarks.

Not only this, one could also ‘predict’ the mass of the c quark from the measured K0–K̄0 mass

difference.

3. Since Gµ and the electron charge e are measured experimentally, Eq. 41 implies that the model

has two free parameters, sin θW and MW . If g2 = e, i.e., sin θW = 1, then we get MW ∼
O(100) GeV. However, when the gauge boson masses are generated through the SSB, MW can

be expressed in terms of Gµ, αem and sin2 θW .

4. The model predicts precise nature of the WWZ coupling, the strength being given by g2.

5. As Table 5 shows, couplings of all the fermions with the new gauge boson Z , are then determined

in terms of sin θW once the representations of the two gauge groups to which the fermions belong

are specified.

6. Requirement of anomaly cancellation, necessary for the renormalisability, predicts that the number

of lepton and quark generation seen in nature should be equal. So while the model can not predict

how many families of quarks and leptons there should be, it predicts their equality.

7. The conditions of anomaly cancellation and observed closeness of ρ to unity, then gives strong

constraints on new particles that one can be added to the spectrum of the GSW model.

8. As already stated above, generation of gauge bosons masses via SSB provides some more relations

among physical quantities and hence reduces the number of free parameters of the model to one,

that parameter being sin θW .

Thus this model could be easily subjected to experimental tests. This is what we will discuss in the next

sections.

4 Validation and precision testing of the SM.

4.1 Early validation.

Historically, the earliest validation of the correctness of the description of the electromagnetic weak

interaction in terms of the EW theory, came from the points 1 and 2 in the list given at the end of

the last section. By 1972, the renormalisability of the GSW model was proved explicitly [21] and the

discovery of weak neutral currents had become very urgent. As we have already noted from Table 5,

the NC couplings are entirely decided by the (anti)fermion charge and sin θW . Neutrino scattering with

nuclei offer possibility of studying neutral current interactions of quarks. These typically have higher

event rates compared to the pure leptonic scattering processes due to the possibility of using nuclear

targets. However, analysis of these processes requires an understanding and knowledge of the proton

structure. Hence the cleanest probe of the neutral current couplings can come from analysing pure

leptonic reactions. We will discuss both of these below.

4.1.1 Discovery of the Weak Neutral Current.

To study the properties of the weak neutral current it was necessary first to establish its existence. To

that end, it was necessary to predict the characteristics of the events that would result from interactions
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of νµ, ν̄µ and ν̄e beams with electrons, as that would be the cleanest probe. Let us list different types of

elastic scattering processes involving just leptons that can take place through weak charged current and

neutral current interactions using the ν beams and the electron targets. These are

1. νµ + e− → νe + µ−, which can take place only through the CC interaction

2. νµ+e
− → νµ+e

− and ν̄µ+e
− → ν̄µ+e

−, which can take place only through the NC interaction,

3. νe + e− → νe + e−; ν̄e + e− → ν̄ee
−, which can take place both through the NC and CC

interactions.

Calculation of the scattering amplitudes of various NC and CC processes listed above (which are depicted

in Fig. 8, with appropriate assignments for fi, i = 1, 4) proceeds using the usual rules of field theory. For

the low energies of ν- beams that were available then, the MW ,MZ → ∞ approximation could be used.

In situations where both the weak currents (charged and neutral) contribute to a process, the derivation

of the effective four fermion interaction in the above limit is a little more involved than our derivations

of Eq. 42, but finally leads to very compact expressions very similar to Eq. 42. For the e−νe scattering

mentioned above, for example, the expression resulting from the manipulations is the same as obtained

by replacing geA, g
e
V in Eq. 42 by geV + 1, geA + 1. Here, we have used ρ = 1 prediction of the SM.

Table 7 shows the differential cross-section in terms of the variable y =
Ee

Eν
and the integrated

cross-section. A few comments are in order. The above expressions use ρ = 1 as well as the fact that

Process dσ/dy σ

νµ + e− → µ− + νe A s(gνL)
2(geL)

2 A s (gνL)
2(geL)

2

νµ + e− → νµ + e− A s(gνL)
2
[

(geL)
2 + (1− y)2(geR)

2
]

A s (gνL)
2[(geL)

2 + 1
3 (g

e
R)

2]

ν̄µ + e− → ν̄µ + e− A s (gνL)
2
[

(geR)
2 + (1− y)2(geL)

2
]

A s (gνL)
2
[

1
3(g

e
L)

2 + (geR)
2
]

νe + e− → νe + e− A s (gνL)
2
[

(geL + 1)2 + (1− y)2(geR)
2
]

A s (gνL)
2
[

1
3 (g

e
R)

2 + (geL + 1)2
]

ν̄e + e− → ν̄e + e− A s (gνL)
2
[

(geR)
2 + (1− y)2(geL + 1)2

]

A s (gνL)
2
[

1
3 (g

e
L + 1)2 + (geR)

2
]

Table 7: The differential and total cross-sections for a few ν, ν̄ induced CC and NC processes, with A = 4G2
µ/π.

values of gL, gR for the µ and the e are the same. All the neutrino induced cross-sections are indeed

proportional to the square of the centre of mass (com) energy s as we have noted before. The variable

y is related to the scattering angle θ in the com frame. One can see after some manipulations that the

angular distribution of the scattered charged lepton is different for the case of ν and ν̄. In the first row

we have written the cross-section for the CC process νµ + e− → µ− + νe , so that one can indeed see

that the size of the expected cross-sections for the NC processes are of the same order of magnitude as

the CC process and depend on sin θW . Note the last two rows of Table 7. As one changes from the

νµ, ν̄µ beams to νe, ν̄e beams the factors of (geL)
2 in the total cross-section expressions gets changed to
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(geL + 1)2. Further, note also the different weights of the (geL)
2 and (geR)

2 contributions as one changes

from ν to ν̄ beams. Both these observations tell us that the contours of constant cross-section for these

four processes are ellipses in the gA–gV plane with different centers and with major axes of differing

orientations. Thus a measurement of these cross-sections can then help us determine geV , g
e
A, albeit upto

sign ambiguities.

Note also from the table that as one changes from ν to ν̄, the terms in the angular distribution

proportional to (geL)
2 and (geR)

2 get interchanged. This behavior can be understood very easily in terms

of the chirality conservation of the gauge interaction and the angular momentum conservation. As a

result, one can write the weak NC cross-sections for all the different pairs of fermions rather easily by

inspection. In particular, the same table can be used to calculate the cross-section for the weak NC

induced processes with nucleon (nuclear) targets as well. The hadronic weak neutral current events

arise from the scattering of the u, d, s quarks in the nucleon (nucleus). In the parton model the net

rate is then given by the incoherent sum over all the quarks contained in the nucleon (nucelus). Using

the information on the momentum distributions of quarks/antiquarks in the nucleon (nucleus), it is also

possible to estimate the expected cross-section. Again these too depend only on sin2 θW as far as the

EW model parameters are concerned.

At the time of the discovery of weak neutral currents in hadronic and leptonic production, theoret-

ical estimates were available for the upper limit on the ratio of neutral current to charged current elastic

scattering. This was obtained by using experimental knowledge of the form factor of the proton and neu-

tron. The same was also available for the inelastic process of the inclusive production of hadrons using

the language of structure functions of the target nucleus. Two points are worth noting here. While the use

of nuclear targets increased the expected rates for NC induced hadron production, establishing that the

events are indeed due to weak NC was difficult because of the large neutron induced background. The

pure leptonic processes on the other hand, were predicted to be very rare and hence difficult to observe,

but could unambiguously prove existence of weak NC as soon as even one event was observed.

Neutral currents were discovered in 1973 in the study of elastic scattering of νµ and ν̄µ off nuclear

targets [22, 23]. The experiment discovered evidence for the neutral current induced hadronic processes

νµ +N → νµ + hadrons; ν̄µ +N → ν̄µ + hadrons.

as well as pure leptonic processes,

ν̄µ + e− → ν̄µ + e−,

using the giant bubble chamber Gargamelle. In fact the discovery came in an experiment which had been

designed to study the charged current interactions:

νµ +N → µ− + hadrons; ν̄µ +N → µ+ + hadrons.

Thus the experiment could easily extract the ratio of the CC to NC events, after the observation of

NC in hadronic events. The experiment had seen O ∼ 100 events of different categories (NC and CC)

containing hadrons, with

NC

CC

∣

∣

∣

∣

∣

ν

= 0.21 ± 0.03;
NC

CC

∣

∣

∣

∣

∣

ν̄

= 0.45 ± 0.09

As already mentioned, the same experiment also found evidence for the pure leptonic process, where the

νµ was scattered off the atomic electron. Figure 17, taken from Ref. [23], shows the image of the first

unambiguous, weak neutral current event ever observed. The incoming antineutrino, interacts with an

atomic electron and knocks it forward. The electron is identified from the characteristic shower created

by the electron-positron pairs. This was a considered to be clear evidence for the weak neutral current.

The theoretical predictions summarised in Table 7 were used to justify the interpretation. With just one ν̄
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Fig. 17: Observation of the first leptonic interaction induced by weak neutral current. The incoming ν̄ knocks off

the e−, which then appears as a track accompanied by the shower of e+e− pairs the passage of e− creates. Taken

from [23]

event, the experiment could only quote a range 0.1 < sin2 θW < 0.6 at 90% c.l. The number of hadronic

NC events on the other hand, was big enough to extract a value of sin2 θW to be in the range of 0.3–0.4.

This was the first qualitative validation of the prediction of neutral currents.

4.1.2 Observation of charm with ‘predicted’ mass

Soon after the observation of the weak neutral current, the charm quark was also discovered with mass

very close to that predicted by the analysis of the ∆S = 2, K0–K̄0 mixing caused by FCNC. We have

discussed already details of this prediction in the earlier section. As we understand now, in view of

the very large mass of the top quark, it was somewhat ’fortuitous’ that the charm quark contribution

to the ∆S = 2 mass difference was the dominant one. Be as it may, this was an extremely important

second validation of the correctness of the gauge theory of EW interactions based on the gauge group

SU(2)L × U(1)Y . Note that one of the validation came from tree level couplings and the other from

loop induced effects.

4.1.3 Determination of sin2 θW and prediction of MW ,MZ .

The same leptonic couplings which contribute to the neutral current scattering processes involving ν’s

can also make their presence felt in processes like

e+ + e− → µ+ + µ−. (79)

This proceeds through a γ∗ exchange in the s-channel and a Z/Z∗ exchange shown in Fig. 18. Whether

the Z will be on shell or off shell of course depends on the com energy. The cross-section for this
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Fig. 18: Weak neutral current effects in e+e− → µ+µ−.

process can be easily computed. Electromagnetic interactions being the same for the left and right chi-

ral fermions, γ∗ exchange diagram gives a forward-backward symmetric contribution whereas both, the

square of the amplitude of the Z exchange diagram itself and the interference term, will give contri-

butions which are forward backward asymmetric. Hence the presence of the weak neutral current will

manifest itself in the form of a forward-backward asymmetry in (say) µ production. Both the size and

sign of this asymmetry depends on the centre of mass energy of the process
√
s = 2Eb where Eb is the

beam energy, relative to the mass of the Z boson.

In fact if θ is the angle made by the outgoing lepton with the incoming lepton, then one can show that

dσ(e+e− → µ+µ−)

d cos θ
=
πα2

em

2s

[

A(1 + cos2 θ) +B cos θ
]

(80)

where

A = 1 + 2ℜe(χ)g2V + |χ|2(g2V + g2A)
2; B = 4ℜe(χ)g2A + 8|χ|2g2V g2A,

χ =

(

GµM
2
Z

2
√
2πα

)

s

s−M2
Z + iMZΓZ

. (81)

Here gV , gA denote the (common) vector and the axial vector NC couplings for the e and the µ, ΓZ is

the width of the Z . In the chosen normalisation, deviation of A from 1 and that of B from zero is then

indication of the contribution of the weak NC to the process. Both A and B contain terms linear in

ℜe|χ| and g2V or g2A. Hence, even for small values of |χ|, both the total cross-section and the angular

distribution can be used to probe the weak NC contribution. B is zero without the Z contribution. It is

however nonzero for both, the interference terms containing ℜe(χ) and the square of the Z-exchange

diagram alone, containing |χ|2. Hence the angular distribution contains an asymmetric term at all s. If

we analyze these expressions we find that the results for this asymmetry are very different for
√
s≪MZ

and
√
s =MZ .

The forward-backward asymmetry, Aµ
FB defined as the ratio of the difference of cross-sections

with the µ− in the forward and the backward hemisphere and the total cross-section, is then expected to

be nonzero due to the Z contribution and the interference term. It is clear that this is also the same as

charge asymmetry between the muons in the forward hemisphere. Thus one has two asymmetries Aµ
FB

andAµ
C :

Aµ
FB =

σ(cos θµ > 0) − σ(cos θµ < 0)

σ(cos θµ > 0) + σ(cos θµ < 0)
; Aµ

C =
σ(µ−)− σ(µ+)

σ(µ−) + σ(µ+)
. (82)

and these are equal. The reason for the equality of these two asymmetries is the CP invariance of the

gauge Lagrangian, even if the Z has parity violating interactions. Using Eqs. 80 and 81 one can calculate

the Aµ
FB, which in general depends on s. For two different values of s of interest, it can be shown that:

Aµ
FB

∣

∣

∣

∣

s≪M2

Z

= − 3√
2

Gµs

e2
g2A

1

1− 4Gµs√
2e2
g2V

; Aµ
FB

∣

∣

∣

∣

s=M2

Z

∼ g2Ag
2
V

(

g2A + g2V
)2 . (83)
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In the first case MZ drops out as we have made an approximation where s ≪ M2
Z . In the second

case in Eq. 83 , while writing the value for
√
s = MZ , we have used the fact that MZ/ΓZ ≫ 1 and

hence the dependency on the precise value of MZ drops out. The small width is guaranteed by the

weak nature of the NC couplings of the Z with the fermions. The factor in the denominator of χ gives a

characteristic resonant shape to the cross-section for the process e+e− → µ+µ−, the interference term

being negative causing the cross-section to reduce below the value expected for the γ exchange alone

and to start rising again as
√
s approaches MZ . For

√
s ≪ MZ the value of A differs from 1, the value

expected in QED, by

(

− Gµs√
2παem

g2V

)

. Further the coefficient of the asymmetric, linear term in cos θ

is given by the same expression with the replacement of g2V by g2A. Thus it is possible to get information

on both g2V and g2A from measurements of A and B even with beam energies that are much lower than

MZ . Since Gµ ∼ 10−5/M2
p , the effects can become substantial only when s ∼ O(104 GeV2). Indeed

the first hints of weak NC in this process were obtained in e+e− collisions with
√
s ∼ 35 GeV. It is

worth noting at this point that the calculation of cross-section for quark (and hence hadron) production

via γ/Z exchange proceeds exactly in the same manner, except the expressions will involve gqA, g
q
V in

addition to geV , g
e
A in Eqs. 80 and 81. All the observations about e+e− → γ/Z → µ+µ− then apply for

the e+e− → γ/Z → qq̄ → hadrons as well.

Note that just like the various cross-sections in Table 7, the asymmetries of Eqs. 82 and 83 too,

depend only on one unknown quantity, viz., sin2 θW through the vector and axial vector NC couplings

of the charged lepton. The above expressions tell us therefore, that a study of the leptonic scattering

processes given in the Table 7 along with the energy dependence of the FB asymmetry and that of the

cross-section for the reaction given in Eqs. 80 and 81, can provide information about sin2 θW much

before reaching the beam energies close to MZ . If all the measurements of the leptonic cross-sections as

well as the asymmetries yielded a unique value of sin θW , which is the only free parameter of the model,

this can then provide a quantitative validation of the GSW model. It is interesting to note that the energy

dependence of the cross-section σ(e+e− → µ+µ−) can also provide indirect information about MZ ,

much before the energy values close to MZ are reached.

Note that production of hadrons by weak NC processes while being very useful for validation

of the weak NC due to the large rates possible with nuclear targets, also needed knowledge about the

nuclear structure functions to interpret the data. Both the theoretical and experimental understanding of

this structure at that time was somewhat rudimentary. Hence the validation of the SM would be much

more unambiguous, if one would extract sin2 θW using pure leptonic processes alone, viz. the ν-charged

lepton scattering and e+e− collisions.

Fig. 19 shows compilation of such extraction of gV , gA and hence sin2 θW from pure leptonic

processes. These results were among the early quantitative validation of the SM. As explained above the

leptonic processes were better suited for a clean and unambiguous extraction of sin2 θW . Further, the

com energies of the early ν experiments were limited to s < 200 GeV2, whereas the e+e− experiments

at PETRA at DESY(Hamburg) had s <∼ 1400 GeV2. The e+e− experiments could also probe the NC

couplings of the quarks as well, by studying the hadron production along with the µ+µ− pair production.

Thus the information about the weak neutral processes at the e+e− colliders was a value addition to

the analysis, even though the beam energies were much below than those required to produce an ’on-

shell’ Z boson. The left panel shows results on the deviation from the QED expectations of the angular

distribution for the µ i.e., evidence for both : a nonzero value of B and value of A different from 1. It

was indeed comparable to the deviation of few percents to be expected at these energies as was argued

above. The plot shows comparisons with predictions of the GSW model (cf. Eq. 83) for different

values sin2 θW showing clear sensitivity to the same. Indeed this as well as measurements of µ charge

asymmetry defined in the Eq. 82 for a limited region in the forward hemisphere and the cross-section

measurement were used to delineate a region in the gA–gV plane that was allowed by the data at 95% c.l.

This is indicated by the grey shaded region in the right panel of the Fig. 19. Superimposed on this grey
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Fig. 19: Quantitative validation of the weak NC. Details of the data taken from [24] are discussed in the text.

The left panel shows evidence of asymmetric angular distributions expected from the weak NC contribution. The

right panel indicates regions in the gV , gA plane and hence values of sin2 θW extracted from the leptonic data at

different level of confidence.

area are also the regions in the same plane allowed by measurements of ν̄ee
−, ν̄µe

− and νµe
− scattering.

We notice from Table 7 that all the cross-section expressions define different ellipses in the gA–gV plane.

The area between two ellipses is the region allowed at 68% c.l. by the measurement of the cross-section

for that particular neutrino scattering reaction.

We see from the right panel that if one uses just the elastic ν-charged lepton scattering data, there

is a two fold ambiguity in the values of gA, gV that are consistent with the totality of the available data.

This is indicated by the two dark black regions. This ambiguity is removed on using the e+e− → l+l−

data. The solution with negative gA and positive gV , corresponding to the dark region in the upper left

corner of the grey shaded square region, is chosen uniquely, after we add determination of gV , gA from

the e+e− measurements. This dark region in the upper left corner corresponds to

sin2 θW = 0.234 ± 0.011. (84)

This was the unique value of sin2 θW consistent with all the ’leptonic’ NC measurements mentioned

before. One could also use only the e+e− data. Combining all the e+e− → l+l− measurements with

those for e+e− → q+q−, sin2 θW was determined to be

sin2 θW = 0.27 ± 0.08. (85)

Clearly the two determinations are consistent with each other. These measurements thus conclusively

proved existence of the weak NC as predicted by the GSW model. One could then use the value of

sin θW so determined, to further make predictions for the W,Z masses as well as their phenomenology.

The weak neutral couplings of the electron can also be probed by studying interference between

the t-channel γ∗ and Z exchange in the Deep Inelastic Scattering (DIS) processes indicated in Fig. 20.

This is very similar to the e+e− → l+l− case. However, in this case one needs to have longitudinally

polarised electron beams, to be able to see the effect experimentally. The diagram with γ∗ exchange

will give a symmetric result for both left and right polarised e− but the Z treats them differently. Recall

here the different values of geL and geR in Table 5. Thus there will be a polarization asymmetry in the

cross-section. At lower energies and hence smaller values of the invariant mass −Q2 of the exchanged

γ∗/Z∗, it is the interference term between the two diagrams which dominates the size of the observed
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Fig. 20: Weak NC contributions to the deep inelastic scattering with polarised e− beams.

polarisation asymmetry and hence the evidence for parity violation. The interference effect can be shown

to be ∼ Gµs in this case as well and is linear in geV . As mentioned before, for the value of sin θW
realized in nature the vector coupling of the electron is very small. Hence an asymmetry which is linear

in this small parameter, provides a more sensitive probe of geV than the one provided by the asymmetry

Aµ
FB of Eq. 82. Measurements of this asymmetry also yielded a value of sin2 θW consistent with the

determination from the pure leptonic probes.

Finally the best determination of sin2 θW came from high statistics data on ν-induced Deep In-

elastic Scattering and polarised e- Deuterium scattering (both not discussed here at all) and the value

was [25]:

sin2 θW = 0.224 ± 0.015, ρ = 0.0992 ± 0.017; sin2 θW = 0.229 ± 0.009 assuming ρ = 1. (86)

In the first case both ρ and sin2 θW were taken to be unknown and fitted to the data and in the second

case ρ was fixed at 1. Thus ρ was determined to be ∼ 1 as expected in the GSW model. Assuming this,

around 1981 one could then predict using Eq. 55:

MW ≃ 78.15 ± 1.5 GeV; MZ ≃ 89± 1.3 GeV. (87)

This then sets the goal posts to design experiments which could produce W,Z directly and study them. In

principle, the predictions above receive radiative corrections. A more accurate prediction would require,

for example, discussion of radiative corrections to the couplings involved in the relations given by Eq. 32.

We will come to that in the next subsection.

So the take home message of the above discussion is that the early ν experiments as well scat-

tering experiments with polarised electron beams and nuclear targets, along with the e+e− → l+l−

experiments, tested the structure of the NC couplings of the leptons AND those of the quarks predicted

by the GSW model. The experiments conclusively proved that all the measurements were consistent

with a unique value of the one undetermined parameter of the model sin2 θW . This then also predicted a

narrow range of possible masses for both the W and the Z bosons. Inter alia, these measurements also

established ρ ≃ 1, consistent with the GSW prediction again. Thus at this stage, apart from the direct

verification of the tree level ZWW coupling which must exist in this gauge theory, all the other tree level

predictions of the model seemed to have been tested.

Given the knowledge of the quark content of the p available from the DIS experiments, it was also

possible to predict the rate of production of these bosons in the process

p+ p̄→ W +X → l + νl +X; p+ p̄→ Z +X → l+ + l− +X.
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In fact the CERN super proton synchrotron (SPS) was converted into Spp̄S, to collide protons on an-

tiprotons, so as to have enough energy to produce the W,Z in the pp̄ collisions. The observation of

the W and the Z bosons in the UA-1 and UA-2 experiments [26, 27], with mass values and production

rates which agreed with these predictions, was a very important step in confirming the correctness of the

GSW model. Later data confirmed the V –A coupling of the W bosons to fermions from the angular

distribution of the events, even though the original observation had only a handful of these: 6 in UA-1

and 4 for UA-2.

The masses of the W and the Z measured in the UA2 experiment [27], for example, were

MW = 80 + 10− 6 GeV; MZ = 91.9 ± 1.3± 1.4 GeV.

The larger errors forMW reflect the uncertainties in the measurement of ’missing’ transverse momentum

due to the ν which evades detection. ForMZ , the first number indicates the statistical error and the second

systematic. The use of final state containing leptons allowed for much more accurate determination of the

invariant mass in the case of the Z boson. These masses were certainly consistent with the predictions:

see, for example, Eq. 87. One can in principle extract ρ AND sin2 θW from this ’direct’ measurement

of masses (in particular the accurate measurement of MZ) and compare these with the values obtained

from the earlier ’indirect’ information from ν scattering, for further tests of the SM. This already used

the more accurate predictions using energy dependence of the couplings as well EW corrections to the

weak processes used to extract sin2 θW . We will discuss this in the context of precision testing of the

SM.

4.2 Direct Evidence for the ZWW coupling.

Before moving on to the discussion of calculation and validation of loop effects in the precision mea-

surements of the EW observables, we need to discuss the validation of the existence of another tree level

coupling of the gauge bosons, viz., the triple gauge boson ZW+W− coupling which is characteristic of

the non abelian nature of the gauge theory. As already discussed, contribution of the Z exchange diagram

is crucial in curing the bad high energy behavior of the e++ e− →W+W− cross-section. W+W− pair

production in e+e− collisions was studied at LEP-II where the centre of mass energy was increased from

the Z-pole value of 91 GeV to the two W threshold of 161 GeV and then finally to 209 GeV. Fig. 21

shows the LEP-II data along with the theory prediction. The data is well described by the solid line

which represents the sum of the contribution of the νe exchange diagram and Z/γ exchange diagrams

shown in the left and the central panel of Fig. 16. One sees that the contribution to the cross-section

of just the νe exchange diagram of the left most panel, shown by the blue dashed curve, rises very fast

with energy. The cross-section after including contribution of the s-channel γ exchange alone, where the

ZWW coupling is put to zero in the diagram in the central panel of Fig. 16, is shown by the red dashed

curve. This addition tames the bad high energy behavior to some extend but not completely. Only af-

ter adding the s-channel Z-exchange diagram does the cross-section have a good high energy behavior,

shown by the blue-green solid curve which also describes the data well. Thus we see that the temperate

energy dependence of the e+ + e− → W+W− cross-section shown by the data, is ’direct’ proof of the

ZW+W− triple gauge boson coupling.

The threshold rise of this cross-section also offers an accurate determination of W mass and the

width [28]:

MW = 80.376 ± 0.033 GeV,ΓW = 2.195 ± 0.083GeV.

The same experiment offered a precision measurement of the hadronic decay width of the W as well.

These measurements served later as an input to the precision analysis of the EW observables which we

will discuss in the next section.

Note further also that since the energy dependence of the total cross-section is crucially decided

by the ZW+W− coupling, it is possible to use the energy dependence and the angular dependence of
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Fig. 21: Energy dependence of the W+W− cross-section at LEP-II. Taken from [28].

the process to probe any possible deviations of the ZWW vertex from the SM structure and value. This

process can therefore be successfully used to look for deviations of this coupling from the SM prediction.

In view of the important role played by the ZWW coupling in curing the bad high energy behavior of

the W -pair production cross-section, it is theoretically very important to probe its possible deviations

from the SM predictions so as to get indications, if any, of the physics beyond the SM (BSM physics).

Measurements of the cross-section and angular distributions of the produced W at LEP-II, constrained

strongly any anomalous ZWW couplings; i.e., couplings which differ from the SM in either structure or

strength.

4.3 Precision testing of the SM

Thus we see that the various lepton-lepton and lepton-hadron scattering experiments along with the pp̄
experiments helped establish the correctness of GSW model predictions at the tree level. These tested

the tree level SM predictions for the new NC couplings of the Z boson with all the known fermions

as in terms of the single ’free’ parameter of the model. The prediction of SU(2)L symmetry for the

structure and strength of the ZWW vertex was also tested. Last but not the least the experiments also

tested the correctness of the tree level predictions for the W and Z masses. This indeed established

the SU(2)L × U(1)Y structure of the EW gauge theory. However, even with the somewhat imprecise

determined values of W,Z masses, the need for including the effects of loop corrections, an essential

feature of QFT’s, on all these tree level predictions was already clear. Since the effect of radiative

corrections on the extraction of sin2 θW is different for different processes, it is necessary to correct the

experimentally extracted value for these effects, before the sin2 θW extracted from various observables

can be compared at high precision.

4.3.1 Radiative corrections and ρ/sin2 θW determination.

In case of the SM, a QFT with SSB, renormalisability of the theory guarantees that the loop corrections

to the tree level relations such as given by Eqs. 32,43 and 53, will be finite and can be computed order by

order in perturbation theory. Precision measurements can then test these corrected relations and hence

the correctness of these calculations of loop effects. This can then help establish the renormalisability of
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the SU(2)L ×U(1)Y gauge theory of EW interactions. Below follows an extremely sketchy discussions

of the issues involved.

Some of the one loop diagrams contributing to the corrections to the vertices and two point func-

Fig. 22: Some of the one loop EW corrections to vertices and two point functions in the SM.

tions are shown in Fig. 22. The two diagrams in the top row and the diagram on the left in the lower panel

are the ones that need to be considered while calculating the loop corrections to the masses MW ,MZ .

The diagram on the right in the lower panel is an example of diagrams that give rise to corrections to

the Zff̄ vertex. The dominant corrections come from loops containing quarks of the third generation

viz. t, b. We already notice that corrections to the W and the Z mass will be different, since the former

involves a tb loop where as the latter involves the tt̄, bb̄ loops. As a result the corrections to sin2 θW from

these diagrams, for example, will be different for the CC and NC processes. Let us recall Eq. 55. We

have used Eqs. 32 and 53 in deriving this. One needs to take into account radiative corrections to the

weak processes used to extract sin2 θW as well as the energy dependence of the couplings and hence of

sin2 θW obtained via Eq. 32. The latter too is an integral part of QFT. The extraction of sin2 θW from

weak processes, taking into account all the weak corrections yielded [29]

sin2 θW (MW ) = 0.215 ± 0.010 ± 0.004.

In Eq. 55 one now needs to use αem(MW ) = 1/127.49 instead of the value αem = 1/137.03 used

therein. The expression for MW (MW ) then becomes

MW (MW ) =

√

π√
2Gµ

αem(MW )

sin2 θW (MW )
=

38.6

sin θW (MW )
GeV. (88)

This then gives,

MW = 83.5 ± 2.2 GeV; MZ = 94.2 ± 1.8 GeV. (89)

Thus loop effects change the predicted values from those in Eq. 87 by O(∼ 5%). This sets the scale for

the precision with which one needs to measure the values of the masses of the W,Z to be able to test

theory at loop level. The UA-1 and UA-2 measurements were clearly consistent with these predictions
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within the accuracy of the measurement as well as predictions. In Ref. [27] these loop corrected predic-

tions for MW ,MZ were used to extract both sin θW (MW ) and ρ just from the measured masses of the

W,Z in the UA-2 experiment, yielding

sin2 θW = 0.226 ± 0.014, ρ = 1.004 ± 0.052.

This value of ρ is consistent with the expectation of the SM i.e., the GSW model where W/Z masses

are generated via SSB. These values are also consistent with the corresponding determinations from the

lower energy ν experiments (cf. Eq. 86). Agreement of these two independent determinations of ρ and

sin2 θW (MW ) from two completely different sets of measurements, already showed consistency of the

measurements with theory predictions at loop level.

Diagrams shown in Fig. 22 cause ρ to change from 1, the prediction at tree level, since the correc-

tions are different for M2
W and M2

Z . In fact, one can write

∆ρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

,

where ΣV , (V = W/Z) are the one loop corrections to the propagator. As emphasized above these are

different for the W and the Z and hence ∆ρ is different from 0. At one loop one gets, keeping only the

dominant corrections ∝M2
t ,

ρcorr = 1 +∆ρ ≃ 1 +
3GµM

2
t

8π2
√
2

(90)

Thus one sees that the relation ρ =
M2

W

M2
Z cos2 θW

= 1 gets corrected by loop effects. The corrections are

finite as advertised before: a result of the renormalisability of the EW theory. Assuming the (at that time)

unknown Mt to be as large as the largest mass in the theory, ∼ O(MW ), one finds corrections to the tree

level value of unity of ρ, to ∼ few parts in 1000. Thus one would need a high precision measurements

of MW ,MZ to get a precision value of ρ which can then be contrasted with above prediction given in

Eq. 90. This can then be used to estimate Mt and comparing it with the experimentally observed value

of the t quark mass would then constitute a precision test of the SM.

In reality, indeed this is what happened. Recall the discussion around Fig. ??. The precision

measurements at the Z pole in e+e− → Z → f f̄ , to be discussed momentarily, indicated a value for

the top mass Mt ≃ 2MW before the top quark was actually discovered. Agreement of the measured

mass of the t at the Tevatron with this value was then a big success story, testing the SM at loop level.

For the much higher value of the mass that the t quark has in real life compared to the MW taken in the

numerical estimation above, corrections to ρ in reality are about 1 part in 100 and hence measurable in

precision experiments. For future reference, let me also add here that the corrections to M2
V , from the

third diagram in Fig. 22 involving the V H loop, depend on the Higgs mass Mh only logarithmically.

A detailed discussion of the theoretical significance of the all important quadratic dependence

of these corrections on Mt, the logarithmic dependence on Mh and the non decoupling nature of the

corrections to the Zbb̄ vertex from the tt̄ loop, are beyond the scope of the discussion in these lectures.

The former comes from violation of the SU(2)L invariance, reflected in the mass difference between

the two members of the doublet : the t and the b. ∆ρ is in fact proportional to M2
t −M2

b . The loops

involving h and the V give contributions to ∆ρ which depend on the Higgs mass, but the accidental

Custodial Symmmetry (cf. section 3.2.6), guarantees that this dependence will be only logarithmic.

This is consistent with the so called Veltman screening theorem [30]. The corrections to the Zbb̄ vertex,

originating from the triangle diagram, one of which is shown in Fig. 22, also depend on Mt quadratically.

This quadratic dependence, on the other hand has a different source. It arises from contributions of

the longitudinal W bosons in the loop. In a non-unitary gauge this can be seen as coming from the

unphysical Goldstone bosons φ±, which are ’eaten up’ to become the longitudinal degree of freedom
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of the W -boson. This then clearly explains the non decoupling nature of the correction, coming from

the proportionality of tφ± coupling ht or equivalently Mt. Even when we do not discuss these issues in

detail, suffice it be said that the M2
t dependence of the vertex correction is the tell tale sign of the SSB

via the Higgs mechanism. Since the origins of the M2
t dependence, or equivalently the non-decoupling

nature of the corrections, are quite different for the ∆ρ and δgZµµ and further only the ∆ρ receives

contribution from the Higgs, it is quite important to confirm both of these independently. Let us now

follow the story of precision measurements and comparison with the precision predictions further.

Note here that these corrections can be calculated only if theory is renormalisable. The renormal-

isability of a gauge field theory with SSB was proved by ’t Hooft [21]. This theory necessarily has a

physical scalar, the Higgs boson in the spectrum. As we will see shortly, the precision measurements at

the LEP-I of the Z properties along with weak neutral current couplings of all the fermions, as well as

precision measurements of the properties of the W at LEP-200, tested these corrections. A test at the

loop level of the various relations such as Eq. 32 or Eq. 53, could then indicate the need for a finite mass

for the Higgs and thus could be an indirect proof for the Higgs! However, we have seen that even with a

quadratic dependence of ∆ρ on Mt and the large mass Mt, the effects are only 1 part in 100, it is clear

that with the logarithmic dependence of these corrections on Mh, this program would require indeed

very high precision measurements.

4.3.2 Precision measurements at LEP

Let us first begin by a discussion of precision measurements of the mass and the coupling of the Z boson

at LEP 1 and the SLC in e+e− → Z → f f̄ . The four LEP experiments studied decays of about 17

Million Z , whereas the SLC studied about 600,000 Z decays, but with polarized e+/e− beams. These

precision studies of the Z have been summarised in Ref. [31]. At the end of the day these experiments

determined the mass and the width of the Z boson and also the values of ρ and effective value of sin2 θW ,

to a great accuracy using only the leptonic sector. The use of ’effective’ implies that radiative corrections

have been suitably included while extracting these values.

MZ = 91.18750.0021GeV, ΓZ = 2.49520.0023GeV,

ρl = 1.00500.0010, sin2θefflept = 0.231530.00016. (91)

As already explained these high precision measurements require also high precision calculations, to test

the SM at high accuracy. Higher order QCD corrections play a highly important and nontrivial role

while using results from the hadronic decays of the Z . One also requires an excellent understanding of

QCD to calculate correctly the observables from quark final states in terms of what the detectors actually

observe viz. the jets. This ushered in an era of extremely close and extensive collaboration between

experimentalists and theorists resulting in a number of LEP Yellow Reports. These provide the best

summary of both the theoretical and experimental issues involved in studies at LEP.

Fig. 23 shows a compilation of the cross-section for the process e+ + e− → hadrons, span-

ning the entire energy range from PEP/PETRA to LEP II. Solid line is theory prediction, including

the electromagnetic and the QCD radiative corrections. Recall the expression for the cross-section for

e+e− → µ+µ− given in Eq. 81. The initial fall off of the cross-section reflects the
1

s
dependence of

the first γ exchange diagram in Fig. 18. One can then see the onset of the rise in the cross-section due

to interference between the γ and Z exchange contributions. Recall that it is these interference terms,

at energies quite far away from the Z resonance, that had allowed the first glimpse of effects of weak

neutral current in the process e+e− → µ+µ−. Thus we see that the Z resonance makes its presence felt

much before the resonant energy is reached, by just the shape of the cross-section curve. This line shape

of the Z resonance depends on ΓZ ,MZ , partial decay width Γ(Z → f f̄) and through them on gV , gA of

the electron and the fermions in the final state being considered. The extremely accurate measurements

of MZ ,ΓZ mentioned above, were extracted by fitting the shape of this curve near resonance, taking
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Fig. 23: The figure shows summary of the data on e+e− → hadrons over a wide energy range taken from [31].

into account effects such as the initial state radiation etc. This precision study of the line shape of Z
was made possible by the unprecedented energy resolution of the collider LEP-I. The thin solid line is

then the theoretical prediction for the cross-section including the QED and QCD radiative correction.

The asymmetric shape of the curve near the resonance is the effect of the initial state radiation. The

agreement between the data and theory needs no comment.

Recall now the discussion in Sec. 4.1.3 and Eqs. 81 -83. One can extend constructions of these

asymmetries of Eqs. 81-83, for all the fermionic final states accessible in the Z decay, viz. the leptons

e, µ, τ and the quarks b, c. Looking at the expressions in Eqs. 81 – 83 one can see that a precision

measurement of these asymmetries as well as partial widths, lead to an accurate determination of gfV , g
f
A.

The Z-decay data from SLC, which employed linearly polarised e−/e+ beams, allowed for constructing

polarisation asymmetries just like the forward-backward asymmetry of Eq. 83. This too is a measure

of parity violation, with the additional advantage that it involves gV linearly instead of the quadratic

dependence in Eq. 83. This linear dependence is similar to the case of polarization asymmetries in case

of polarized electron-Deuterium scattering mentioned before. Recall also that for the value of sin2 θW
of Eq. 86 which is rather close to 0.25, the vector coupling of the electron involving (4 sin2 θW − 1) is

very small. Hence this linear dependence of the asymmetries on gV allowed the experiments at the SLC

to reach a competitive accuracy for the extraction of gA, gV with the much smaller luminosity and hence

smaller number of the Z decays (600000 versus 17 million at LEP) available there.

Fig. 24 shows values of geV , g
e
A obtained using the LEP-I data, juxtaposed with the data from

elastic ν scattering from 1987. The latter is a more refined version of the of the plot of Fig. 19. To truly

appreciate the phenomenal improvement, compare the size of the region in the gV , gA plane selected

by all the measurements (shown in an inset at the left of the figure, blown up by roughly a factor of

1000) with the size of the corresponding region in Fig. 19. Thus we see that at the Z pole the weak NC

couplings of the Z with the fermions, were tested to about one part in 1000.

It goes without saying that with such precision in measurements, if one were to repeat the earlier

exercise of extracting the value sin2 θW , ρ from them, such as given in Eq. 91, one HAS to use theo-

retical predictions which include all the relevant higher order corrections. This was already discussed

in Sec. 4.3.1. Since these corrections have a dependency on the masses of the particles like the W, t
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Fig. 24: the plot shows determination of gV , gA of the electron using Z decays taken from [31].

and the Higgs, if the measurements are precise enough then they can be sensitive to these masses. We

already saw this for the mass of t quark and the radiative corrections to the ρ parameter. The precision

measurements of EW observables then indicate ’indirectly’, in the framework of the SM, the values of the

masses of these particles preferred by the precision EW data. A comparison of these masses determined

’indirectly’, with the ones measured directly, can then be a powerful precision test of the SM.

4.3.3 Precision testing and indirect bounds

Let us describe the logical steps in such a program to perform precision testing of the SM. In principle

the EW part of the SM has following free parameters: g1, g2, v and λ. In addition to this of course there

is the QCD coupling g3, the nine masses (or equivalently the Yukawa couplings) of the massive charged

leptons and quarks, the four parameters of the CKM matrix and the strong phase θQCD. At tree level all

the couplings of the gauge bosons to fermions as well as to each other and their masses are completely

given in terms of the first three parameters in this list, viz. g1, g2 and v. In section 3.2.2 we already

discussed an analysis where we traded these three for the more accurately known αem, Gµ and one free

parameter sin θW (cf. Eq. 55). With the very precise knowledge of MZ provided by the LEP-I, it made

sense to trade the g1, g2 and v for MZ , αem and Gµ. As before, one can then use the relationships such

as given by Eqs. 32, 53 etc., of course corrected for radiative effects, to express all the EW observables

as functions of these three chosen quantities.

A really large number of EW observables have been measured very accurately, beginning from the

total width of Z boson, ΓZ , the various forward-backward and polarisation asymmetries on the Z-pole,

masses MW ,Mt, polarised e-Deuterium scattering, atomic parity violation etc. All these observables

depend on Gµ,MZ and αem through their dependencies on gfA, g
f
V ,MV as well as on αs and Mt,Mh

through the higher order QCD and EW corrections.

Precision calculation for all these EW observables, including the 1 loop EW radiative corrections

in the framework of the SM, are available. The idea is to make then a fit to the measured values of the

EW observables and test the SM predictions. In these fits, one keeps Mt,MW and Mh as free param-

eters. As already noted the radiative corrections depend on Mt quadratically and Mh logarithmically.

Then compare the MW ,Mt values so obtained with experimentally determined values of the same, thus
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providing a test of the SM. Afterwords one can perform the exercise by varying the Higgs mass, find the

value of Mh that minimises the χ2 and then find the limits on the Higgs mass for which the data will be

consistent with the predictions of the SM.

Fig. 25, taken from the url of the LEP EW working group [32], shows the result of such an exercise.

The figure lists the measured values of a variety of EW obsevables, most of which we have discussed.

The various R-ratios: Rb, Rc, Rl etc. are a measure of the relative production of the various final states

and hence of the partial decay width of the Z into them. Al(Pτ ) is the polarisation asymmetry for the τ ’s

produced in e+e− → Z → τ+τ− on the Z–pole. The second column shows the result of the SM fit for

the observable and the third column the pull which is the difference between the measurement and the

fit value normalized by the error of the measurement. The pull is less than three for all the observables

and above 2 for only one of the measurements viz. Ab
FB. This particular fit is the last one before the

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

Fig. 25: Pull for the SM fit for the totality of the EW precision observables. Taken from [32].

discovery of the Higgs at the LHC, using the most accurate measurement of MW from the Tevatron,

which has an error of 0.15 GeV, again a ’one per mille’ measurement. The χ2 of this fit is not very

small, mainly due to the discrepancy between the best fit values and measured values for Ab from LEP

as well as at the SLC. Hence before the ’direct’ discovery of the Higgs there were a few physicists who

used to be a little uncomfortable about the goodness of the fit and accepting this as ’the proof’ for the

correctness of the SM at loop level.

Note the values in the last two rows. The measured values and the best fit values of MW ,Mt agree

with each other to a great precision and the pull is is rather small, providing thus a stringent test of the SM

at loop level. This is the agreement between the Mt predicted ’indirectly’ from the LEP EW precision

measurements and the ’direct’ measurement from the Tevatron, that was alluded to before a few times.

In fact this spectacular agreement was the QFD (Quantum Flavour Dynamics) equivalent of testing the

(g − 2)µ prediction with the measurement in QED. The important role played by renormalisabilty and

loop corrections in this context can be understood by doing a small numerical exercise of predicting
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MW from the very accurately measured values αem = 1/137.0359895(61), Gµ = 1.16637(1) ×
10−5 GeV−2, MZ = 91.1875 ± 0.0021 GeV and the tree level relations given by the SM among these

quantities and MW . Notice that Eq. 55 can be written as,

Gµ√
2
=

g22
8M2

W

=
παem

2M2
W (1−M2

W /M
2
Z)

by using the tree level relation MZ =
MW

cos θW
. This gives, M tree

W = 80.939 GeV. Compare this now

with the value of MW given in the second column of Fig. 25, M expt
W = 80.385± 0.015 GeV. Of course,

this points out the need for calculating loop corrections to the tree level relations. Renormalisability

guarantees that all the corrections are finite and can be computed. Hence the value of MW obtained

’indirectly’ from the fits using theoretical predictions which include these loop corrections, then famously

agrees with the ’direct’ measurement as shown in Fig. 25. Agreement with the SM prediction would have

been impossible unless the predicted values included higher order corrections calculated in perturbation

theory.

The fit values and the pull for Mt,MW depends on the value of Mh, albeit very weakly, due to

the logarithmic dependence on Mh of the EW corrections to MW ,MZ etc. Some of these effects can
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Fig. 26: Left panel shows the dependence on Mh of the MW –Mt values obtained from the EW precision data.

Taken from [32]. The right panel shows the status of the ’indirect’ limits on Mh obtained by fits to the EW

precision data. This is taken from [14]. Both these are from the eve of the Higgs discovery, March 2012.

be seen from the two panels in Fig. 26. The plot in the left panel shows the dependence of the fit values

for MW ,Mt for different values of Mh. The long lopsided ellipse used the EW observables measured

at LEP-I and the SLC, to determine allowed regions in the Mt–MW plane at 95% c.l. Using the MW

measurements at the LEP-II/Tevatron as input, one now obtains the small blue ellipse which is consistent

with the precision measurements. The dark green (grey) region and the large red ellipse show that with

results from LEP-I alone, the measurements were not sensitive toMh at all. On the other hand, the highly

accurate LEP-II/Teavtron measurements of MW and the Tevatron measurement of Mt is consistent with

somewhat small values of the Higgs mass at the left most boundary of the green(grey) region. This was

also consistent with the exclusion (from direct searches at the LHC) of a SM Higgs over a very large

range as indicated by the Mh values labeling the inclined lines in the region shaded in yellow (a shade

of lighter gray).

The right panel shows the same information in a different format, where we show a plot of ∆χ2

as a function of Mh. In fact the fact that this minimum of ∆χ2 occurs at a nonzero, finite mass Mh is
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already an indication of the ’existence’ of the Higgs and hence a feather in the cap of the SM. The dotted

and solid black lines are the best fit with and without including the theory errors. The region shaded in

light blue (grey) indicates effect of the theoretical uncertainties as well as uncertainties in the EW fit. In

the absence of any information from ’direct’ searches for the Higgs, the indirect constraints will allow

a region around the minimum of χ2 (Mh ≃ 90 − 100 GeV) upto Mh values where ∆χ2 is 9: the 3σ
value. Remaining values of Mh will be disfavored by this ’indirect’ search. The ∆χ2 ≤ 9 corresponds

to an allowed mass range 40− 45<∼Mh<∼ 180− 200 GeV at 3σ. However a lot of this ’allowed’ region

is ruled out from direct searches at the LEP, at the Tevatron and at the LHC. These bounds are indicated

by the vertical red lines in this figure. The region ruled out by LEP is indicated by the dark grey region

hatched with slanted lines. The region ruled out by the hadronic collider Tevatron is indicated by the

cross-hatched region. The above mentioned red lines mark the edges of these regions giving us the pre-

LHC exclusion. The region excluded by the LHC in March 2012 is indicated by light grey region marked

by lines slanted in a direction opposite to the LEP exclusion region.

As one can see from this figure, before the LHC direct search constraints, the allowed mass range

for the Higgs was 115 ≤ Mh<∼150 − 160 and 180<∼Mh<∼200 GeV. The LHC experiments ruled out

existence of an SM Higgs in a major part of this range. As a result in March 2012, the mass value allowed

for a SM Higgs by a combination of the EW precision measurements and ’direct’ collider constraints was

as indicated by the small white slit around 125 GeV. Failure to find a Higgs in this small ’allowed’ mass

range would then have meant the death for the SM. Indeed a new boson was found with properties very

similar to a SM Higgs in precisely this mass range. This discussion should make it very clear to us

that the value of the mass of the observed Higgs boson itself tested the SM at loop level to a very great

accuracy.

In fact it won’t be out of place to recapitulate at this point how the SM was validated and tested

at various levels by discovery of new particles whose masses were predicted : either in terms of a free

parameter of the model which could be determined from experiments OR ‘indirectly’ by comparing loop

effects on physical observables with their precision measurement.

– Observation of suppression of FCNC implied that the quarks must come in isospin doublets. Thus

charm was predicted since the existence of the s quark was known and top was predicted to be

present once the b was found. Further, the very demand of cancellation of anomalies so as avoid

these spoiling the renormalisability, implied existence of third generation of quarks AND leptons

once the τ was found.

– One could get indirect information on Mc,Mt from flavour changing neutral current processes

induced by loops. Agreement of this ’indirect’ information with ’direct’ measurements ’proved’

the correctness of description of EW interactions in terms of a gauge theory.

– CP violation in meson systems could be explained in terms of the SM parameters and measured

CKM mixing in quark sector only if three generations of quarks exist.

– MW ,MZ was predicted in terms of sin θW and direct observation of the W,Z at the predicted

mass tested the particle content and tree level coupling of the matter fermions with the gauge

bosons W,Z .

– Study of energy dependence of the e+e− → W+W− process gave direct evidence for the tree

level ZWW coupling and also for the role played by this vertex in taming the bad high energy

behaviour of the cross-section. So in that sense, Fig. 21 gives evidence for the gauge symmetry

(ZWW coupling as indicated by symmetry) and the symmetry breaking (nonzero W mass) as

well.

– Further, Teavtron found evidence for ’direct’ production of the top quark at the mass Mt which

was in ageeement with the value obtained ‘indirectly’ from precision measurement of MW ,MZ ,

considering effect of radiative corrections to these masses.

– Last but not the least the existence of a minimum of ∆χ2 at a finite nonzero mass for the SM fits
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to the EW precision measurements, gave an ’indirect’ proof of the existence of the Higgs. Before

the ’direct’ discovery of the Higgs this was also an ’indirect’ probe of the couplings of the Higgs

with gauge bosons and the t quarks. Further, the same fits gave an ’indirect’ determination of Mh

which now agrees completely with the measured mass of the observed Higgs.

Now we can turn once again to the discussion of Fig. 5. As was already indicated by the right

panel of Fig. 26, the ’directly’ measured value of the Higgs mass Mh = 125.09 ± 0.24 GeV is right in

the ’allowed’ white slit and indeed confirms the SM at loop level most spectacularly. At this point, it is

worth noting that if we improve upon the accuracy of measurements of Mt,Mw and Mh we can indeed

hope to look for effects by loops of heavy particles which are not present in the SM but are expected to

exist in various extensions of the SM, which are in turn postulated to address various shortcomings of

the SM!

As already mentioned, the Higgs mass range allowed by the EW precision measurements can

change when one goes away from the SM. In fact before the ’direct’ discovery of the Higgs, a lot of

effort had gone on, in constructing models which would allow one to avoid these constraints, should

experiments reveal a Higgs boson not consistent with the bounds from the EW precision measurements.

Of course, not only that many of these are not required, but some are now even ruled out, by the obser-

vation of the light state. An example of one such model is the SM with a fourth sequential generation

of fermions, leptons and quarks. Since in the SM there is no guiding principle for total number of gen-

erations of fermions, except that they should be the same for quarks and leptons, this in principle is the

simplest extension of the SM by addition of more matter particles to it. Observation of the low mass

∼ 125 GeV scalar ruled out this extension very conclusively.

5 Observed mass of Higgs and the SM

As we saw above the EW precision measurements did put ’indirect’ bounds on the Higgs mass. However,

theoretically there is no information on the mass of the Higgs in the SM, as it is determined by λ an

arbitrary parameter. Recall Mh and λ are related by M2
h = 2λv2 . The observed mass of the Higgs

determines the self coupling λ:

λ = 0.5M2
h/v

2 ≃ 0.13

This is the last free parameter of the SM that needed to be determined. Thus the only part of the scalar

potential now that needs to be experimentally verified ’directly’ is the triple Higgs and the quartic Higgs

coupling in Eq. 56. Now that one ’knows’ the value of λ one can assess the possibilities of measuring it

at current and future colliders. One might ask the question whether this is the only nontrivial information

about the SM that we can extract from the observed value of the mass of the Higgs. Asked differently,

can one use this observed value of Mh to infer something about the SM as well as the physics beyond

the SM, viz. the BSM. Since in these lectures we restrict ourselves to the SM, I will only talk about the

possible implication of the observed Higgs mass for the SM itself.

While the SM has no ’prediction’ for Mh, requirement of theoretical consistencies imply bounds

on the same. These theoretical limits on the mass of the Higgs boson come from demanding good high

energy behavior of scattering amplitudes in the SU(2)L × U(1)Y gauge theory and from the quantum

corrections that the self coupling λ of Eq. 45 receives. These limits are thus essentially an artifact of the

quantum field theoretical description. Let us discuss this one by one.

5.1 Unitarity bound

Recall our discussion in section 3.2.7 of the high energy behaviour of scattering amplitudes. We dis-

cussed therein the high energy behavior of the scattering amplitude W+W− → W+W−. Various

contributing diagrams are shown in Fig. 27. Each of these diagrams gives a contribution which grows

as sα with α = 1, 2 where s is the centre of mass energy of the WW . This divergence appears in the
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Fig. 27: The upper panel shows digrams involving h bosons contributing to W +W → WW scattering. The

s-channel diagram will of course contribute only for W+W− → W+W− scattering. The lower panel shows the

all the diagrams which involve exchange of the gauge bosons Z and γ as well as the one involving pure gauge

vertex.

scattering of longitudinal W ’s. However in the SM all the divergent terms in the WW → WW ampli-

tude cancel among each other after adding the contributions of all the diagrams shown in Fig. 27. The

contribution of the h exchange diagrams as well as the that from the diagrams with pure gauge vertices

play an essential role in this cancellation as mentioned before. The cancellation of the power divergences

is independent of the Higgs mass and thus the requirement of non-divergent behavior does not single out

any scale. Among the non divergent part of the amplitude A(WW →WW ), left over after all this can-

cellations, the contributions of the Higgs exchange diagrams shown in the top panel of Fig. 27 dominate

and are dependent on the Higgs mass. These were investigated in [33] and they showed that though

not divergent these can become non negligible for large values of Mh. The non-divergent part of this

invariant amplitude can be written as [33]

A(W+
L W

−
L →W+

LW
−
L ) = −

√
2GµM

2
h

(

s

s−M2
h

+
t

t−M2
h

)

.

From a partial wave analysis of this amplitude one can show that this amplitude will violate tree level

unitarity if

Mh >

(

8π
√
2

3Gµ

)1/2

∼ 1000 GeV.
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Thus, the theory will be strongly interacting if Mh were to exceed this value. As things stand, the

observed value of Mh implies λ ≃ 0.13, far from the strongly interacting region and also safe from any

unitarity violation. Thus the observed mass of the Higgs boson satisfies the unitarity bound.

5.2 Triviality and Stability bound

Effect of loop corrections to the self coupling λ in a scalar field theory, in the presence of a high scale and

additional interactions of the scalar with gauge bosons and matter, was first studied decades ago [34] with

an aim to examine whether one could constrain the scalar mass and other high scale masses from pure

theoretical considerations. Triviality bound results from considering loop corrections to the scalar poten-

tial in Eq. 56. One demands that the quartic coupling λ in the Higgs potential from Eq. 56 reproduced

below,

Vh = λvh3 + λ/4h4,

remains perturbative as well as positive at all energy scales under loop corrections. The corrections

come from two sets of diagrams shown somewhat schematically in Fig. 28. The top panel shows loop

Fig. 28: The top panel shows loop corrections to the quartic coupling λ from the Higgs sector itself. The diagrams

in the lower panel show contributions to the running of λ from fermion and gauge loops.

corrections to the quartic coupling λ from the Higgs sector itself whereas the diagrams in the lower panel

show contributions to the running of λ from fermion and gauge loops. So the diagrams shown in the top

panel are applicable to any scalar with quartic self interaction. The ones in the lower panel are specific

to a gauge theory.

5.2.1 Triviality Bound

The triviality bound comes from demanding that λ should always remain perturbative. To understand the

origin of this bound let us consider the case of large Mh. Since M2
h = λv2, at large mh and hence large

λ, loop corrections are dominated by the h–loops shown in the top panel of Fig. 28. A straightforward

evaluation of this gives us

dλ(Q2)

d logQ2
=

3

4π
λ2(Q2) (92)
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Solving this, one gets

λ(Q2) =
λ(v2)

[1− 3
4π2λ(v2) log(

Q2

v2
)]
. (93)

A look at Eq. 93 shows us that at large Q2 ≫ v2, λ(Q2) can develops a pole, the so called Landau pole,

at some high scale Q depending on the value λ at the EW scale v. If we demand that λ remains always

in perturbative regime, then the ONLY solution would be λ = 0. This would then mean that the theory

will be trivial. That of course does not make for a sensible theory. Thus the starting value of λ(v) and

hence Mh is not allowed by these considerations.

One can understand this in yet another way. If we demand that the scale at which λ blows up is

above a given scale Λ, then using Eq. 93 we find that for a given value of Mh and hence λ(v), the scale

at which the Landau pole lies will be given by

ΛC = v exp

(

2π2

3λ

)

= v exp

(

4π2v2

3M2
h

)

. (94)

Thus, for example, using ΛC = Λ = 1016 GeV, we will find Mh <∼ 200 GeV.

This bound is called the triviality bound. In simple terms it means that the value of λ at the EW

scale (and hence the mass Mh) should be small enough so that λ(Q2) does not develop a pole up to a

scale Q = ΛC . Hence, if Mh were found to have a mass larger than the triviality bound, it would have

meant existence of new physics below the scale ΛC . This thus tells us that just the mass of the h can give

us an indication about the scale at which SM must be complemented by additional new physics. The

mass of the Higgs being only 125.09 GeV this is rather an academic discussion as this small value of the

coupling λ at the EW scale, implies that the loop effects will not be driving the self coupling λ toward

the Landau pole at an energy scale of interest. There are other issues that we need to address given that

the observed mass is so small. But we will not discuss them here.

5.2.2 Stability bound

When Mh is small and λ is not large, the fermion/gauge boson loops are important. Even more important

is that the fermions loops come with a negative sign. This means that if the fermion mass is large enough

the loop corrections may drive λ negative at some scale, unless the starting value of λ(v) is large enough.

These considerations will imply a lower bound for λ(v) and hence for Mh. This limit on Mh is called

the vacuum stability bound. Now one works in the limit of small λ, opposite to the one used when

considering the triviality bound. Hence the contribution of the h-loops shown in the upper panel of

Fig. 28 can be neglected. Hence the equation for energy dependence of λ now can be written as:

dλ(Q2)

d log(Q2)
≃ 1

16π2
[12λ2 + 6λf2t −3f4t − 3

2
λ(3g2

2 + g2

1)

+
3

16
(2g42 + (g22 + g21)

2)] (95)

ft =

√
2Mt

v
is the Yukawa coupling for the top. Since Mt ∼ 173 GeV and v ≃ 246 GeV, one can see

that the Yukawa coupling is ≃ 1. Thus it will dominate the scale dependence of λ. At small Mh and

hence small λ(v), λ can turn negative at some value of Q. Recall the Higgs potential. A negative value

of λ will mean an unbounded potential and clearly the vacuum will be unstable. The condition for non

negativity of λ and hence vacuum stability, is

M2
h >

v2

8π2
log(Q2/v2)

[

12m2
t /v

4 − 3

16
(2g42 + (g22 + g21)

2)

]

. (96)

Again, depending upon the scale up to which we demand the potential to be positive definite, we find

that the starting value λ(v) (and hence Mh) has to be above a critical value dependent on the scale. If
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we demand that the λ(Q) is positive up to ΛC we then get a lower bound on Mh. For example choosing,

ΛC = 103GeV we get Mh >∼ 70 GeV. This bound is called the stability bound.

In the above analysis we have demanded that λ(Λ) does not become negative so that the potential

is stable. This is the condition for absolute stability of vacuum. However, Planck scale dynamics might

stabilise the vacuum for |Φ| >> v and we might be living in a metastable vacuum which has a life time

bigger than that of the Universe. The cartoon shown in Fig. 29 indicates such a situation. One can then

obtain lower bounds on Mh demanding that vacuum is metastable with a life time bigger than the life

time of the Universe. Clearly evaluation of these bounds can not be presented in the simplistic analysis

that we have given here.

Fig. 29: Cartoon of a field configuration that would give rise to metastable vacuum.

A complete and sophisticated analysis of Ref. [35] in fact gives the vacuum stability bounds on

the Higgs mass taking into account the effect of renormalisation group evolution(RGE) as well as that

of metastability of the vacuum. Fig. 30 taken from Ref. [35] shows the stability bounds, indicated by

the pale yellow green area, as a function of scale at which the instability sets in. The spread is due to

the theoretical uncertainties, major ones being the top mass uncertainty and the missing higher order

contributions to the equations. RGE takes into account not just the one loop corrections shown in Fig. 28

but also includes the resummation of leading logarithmic corrections. As one can can see even from the

simple minded analysis presented here, the bound depends critically on the value of ft and hence on Mt.

If one overlays the bounds on the Higgs mass of Fig. 26 obtained ’indirectly’ from the EW precision

analysis as well as the LEP/Teavtron/LHC searches then we realise that the thin white silver which was

still allowed by March 2013 corresponds to the boundary of the pale yellow-green region indicating

the stability bound. Due to the finite width of these bands caused by various uncertainties mentioned

above, the observed mass of the Higgs Mh may or may not be consistent with the hypothesis that the

SM remains consistent all the way to Planck scale. Given that everything depends logarithmically on

different scales and with the high accuracy of the experimental measurement of Mh, the need to do the

evolution of λ taking into account higher order effects is thus clear.

In fact the need for more accurate calculation was already apparent, even before the Higgs discov-

ery, with the rather low values of Mh indicated by the ’indirect’ limits. To appreciate this, look at Fig. 26

again disregarding the vertical red lines corresponding to the LHC 95% bound, which delineate the pale

grey region hatched with inclined lines. The 3σ region around the minimum of ∆χ2 and hence preferred

by the EW precision data, allowed by Tevatron data, 115 ≤Mh ≤ 150 GeV, covers the range of masses

where the stability bound is operative and the upper limits on the possible scale of new physics indicated

by the vacuum (in)stability interesting. The need for accuracy in the theoretical prediction of stability
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Fig. 30: The vacuum stability bound on Mh as a function of the scale. Bounds are shown for absolute stability as

well as metastability. Taken from [35].

bound is thus very apparent. In May 2012, with the discovery of the Higgs imminent, an NNLO analysis

of the problem became available [36], which reduced the theoretical error on the bounds coming from

the unknown higher order corrections to ∼ 1 GeV.

Fig. 31: λ(µ) as a function of scale for different values of αs,Mt varied within the experimental errors. The plot

is taken from [36].

However, there still remains a sizable error due to the errors in experimentally determined param-

eters Mt, αs. Fig. 31, taken from [36], shows behavior of λ(µ) as a function of the energy scale µ. One

now sees clearly that the scale at which λ becomes zero and hence the vacuum unstable, depends criti-

cally on Mt and the strong coupling αs. For example, for the central value of Mt used, µ value at which

λ becomes zero changes by at least an order of magnitude as αs is varied within errors. The dependence

on Mt is even stronger. We will comment later on the range of Mt used in this analysis. According to
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this analysis the absolute stability of the vacuum up to Planck scale Mpl is guaranteed for,

Mh [ GeV] > 129.4 + 1.4

(

Mt [GeV]− 173.1

0.7

)

− 0.5

(

αs(MZ)− 0.1184

0.0007

)

± 1.0 th. (97)

In this analysis the error on pole mass of the top was taken to be ∆mt = ±0.7 GeV. Taking into

account the errors, Eq. 97 then means that for mh < 126 GeV, vacuum stability of the SM all the way

to Planck Scale is excluded at 98% c.l. Clearly, this value is far too close to the observed value of

125.09± 0.24 GeV to require careful considerations of various issues before we draw conclusions about

the validity of the SM at high scale. For the measured value of the Higgs mass, the exact scale where λ
crosses zero, though not Mpl seems close to it and depends entirely on the exact value of Mt and Mh.

Indeed these considerations may be relevant for consideration of BSM or models of inflation etc.

The same can be seen clearly from Fig. 32 taken from [36]. This shows the results of this NNLO

analysis of the region in Mh–Mt plane from the vacuum stability considerations. The left panel shows

Fig. 32: The left panel shows the regions in the Mt–Mh plane where the vacuum is absolutely stable, metastable

and unstable. Right panel shows the zoom-in the region of values preferred experimentally. The grey areas show

allowed regions at 1,2 and 3 σ. The three curves on the boundary of two regions correspond to three values of αs.

Superimposed on it are the contours of constant value of the high scale where the instability occurs. The plot is

taken from [36]

the regions in the Mt–Mh plane where the vacuum is absolutely stable, metastable and unstable. To

understand the role and size of various ’experimental’ uncertainties the right panel shows a zoom in of

the region around the experimentally determined Mh–Mt values. The grey areas show allowed regions

at 1,2 and 3 σ. The three curves on the boundary of two regions correspond to three values of αs.

Superimposed on it are the contours of constant value of the high scale where the instability occurs. We

see that the experimentally determined values lie right on the boundary of the stable/metastable region.

The answer to the question as to whether or not, the experimentally determined value of Mh (known now

to a high accuracy Mh = 125.09 ± 0.24 GeV) is consistent with SM vacuum being (meta)stable all the

way to Planck scale, very much depends on Mt values.

Let us discuss this issue in a little more detail. The stability bounds given in [36] used errors on

mt as measured at the hadronic colliders the Tevatron and the LHC. This is the so called Monte Carlo

or kinematic mass, which is a parameter in the Monte Carlos used while analysing the data and studying
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the top quark production at the colliders. Conversion of this parameter into the pole mass, which is the

parameter required in these theoretical considerations and for the RGE, has uncertainties coming from

hadronisation and fragmentation models, underlying event etc. These are typically non perturbative in

character. Another way to extract the pole mass in a well defined manner is to extract MMS
t , the mass of

the top quark in the MS scheme from the measurement of the top quark cross-sections at the Tevatron

and the NNLO calculation of the same. The procedure to convert this mass to the pole mass Mt(Mt),
leads to uncertainties in Mt larger than the 0.7 GeV taken in Eq. 97. This exercise, using the available

information in 2012 led to an estimate of the pole mass for the top [37]:

Mpole
t = 173.3 ± 2.8 GeV.

Compare this with the error of 0.7 GeV that was used in the estimate obtained in [36]. The vacuum

stability constraint now becomes Mh > 129.4 ± 5.6 GeV instead of the one in Eq. 97. This observation

then can weaken the conclusion about the high scale upto which the SM remains valid without getting

into conflict with stability. The future International Linear Collider(ILC) can measure the top mass Mt

to a high accuracy of 100 MeV. What is more important is the fact that the determination of the t mass

Fig. 33: This is the same figure as in the right panel of Fig. 32, where the zoomed region around experimentally

determined values from [36] has ben overlaid with the uncertainties of Mt determination as extracted in [37]. This

was done by G. Isidori in his talk at SUSY 2014.

at the ILC comes directly from measurement of the tt̄ production cross-section in e+e− collisions, near

the tt̄ threshold. This can be measured very accurately and has been computed theoretically to a high

precision as well. This measurement can be converted into the pole mass in an unambiguous way. Fig. 33

shows how such a precision measurement of the mass at the ILC can really shed light on whether the

currently measured higgs mass points to the NEED of BSM physics at any particular high scale. In the

above figure, the bigger blue circle has been drawn assuming an LHC accuracy of t mass measurement

of 1 GeV. However, a reduction of this error to about 500 MeV looks possible and is an active area of

research. These kind of investigations are just the next logical step in our efforts to test the SM through

a combination of the ’direct’ and ’indirect’ observations.
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6 Concluding remarks

In any case the days of Standard Model are coming to an end in some sense! Hopefully it will be the case

of ’The King is Dead’ and ’Long live the King’! We have, however, not much idea what particular BSM

option, if any, would be the new king. As we have discussed above, already the mass of the observed

state can be used to answer the question about the scale upto which the SM is valid. In fact, this has

been one of the most impressive facts about the SM. It has held the ability to ask and answer questions

about its own consistency within its structure. Just like the gauge principle and the unitarity were the

guiding principle so far, now the small mass of the discovered Higgs (∼ O weak scale) might be the

guiding principle for future theoretical developments! This will be discussed in other lectures at the

school. We should get a peek at the BSM land through the ’window’ of measurement of the properties

of the Higgs and the top quark! Exciting days are ahead for sure! If 14 TeV LHC should also fail to find

Fig. 34: The Higgs and Top portal for BSM physics.

’direct’ evidence for the BSM physics we would really have to understand what is so special about the

Standard Model. Precision measurements of the observed Higgs mass and Higgs couplings will be then

our window to this world of physics beyond the SM.
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