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Fragment mass distributions from fission of the excited compound nucleus 178Pt have been deduced 
from the measured fragment velocities. The 178Pt nucleus was created at the JAEA tandem facility in 
a complete fusion reaction 36Ar + 142Nd, at beam energies of 155, 170 and 180 MeV. The data are 
indicative of a mixture of the mass-asymmetric and mass-symmetric fission modes associated with 
higher and lower total kinetic energies of the fragments, respectively. The measured fragment yields are 
dominated by asymmetric mass splits, with the symmetric mode contributing at the level of ≈ 1/3. 
This constitutes the first observation of a multimodal fission in the sub-lead region. Most probable 
experimental fragment-mass split of the asymmetric mode, AL/AH ≈ 79/99, is well reproduced by 
nuclear density functional theory using the UNEDF1-HFB and D1S potentials. The symmetric mode is 
associated by theory with very elongated fission fragments, which is consistent with the observed total 
kinetic energy/fragment mass correlation.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding of the nuclear fission process is important for 
many areas of fundamental science, technology, and medicine. In 
particular, fission is crucial for the existence of many transura-
nium nuclei, including the predicted long-lived superheavy iso-
topes [1,2], as well as for the heavy element formation in the 
astrophysical r-process [3–6]. Better knowledge of fission proper-
ties is also essential for our understanding of the antineutrino flux 
from nuclear reactors [7,8]. Regardless of the area, one needs de-
tailed information on fission rates and fission fragment (FF) mass 
distributions (FFMDs).

At present, our experimental knowledge of fission is primar-
ily limited to nuclei close to the stability line [9,10] and within a 
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fairly narrow isospin range N/Z ∼ 1.48–1.58. Extrapolation of this 
knowledge to higher neutron-excess regions (N/Z > 1.8) relevant 
to the r-process is highly model dependent [3,5,6]. While there has 
been exciting progress in global modeling of nuclear properties, 
facilitated by advanced computing, a comprehensive, microscopic 
explanation of nuclear fission is still difficult to achieve, due to 
complexity of the process [11,12]. To advance theoretical modeling 
of fission, experimental FFMDs data are needed in broader range of 
N/Z -values, to test the isospin dependence of model predictions.

Due to its experimental accessibility, the neutron-deficient sub-
lead region (N/Z ∼ 1.3) provides excellent testing ground for stud-
ies of the isospin dependence of fission observables. Due to its 
exotic N/Z ratio, new facets of the fission process can be expected. 
Indeed, the observation of asymmetric fission of 178,180Hg [13,14]
attributed to shell effects in pre-scission configurations [15–18]
has generated an appreciable interest in this region, both exper-
imentally and theoretically. Inspired by the 180Hg results, FFMDs 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Initial beam energy Ebeam and its value (in brackets) at a mid-thickness of the target; mid-target CN excitation energy E∗

CN obtained from the reaction mass balance; average 
induced angular momentum �̄; calculated fission-barrier height B f ,�̄; average energy Ēν taken away by pre-fission neutrons; rotational energy Erot; effective excitation 
energy Eeff

CN derived as E∗
CN − B f ,�̄ − Ēν − Erot; TKE distribution components TKElow and TKEhigh; and their widths σTKElow and σTKEhigh . All values are in units of MeV, except 

for �̄ expressed in h̄. The uncertainties are of statistical origin.

Ebeam E∗
CN �̄a B f ,�̄

b Ēν
c Erot Eeff

CN TKElow σTKElow TKEhigh σTKEhigh

155.0(153.9) 38.6 9.0 12.7 0.3 0.7 24.9 – – – –
170.0(168.8) 50.5 28.2 10.1 9.9 5.0 25.5 114.7(43) 12.6(13) 133.4(13) 10.9(4)
180.0(178.8) 58.4 37.6 8.1 16.3 8.5 25.5 114.6(64) 15.4(16) 131.2(9) 12.6(3)

a Derived from the coupled-channel calculation of the CN production probabilities [34].
b Initial values from [35] corrected for rotation [36].
c Calculated in accordance with procedure described in [19].
have been experimentally studied for several neutron-deficient 
sub-lead nuclei [14,19–21]. As shown by theory [15–17,22–25], 
the topology of potential energy surfaces (PES) in sub-lead nu-
clei is significantly different (flat, broad and rather structureless) 
from those in the actinides, which explains fairly low dependence 
of the corresponding experimental FFMDs on the compound nu-
cleus (CN) excitation energy (cf. [19]). According to the global 
survey of calculated FFMDs [26], a new extended region of asym-
metric fission is expected in neutron-deficient Re–Pb isotopes with 
98 � N � 116. It is separated from predominantly asymmetrically-
fissioning actinides by a zone of symmetric fission around Ir–At in 
the vicinity of N ∼ 120–126 [9], whose properties were extensively 
investigated in the past (cf., e.g., Refs. [27,28]). The experimen-
tally studied neutron-deficient 178,180,182,190,195Hg and 179,189Au 
isotopes [13,14,19–21] lie on the northern border of this region. 
As concluded in Ref. [26], new high-quality FFMDs data for se-
lected sub-lead isotopes are needed to test and guide theoretical 
developments.

In the transitional regions between asymmetrically and sym-
metrically fissoning sub-lead nuclei, an interplay between different 
fission modes might exist, by analogy to light [29,30] and heavy 
[31,32] actinides. In view of PES properties in the sub-lead re-
gion [13,15–17], an observation of a competition between fission 
modes will shed light on the nature of near-scission configurations 
of nuclei, which are some 60 nucleons lighter and greatly defi-
cient in neutrons, as compared to actinides and transactinides. This 
Letter provides the first experimental demonstration of the exis-
tence of competing fission modes in sub-lead nuclei, by revealing 
the presence of asymmetric and symmetric fission modes through 
measurements of FFMDs from fission of 178Pt.

2. Experiment

178Pt was produced at the JAEA tandem accelerator [33] in a 
complete fusion reaction 36Ar+ 142Nd→ 178Pt∗ . A 75 μg/cm2-thick 
142Nd target was made by sputtering of the 142NdF3 material (iso-
topically enriched to 99%) onto a thin (42 μg/cm2) carbon backing 
facing the beam. Stability of the target performance with irradi-
ation time was confirmed by the measurements of the 36Ar ions 
scattered into a Si detector placed at backward angles, as well as 
by the constancy (within every beam energy setting) of the count-
ing rate monitored during the experiment. The 36Ar beam intensity 
was a few pnA, and the measurements were performed at three 
beam-energy settings (155, 170, and 180 MeV). Table 1 gives de-
tails on the energy balance of the formed CN.

The coincident fission fragments of 178Pt were detected with 
a two-arm time-of-flight (TOF) setup placed downstream the tar-
get, with two TOF arms positioned symmetrically at ±60◦ relative 
to the beam axis, with horizontal and vertical acceptance of ±15◦ . 
The chosen detection angles allowed for similar angular acceptance 
for both mass-symmetric and mass-asymmetric fission events and, 
thus, excluded influence of the setup geometry on the observed fis-
sion properties. Each TOF arm was comprised of a micro-channel 
plate based detector (MCP) and a position-sensitive multi-wire 
proportional counter (MWPC), providing the timing START and 
STOP signals. For the central trajectory, the target–MCP foil dis-
tance was 67 mm, and the TOF base of 243 mm was identical for 
the two TOF arms. The MWPCs (active area of 200 × 200 mm2) 
were operated with isobutane gas at a pressure of 1.5 Torr and 
had a 2 μm aluminum-coated Mylar entrance window, whereas the 
MCP-based detectors were equipped with a thin (0.5 μm) Mylar 
foil coated with Au and CsI (100 Å and 20 Å of thickness, respec-
tively). In addition to timing signals and spacial coordinates for 
the detected events, the MWPCs have also provided information 
on their partial energy loss in the isobutane.

3. Results

Figs. 1a–b give samples of recorded coincident data, in which 
experimental observables (timing signals and energies) are used 
without any preliminary treatment. Three groups of events are dis-
tinctly visible in the plots. Their identification as projectile/target 
scattering and fission events is obvious directly from the plotted 
raw data.

For the follow-up analysis, we select fission events by making 
use of two conditions on the observables, indicated in Figs. 1a–b as 
contours.1 Angular information extracted from the MWPC impact 
coordinates (folding angles: see Ref. [19] for details) was used to 
check for the selection quality.

For every identified fission event, velocities of coincident FFs 
were derived from the measured TOF values and TOF distances 
calculated with help of the MWPC coordinates. They were then 
calibrated with the scattered 36Ar beam and corrected for the reac-
tion kinematics, as well as for attenuation in the target (calculated 
for a half of the thickness) and the TOF detectors’ foils.

Fig. 1c shows the obtained FF velocities for one of the TOF arms. 
The striking feature of these distributions is their pronounced non-
symmetric character. A good description of the velocity spectra is 
achieved with a two-Gaussian fit, as demonstrated in the inset of 
Fig. 1c. For coincident fragments, one finds a correlation of events 
from the low- and high-velocity groups in the velocity spectra 
from the two TOF arms. This inequality in velocities of coinci-
dent FFs allows one to conclude that the fission of 178Pt produces 
fragments with different masses and is therefore predominantly 
asymmetric.

Importantly, the two-component velocity fits as in Fig. 1c de-
liver very different distribution widths and thus do not yield the 
same integral for the expected light and heavy fragment groups. 

1 An alternative approach for the fission event selection is to extract from the 
measured data masses and total kinetic energies and to construct a corresponding 
correlation plot, as shown in Fig. 1d. This analysis does not necessitate any prior 
gating but uses two-body fission kinematics for all of the measured events.
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Fig. 1. (a) Two-dimensional TOF1–TOF2 raw-data spectrum for coincident events at Ebeam = 170 MeV. Events in the black contour are from fission; remaining events are 
from the projectile-target scattering and transfer reactions. (b) Summed energy signals from the MWPC detectors for Ebeam = 170 MeV plotted against the difference in their 
timing signals (coincidence with MCPs not demanded). Contoured are fission events producing more ionization in detectors, due to their significantly larger ionic charge 
states and, hence, higher effective charges than scattered beam/target nuclei. (c) FF velocities after calibration with the scattered 36Ar beam, corrected for attenuation in the 
target and TOF detectors. The inset shows a typical (free) fit of the data at Ebeam = 170 MeV. (d) Events from (a) represented in terms of their total kinetic energy and mass 
both calculated from experimentally obtained velocities, assuming fission process as the only events’ origin. The group of events in the plot’s center is coincident with data 
in contours in (a) and (b).

Fig. 2. (a) TKE distribution for Ebeam = 170 MeV (projection of (b) onto the TKE-axis) de-convoluted into two components with derived positions of TKEhigh and TKElow, 
shown by dotted horizontal lines, see text for details. (b) TKE – FF mass correlation obtained with events’ selection as in Figs. 1a–b. TKE scale is identical for both (a) 
and (b). Mass spectra gated on events above TKEhigh (c) and below TKElow (d) fitted with a double- and single-Gaussian unconstrained function; fit results given by red lines. 
(e–g) Total FFMDs at different CN excitation energies (cf. Table 1). Solid red lines result from a fit with fixed symmetric and asymmetric mode positions. Blue and black 
dashed lines show the asymmetric and symmetric fit components, respectively. Experimental mass resolution is σ exp

A = 2.9 amu, as deduced from the width of the 36Ar peak 
(not shown).
This is a direct indication of presence of symmetric-fission events 
in the data.

The mass numbers AL and AH of light and heavy FF groups, 
respectively, along with their respective total kinetic energy (TKE), 
can be readily derived from the fragments’ velocities v L and v H , 
under assumption of no particle emission (i.e., AL + AH = ACN) 
from the compound nucleus ACN during the pre-fission stage: 
AL v L = AH v H and TKE = 0.5MCN v L v H , MCN being mass of the 
compound nucleus. An example of the deduced TKE-mass data is 
shown in Fig. 2b. Projection of the data in Fig. 2b on the TKE-axis 
gives the TKE distribution (Fig. 2a), whose average value TKE and 
width σTKE are found to slightly change with the increasing beam 
energy (�TKE = −1.9(2) MeV, �σTKE = 1.2(2) MeV for the mea-
sured Ebeam range). This corroborates recent results on the TKE 
parameters’ behavior in 180,190Hg [19] and is generally inline with 
positive and negative slopes in dTKE

dE∗
C N

and dσTKE
dE∗

C N
, respectively, known 

for actinides (cf., e.g., [37]).
The TKE distribution in Fig. 2a is clearly skewed. The simulated 

FF energy straggling in the target and TOF detectors’ foils could 
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not reproduce the observed asymmetry effect in the TKE, unless 
unrealistic assumptions are made about the inhomogeneity of the 
MCP foil (thickness varying from zero till 10 times the nominal 
value of 0.5 μm). Similarly-skewed TKE distributions were obtained 
also at Ebeam = 155 and 180 MeV. Based on the velocity analysis, 
an unconstrained two-Gaussian fit was carried out to describe the 
TKE data. This fit, statistically reliable only at the two higher en-
ergies, yields two TKE components placed at TKElow (maximum of 
the shadowed-area curve in Fig. 2a) and TKEhigh (maximum of the 
other dashed curve); their numerical values are given in Table 1.

The TKE components TKElow and TKEhigh are linked to the sym-
metric and asymmetric fission modes. This is demonstrated by 
the difference in the shape of the partial MDs constructed with 
events in Fig. 2b in the regions below TKElow and above TKEhigh

and projected on the mass-axis (cf. the dotted lines and arrows 
in the Figure): narrow and clearly symmetric in Fig. 2d and wide 
and flat-top in Fig. 2c. The best-fit descriptions of partial MDs 
in Figs. 2c–d are achieved with one- and two Gaussians, respec-
tively. The latter determines the light (AL = 79(1) amu) and heavy 
(AH = 99(1) amu) FF peak positions. Thus, our experimental re-
sults shown in Fig. 2c–d offer the first direct experimental evi-
dence of the co-existing symmetric and asymmetric fission modes 
in the 178Pt nucleus and in the sub-lead region. Contrary to the 
Mulgin et al. [38] who interpreted earlier experimental data close 
to the β-stability line around A∼200 [27,28] within a liquid-drop 
model with phenomenological shell corrections added, our con-
clusion on the coexistence of two modes in 178Pt is based on 
the assumption-free deconvolution of experimental TKE-mass data 
which makes the result unambiguous.

The experimental total FFMDs are shown in Figs. 2e–g by the 
black circles. One observes that the MD shape evolves with the ex-
citation energy E∗

CN: it becomes wider when E∗
CN increases. The 

effect of the MD broadening is well-known for actinides (cf., e.g. 
Ref. [39]); it scales with the nuclear temperature. The expected 
linear dependence of the MD variance with E∗

CN for nuclei in the 
region of interest has already been demonstrated in fission of 
180,190Hg isotopes (cf. Fig. 3 of Ref. [19]); present experimental 
data follow the same trend.

Solid red and dashed lines drawn in Figs. 2e–g are results of the 
analysis in terms of two fission modes, with the fit function com-
posed of three Gaussians with fixed positions as obtained above. 
Overall, a good description of the experimental data is achieved. 
The asymmetric mode is found to be dominant, in accordance with 
the velocity analysis. The weight of the symmetric mode amounts 
to ∼31% at the three considered beam energies. Thus, in contrast 
to actinides [37], the balance between symmetric and asymmetric 
modes in the FFMDs does not seem to be significantly affected by 
the excitation energy. This can be explained in terms of the en-
ergy considerations of Table 1: corrections to the excitation energy 
E∗

CN due to possible neutron emission2 Ēν , rotational energy Erot
of the CN and the rotation-dependent fission-barrier height B f ,�̄
reduce the initial spread of 20 MeV in E∗

CN, resulting in practically 
identical (∼25 MeV) effective excitation energy Eeff

CN.

4. Interpretation

Nuclear density functional theory (DFT) calculations made prior 
the experiment within two Hartree–Fock–Bogolyubov frameworks 
employing the Skyrme UNEDF1-HFB [41] and Gogny D1S [42] en-
ergy density functionals (cf. Figs 3 and 4, respectively) help to 
interpret the obtained experimental results.

2 Proton emission has been neglected as it affects less than 10% of fission events 
at the highest excitation energy, as estimated with the statistical code GEF [40].
Fig. 3. PES of 178Pt in the (Q 20, Q 30) plane calculated in UNEDF-HFB. The solid thick 
line indicates the static fission path obtained by the local minimization of PES. To 
illustrate the shapes on the way to fission, and the emergent pre-fragments, the 
neutron localization functions [43,44] corresponding to various intrinsic configura-
tions along the asymmetric (ABCD) and symmetric (ABcd) paths are plotted.

Fig. 4. PES of 178Pt in the (Q 20, Q 30) plane (a) and in the (Q 30, Q 40) plane at Q 20 =
190 b (b) obtained in D1S. The solid thick line in (a) indicates the static fission 
path obtained by the local minimization of PES. Dashed lines in (b) indicate the 
symmetric PESs corresponding to compact (smaller Q 40) and elongated (larger Q 40) 
fragments. The minimum corresponding to the static fission path in (a) is marked 
by the red dot.

The constrained calculations were performed in the collective 
space of quadrupole (Q 20) and octupole (Q 30) moments, and also 
in the hexadecapole direction Q 40 in the D1S model. It is en-
couraging to see that both approaches yield very similar picture 
of PES. In both calculations, the static fission path (computed by 
minimizing the potential energy at each value of Q 20) leads to 
the mass-asymmetric AL/AH ≈ 80/98 split, which matches the 
experimental result very well. (We note that the Brownian shape-
motion method Ref. [26] predicts a strongly asymmetric split with 
AL/AH ≈ 70/108 at the CN excitation energy of 16.5 MeV.)

To understand the formation of fragments corresponding to the 
178Pt fission pathways, we use the concept of nucleon localization 
functions (NLFs) [43]. Within this framework, the elongated con-
figurations on the way to scission are composed of two clusters 
(pre-fragments) connected by a neck. At scission, the neck nucle-
ons are redistributed into pre-fragments, producing the final fission 
fragments. As shown in Ref. [44], NLFs quantify the appearance 
of pre-fragments more efficiently than nucleonic density distribu-
tions as the concentric patterns in NLFs – due to shell structure 
in the nuclear interior – are averaged out in density distributions. 
Fig. 3 displays the resulting NLFs along the two fission pathways: 
asymmetric (ABCD) and symmetric (ABcd). Based on the analysis of 
NLFs according to the procedure of Ref. [44], the asymmetric pre-
scission configurations marked “C” and “D” in Fig. 3 are composed 
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of a nearly-spherical cluster around 86Sr and a lighter deformed 
pre-fragment. Such a structure results in FFs around 98Mo and 
80Kr. As far as the symmetric configuration “c” is concerned, its 
pre-fragments can be associated with spherical 64Ni nuclei.

The static fission valley in Figs. 3 and 4 evolves on a fairly flat 
landscape, in contrast to a typical situation in heavy actinides (see 
e.g. [17,23]). Absence of any ridge in the area of low octupole mo-
ments, along with a fairly small energy difference between the 
asymmetric and symmetric paths, suggests a possibility for a com-
petition between different fission modes. At present, a detailed 
description of this competition is difficult to assess theoretically, 
as the post-scission configurations associated with fusion valleys 
[16] enter the picture and produce a sudden drop in PES at very 
large elongations (cf. Figs. 3 and 4a), which makes it practically 
impossible to follow adiabatically the original fission trajectory.

A detailed analysis of the PES in Fig. 4b shows that the plateau 
predicted for nearly-symmetric shapes around Q 20 = 190 b in the 
region between the paths CD and cd, has a rather complicated 
structure. Namely, at the same values of quadrupole and octupole 
moments, two local symmetric PES minima with similar energies 
but distinct hexadecapole moments and nuclear density distribu-
tions are found. One of these solutions, with Q 40 ∼ 60 b2, corre-
sponds to compact fragments, while that with Q 40 ≈ 85 b2 can 
be associated with very elongated fragments. In both models, the 
symmetric pathway associated with elongated-fragment configura-
tions, expected to have lower TKE, is predicted to be energetically 
slightly more favored than that associated with compact fragments. 
Therefore, it cannot be excluded that the symmetric fission mode 
seen experimentally contains contributions from both structures. 
It is interesting to see that competing fission pathways involv-
ing similarly asymmetric, compact, or elongated shapes have been 
predicted for multimodally fissioning nuclei in the fermium region 
[45,46], i.e., for nuclei with much larger values of AC N and N/Z .

Experimentally, we find that both symmetric and asymmet-
ric fission modes follow the trend previously observed in heavier, 
trans-lead, nuclei [47]. In particular, higher values of TKE in the 
asymmetric mode (cf. Table 1) – which also match well the TKE =
135.9 MeV value expected from the Viola systematics [48] – are in-
dicative of less deformed scission configurations, whereas for the 
symmetric mode, highly elongated FF shapes are expected from 
its lower TKE values. This finding is consistent with the shapes 
of nucleon localizations shown in Fig. 3: symmetric configuration 
“d” corresponds to highly deformed fragments without a well de-
fined neck. As discussed above, a similar configuration associated 
with symmetric elongated fragments has been predicted in the 
D1S model: in Fig. 4b it is marked by a black dot at Q 40 ≈ 85 b2

and Q 30 ≈ 0.

5. Conclusions

In summary, the FFMDs of 178Pt produced in a complete fusion 
reaction 36Ar + 142Nd are found to be predominantly asymmet-
ric, with the most probable mass division AL ≈ 79 and AH ≈ 99. 
The combined analysis of the FFMDs and TKE distributions made 
it possible to separate asymmetric and symmetric fission modes. It 
is found that the asymmetric mode is associated with larger TKE 
values than the symmetric mode. Moreover, its average TKE fol-
lows the systematics [48] established for nuclei with N/Z ∼ 1.5, 
which suggests the asymmetric mode’s insensitivity to the isospin 
of the CN, at least for AC N > 177.

The UNEDF1-HFB and D1S calculations support the experimen-
tal results. Namely, they correctly reproduce the measured mass 
division associated with the dominant asymmetric fission mode, 
and they predict highly elongated pre-scission configurations along 
the symmetric fission path, which is in accordance with the lower 
experimental TKE value for this mode.

The present work provides new experimental information on 
the extension of the recently-discovered island of asymmetric fis-
sion towards lower atomic numbers. For the first time, the inter-
play between different fission modes has been found in a nucleus 
from the sub-lead region. The result provides strong motivation for 
extending microscopic models of fission to FFMDs and TKE distri-
butions at nonzero excitation energies. Finally, beyond-DFT exten-
sions of the current formalism are needed, as the PESs predicted 
for pre-lead nuclei are generally very flat in the pre-scission re-
gion, resulting in possible interferences between asymmetric and 
symmetric fission modes.
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