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Abstract

We construct non-geometric AdS, solutions of IIB string theory where the fields in
overlapping patches are glued by elements of the S-duality group. We obtain them by
suitable quotients of compact and non-compact geometric solutions. The quotient pro-
cedure suggests CFT duals as quiver theories with links involving the so-called T'[U (V)]
theory. We test the validity of the non-geometric solutions (and of our proposed holo-
graphic duality) by computing the three-sphere partition function Z of the CFTs. A
first class of solutions is obtained by an S-duality quotient of Janus-type non-compact
solutions and is dual to 3d N/ = 4 SCFTs; for these we manage to compute Z of the
dual CFT at finite NV, and it agrees perfectly with the supergravity result in the large
N limit. A second class has five-branes, it is obtained by a Mo&bius-like S-quotient of
ordinary compact solutions and is dual to 3d N'= 3 SCFTs. For these, Z agrees with
the supergravity result if one chooses the limit carefully so that the effect of the five-

branes does not backreact on the entire geometry. Other limits suggest the existence
of ITA duals.
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1 Introduction

The presence of dualities is one of the most striking features that sets string theory
apart from other theories of gravity. It identifies configurations that would be seen
as completely different by string theory’s low energy supergravity approximation. In
other words, the symmetry group no longer consists of diffeomorphisms alone, but also
contains more exotic elements that are not geometric in nature.



This suggests the existence of solutions where the transition functions are not co-
ordinate changes alone. Various realizations of this idea have been pursued. Perhaps
the oldest and most successful is F-theory [1], a method to obtain solutions with mon-
odromies which belong to the S-duality group SL(2,7Z). These monodromies are over
contractible paths, that encircle singularities which are interpreted as non-perturbative
branes. Another popular example [2] is a torus fibred over an S, with a monodromy in
the T-duality group. In this case the path is non-contractible, and thus there is no sin-
gularity. Solutions of this type are called T-folds; they can be generated by T-dualizing
ordinary tori in presence of NSNS flux.

It is important to explore these possibilities: they can in principle be more numer-
ous than ordinary geometric ones, but more importantly they might evade restrictions
and no-go theorems that their geometric counterparts have to satisfy. It can be difficult,
however, to establish their existence, because of the very fact that they go beyond the
low-energy supergravity description. If we think about an SL(2,Z) monodromy in type
I1B string theory, at the beginning and the end of the monodromy path the coupling is
(in a typical situation) respectively weak and strong, and in the middle of the path the
supergravity action cannot be trusted even after dualities. If the monodromy is over a
non-contractible path, one can overcome this problem by taking the path long enough
that all fields vary slowly; in this “long-wavelength” approximation, one expects that
the two-derivative action, which is uniquely determined by supersymmetry, should suf-
fice. Such a logic is not enough in cases where the non-geometrical monodromy is over
contractible paths; in that case the long-wavelength approximation will break down
near the singularity encircled by the path.

One way to confirm the validity of these constructions is to use dualities or other
cross-checks. F-theory is for example often dual to M-theory, and in those cases its
predictions are confirmed spectacularly. As we mentioned, T-folds can be related by
T-duality to ordinary geometric backgrounds. (Sometimes a worldsheet description
exists even before T-dualizing.)

Another possible way to test non-geometric solutions is to use holography. For
F-theory, this has only recently started being used (for earlier discussions see [3, 4]),
essentially because AdS appears there less naturally than Minkowski space. AdS;
solutions with non-trivial axio-dilaton were considered in [5, 6]. AdSs solutions were
obtained in [7, 8] by an S-quotient procedure.

In this paper, we construct AdS, x K¢ IIB string theory solutions with monodromies
in Kg in the S-duality group SL(2,Z), and we test their validity using holography.
The monodromies are along non-contractible paths, so that there are no singularities
encircled by them; our focus is rather on testing the limits of the long-wavelength
approximation. We obtain the solutions by quotienting in various ways solutions with



the local form found in [9, 10| (originally devised to describe the holographic dual of
interfaces in A/ = 4 super-Yang-Mills). They are not related to F-theory in its present
form; for example, the axio-dilaton is not holomorphic. We call them by the more
general name of S-folds.

We consider two classes of S-folds. The first class has a monodromy given by an
element J € SL(2,7Z) with TrJ > 2 (thus in particular being a hyperbolic element
of SL(2,7)). The geometry has the topology AdS; x S° x S* with the monodromy
around S'. The solutions preserve OSp(4]|4) symmetry and are dual to 3d N' = 4
SCFTs. They were previously obtained in [11], which partially inspired this work, by
lifting a gauged supergravity vacuum, but it can also be obtained as a quotient of a
“degenerate” interface (or “Janus”) solution: one where the string coupling diverges at
infinity. This second construction points to the gauge theory dual of these J solutions,
since the dual of the interface has a known description as the infrared limit of certain
3d gauge theories involving the so-called T'[U(N)] theory [12].

The simplest field theory in this first class consists of a single gauge group U(N)
with Chern—Simons coupling, which gauges the diagonal of the two U(N) flavor sym-
metries of T[U(N)] (see Figure 2). Although the UV description for this class of 3d
theories has only N = 3 supersymmetry, the gravity duals indicate that the supersym-
metry is enhanced to N' = 4 at low energies. We will support this scenario by providing
an alternative description of these theories, closely related to the gravity dual solutions,
as the low energy limit of a 4d N/ = 4 U(N) SYM theory on a circle whose coupling
varies and has a J monodromy around the circle, while preserving 3d N' = 4 super-
symmetry. Although the resulting theory is not fully Lagrangian, assembling known
ingredients we can compute its three-sphere partition function Z. Remarkably, this
turns out to be a Gaussian integral, which we manage to solve fully, even at finite IV,
with Fermi gas techniques. In the large N limit, this result agrees with the result one
obtains from the supergravity solution: F' = —InZ ~ f(J)N?, with a coefficient that
depends on J and that is reproduced exactly. This provides a strong confirmation of
the existence of this class of S-folds.!

Emboldened by this success, we then investigate a second, more challenging class,
where brane singularities are also included. Again the SL(2,7Z) monodromies are over
a non-contractible path, so that there are no singularities that can be interpreted
as seven-branes as in F-theory. But the class of local solutions in [9, 10] allows to

!The same 4d SYM setup with the Janus configuration with .J-monodromy and the resulting 3d
low-energy theories were previously studied in [13] for abelian gauge groups (single D3 brane), in
which case the 3d theory reduces to a Chern—Simons quiver. The identity (2.33) that we use in our
holographic test appears already in this work, and is interpreted there as an equality of Hilbert space
dimensions. We provide an alternative derivation of it.



include NS5-branes and D5-branes wrapping various S? submanifolds; in fact for fully
geometrical global solutions these have to be included [14, 15]. In an S-fold this is
not necessarily the case, as the above-mentioned J class demonstrates; but branes
complicate the applicability of the supergravity approximation in interesting ways.
We obtain solutions in this second class by quotienting a geometrical solution by an
involution that mixes a geometrical and an SL(2,7Z) action. The original geometric
solution has still an S® x S! internal space with five-brane singularities wrapping S2s;
the geometrical part of the quotient acts as a rotation (an order four involution) on
the S® and as a shift on the S'. We call the resulting solutions S-flip solutions. The
monodromy of the resulting solution is the S-duality element S = (9 ') € SL(2,Z)
and is along the non-contractible S! circle. Part of the supersymmetry of the original
geometrical solution is broken by the quotient. The preserved superconformal algebra
is OSp(3]4) and the dual SCFT has only N = 3 supersymmetry. We did not find S-fold
solutions in this class with a monodromy by another SL(2,Z) element.

The field theory duals for this second class are necklace quivers where one link
is not an ordinary bifundamental hypermultiplet but rather a T[U(V)] link: namely,
a T[U(N)] theory whose two U(N) flavor symmetries are gauged by two neighboring
gauge groups. Each theory has in fact several dual realizations. The simplest example
is a theory with two U(N) nodes connected by a bifundamental hypermultiplet and
a T[U(N)] link (see Figure 4), that we call “half-ABJM”, because it comes about by
a quotient of a solution which is holographic dual [15] to the ABJM theory [16]. It
has a necklace generalization with M+1 gauge groups, where one of the links is a
T[U(N)] link, as described above, and one of the gauge groups has M fundamental
hypermultiplets. For these theories we compute the three-sphere partition function
in terms of a matrix model; it depends only on K = M + M. The long-wavelength
approximation suggests making the monodromy path long; this requires N < K2
However, the branes now introduce a local region where the supergravity action changes
rapidly. Such a region is of course present in any solution with branes; past experience
with holography suggests simply imposing that this region does not eat up the entire
geometry, which imposes N 2 K. We are able to evaluate the limit of the matrix model
at the lower end of this window, getting F' ~ %N 2In N; again we find agreement with
the supergravity results.

One might be curious about what happens if one pushes the limits of the long-
wavelength approximation. In the limit N > K2, the monodromy path is small and
the branes are effectively smeared. Their backreaction is felt all over the geometry; this
suggests that the supergravity approximation might break down. On the field theory
side, for K = 1 we can evaluate the matrix model analytically at large N: this case
corresponds to the half~-ABJM theory mentioned earlier. A computation rather similar



to [17] produces a behavior that is unlike what the two-derivative supergravity action
would predict, as expected. A surprise is that in this limit F' ~ N®?3, which happens
to be the same as models with massive ITA holographic duals. This might suggest a
dual ITA description of our solution in this limit, which at present is not obvious.

The rest of the paper is organized in two main sections, each devoted to the study
of one of the two classes of solutions we just described. In section 2 we consider Janus-
type S-folds; after describing the general idea, we focus in section 2.1 on an example
corresponding to a particularly simple element J € SL(2,7Z); we describe its field theory
dual in section 2.2. In section 2.3 we then check that the three-sphere partition function
computed with field theory and supergravity methods indeed match. In section 2.4 we
then consider the generalization to any element J € SL(2,7Z) with TrJ > 2. We then
proceed in section 3 to the second class, that of S-flip solutions. Again we first illustrate
the class with an example, considered from the field theory and supergravity points of
view in sections 3.1 and 3.2 respectively. We then go on to construct more general

examples in this class in section 3.3, before performing a holographic check in section
3.4.

2 Janus S-fold solutions and SCFTs

The 10d type IIB supergravity solutions that we construct in this paper are obtained
by a certain S-folding procedure applied to a class of solutions whose local form was
found in [9, 10]. These solutions describe an AdS; x S? x S? X ¥ geometry, where ¥ is a
Riemann surface, which admit 16 Killing spinors and are dual to SCFTs with 3d N = 4
supersymmetry. The SU(2) x SU(2) R-symmetry is reflected in the isometries of the
two two-spheres. Global solutions in this class were proposed in [14, 15] for ¥ having
the topology of a disk or an annulus with five-brane singularities on the boundary?
as gravity duals of a class of 3d N = 4 linear and circular quivers. Other solutions,
which were in fact the initial solutions found in [9, 10], are such that ¥ is an infinite
(non-compact) strip with two asymptotic AdSs x S° regions and are holographic duals
of 3d N' = 4 defect SCFTs in 4d N/ = 4 SYM. The simplest example in this class is
the Janus solution which we will discuss shortly.

The solutions are elegantly parametrized by two real harmonic functions on ¥,
denoted hi, he, which obey some boundary conditions on the boundary of 3.2 A sum-
mary of the local supergravity solution in terms of hq, hy is given in Appendix A. In

2The points on the boundary of ¥ are still interior points of the geometry, due to the vanishing of
a two-sphere with appropriate scaling.

3 Alternatively the solutions can be parametrized by two holomorphic functions A;, A3 on ¥ with
certain boundary conditions, which have shift ambiguities.



known solutions ¥ is an infinite strip or an annulus and is parametrized by a complex
coordinate z = x + 7y, with x periodic for the annulus and y € [0, 7]. On the upper
boundary y = 7 one two-sphere shrinks to zero size, while on the lower boundary y = 0
the other two-sphere shrinks to zero size.

In this section we construct supergravity solutions by S-folding a special Janus
solution, we propose a holographic dual 3d N' = 4 SCFT and perform a non-trivial
test of the holographic duality. The simplest S-fold supergravity solutions that we find
reproduce solutions described in [11].

2.1 Supergravity solutions

The supersymmetric Janus supergravity solution is the holographic dual background
to the Janus interface theory in 4d N'=4 U(N) SYM. The simplest Janus interface is
characterized by having varying gauge coupling 7(z') = % along a space direction z/,
while preserving 3d A/ = 4 supersymmetry. It was introduced in [18] and generalized
in [19].* The holographic dual background corresponds to a solution with ¥ an infinite
strip, which is shown in Figure 1. Their ten-dimensional topology is that of AdS; X
S5 x R. The harmonic functions, as re-expressed in [14], are
hi(z,2) = —iasinh(z — B) + c.c.

R (2.1)
ho(z,2) = é&cosh(z — ) + c.c.,

with real parameters a, &, f3, B and we choose a,& > 0. The complex coordinates
z = x + 1y spans the infinite strip with

—oco<r<4oo and 0<y< —. (2.2)

NN

The asymptotic regions x — +oo are AdS; x S° spaces with identical radii L, but
with different dilaton values €2 (7. = ie~2¢" in Figure 1-a) |

L' = 160 cosh(B — B), € = &2 (6-h) (2.3)
a

The geometry has a 5-cycle with the topology of a 5-sphere C5 = T x S? x S3 = S5,
where 7 is an interval going from the upper to the lower boundary of > and supporting

1 LA
N = —/ Fy (2.4)
Cs

N units of 5-form flux, with

(4m2a/)? ~ 2

4See also [20, 21] for other studies of the supersymmetric Janus theory.
5Other choices are obtained by charge conjugations.



in the convention o/ = 4. The 5-form flux is independent of the position of C5 along z
and therefore spans the whole geometry. If § = B the solution is globally AdSs x S°.
A change of variables x — x + ¢ can be used to set B = —f if desired. The solution
has then three parameters.

a)
AdS, x S° 2 AdS_x S°
T T
- +
-0 6 )
b)
J-fold J J
=0 T =00 —
-0 é) 0 0 T

Figure 1. a) Picture of ¥ (yellow strip) for the Janus solution with asymptotic axio-dilaton values
Tt. b) J-folding of the extremal Janus solution. This involves an SL(2,R) transformation before
taking the J-fold quotient. The resulting solution has a cut (green) with J monodromy.

We now consider a degenerate limit of the Janus solution with § = —B — —00,
a,& = 0and ae™® =¢ >0, &’ = ¢ > 0 fixed, leading to

hi(z, %) = 2% (€* — &) s
- 2.5
ho(z,z) = g (e 4+e7?).

The asymptotic regions in this limit have AdSs radius L* = 8c¢ and diverging dilaton
¢t = —00, ¢~ = +o00, which is why we call it a degenerate limit.® Constant shifts
in = allows to set ¢ = ¢, so that there is really only a one-parameter family of such
degenerate solutions (with discrete parameter N). This solution was already found in
[11] from a different construction.

One nice property of this limit is that the dependence on x becomes very simple,
with all fields being independent of x (in particular the metric) except for the dilaton

6This solution can also be reached from the solution dual to the T[U(N)] theory, by sending the
five-brane stacks to infinity, as was studied in [22] and in [23] where this extremal background appeared
from a non-abelian T-duality action on AdS, ITA solutions.



and the three-form fields”

5 (2 4 cos(2y))

1
ds? = (c)!/2[24 (7 — cos(4y)) sk, + 23 o COS(%))% sin(y)*dst,
+ 23 g 4__ ZZ:E;Z;;; cos(y)2ds?q(22) + 21 (7— Cos(4y))%(d:152 +dy?) |,
26 ¢ (2 + cos(2y)) 2 o2 (2.6)
c \ 2 — cos(2y) ’
Hy = ws2 ANdby, b =8¢ %ex,
3

cos(y)®

)
37 WS 22 ‘o7 cos(2y) “

22
Sy’

i

with ds}gg,, ds. , the unit radius metrics on AdSy and the two-spheres respectively.

We have N = %, while g is a free (unphysical) parameter. These fields are those
transforming under SL(2,7Z) type IIB (gauge) symmetry (see Appendix A) and one
may look for a symmetry of the solution under the combined action of a translation
along x and an SL(2,7Z) transformation J. If such a symmetry exists we can quotient
the solution by its action and produce an S-fold solution with compact = direction and
J monodromy. Unfortunately no such symmetry exists in the above solution. However
one may generate new solutions by applying SL(2, R) transformations to the degenerate
solution (2.5). A new solution obtained that way may then admit the desired symmetry,
and thus would allow to define an S-fold solution.

In order for this scenario to work their must exist M € SL(2,R), J € SL(2,Z)
and T" > 0, such that the M-transformed extremal Janus solution is invariant by a
translation by 7' along = combined with the action of J. For the SL(2,R)-doublet

(Hj, F3), this translates into the condition

MM = ° . 2.
= (0 5) 27)

The simplest solutions are found by taking

J_(_”l(l)):_ . (2.8)

"The explicit expression for the non-trivial 5-form can be worked out from the formula of [9, 10] in
terms of hq, hso.



A short analysis shows that there is a solution for n > 2%

1
n=e +e 7 & Tzln(§ <n—|—\/n2—4)> ,

11 (2.9)
T T1_oT
(\/_Z o 1+_1 1 1 .
1+el’ 1—e= 7T

One can check that the transformed axio-dilaton 7/ = M.7 obeys J,.7'(z + T) =

7/(x). The M-transformed solution is thus invariant under the action of T which is
the combination of a translation by 7" along x and the SL(2,Z) transformation J,. It
allows to define the quotient of the M-transformed solution by 7 which we call the
J-fold solution. The resulting topology after the Z-quotient is that of AdS, x S5 x S*.

Let us describe explicitly the M-transformed solution whose quotient defines the
J,-fold solution. The metric and five-form are that of the extremal Janus solution and
are constructed from hy, hy in (2.5) (see Appendix A). The axio-dilaton 7/ = x' +ie ™2
and the three-forms are

o (1—e 1) Lie 2 — (1 +e)7?
T (=€) lie 20 4 (1 4+eT)" 1"

H/
3 - M H3 ’
F Py
with €2?, H3 and Fy constructed from hq, hy in (2.5). In the J,-fold solution we have
spatial periodicity (z,y) ~ (x + T, y), so that 3 is topologically an annulus, and the

(2.10)

gluing conditions at x = T" ~ 0 involve a J,, transformation of the fields (i.e. J,-twisted
boundary conditions or J, monodromy). This J, folding procedure is schematically
depicted in Figure 1-b for a generic J-folding. This reproduces the S-fold solutions
mentioned in [11].

One can also construct J,, !-fold solutions in a similar way. In general one can obtain
a J~1-fold solution from a J-fold solution by taking the matrix M to be M;-1(T) =
Mj(=T). Finally, global SL(2,Z) actions map a J-fold solution to a conjugate J'~*.J.J'-
fold solution. Using such manipulations one can construct a close cousin to the J,-fold
solution: a J,-fold solution with J,, = —J_,,.

Before moving to other J-fold solutions we first study the holography of the .J,,-fold
solutions.

8To be precise there is a continuous family of solutions M (\), A € R* for a given n, which implement
the scalings of the extremal Janus solutions (c,¢) — (Ac, A\='¢). They all correspond to the same
supergravity solution since this rescaling is equivalent to a translation along x.



2.2 CFT duals

We now describe the 3d N = 4 field theories dual of the J,-fold supergravity solutions.
To start with, the Janus supergravity solution (2.1) is dual to the Janus interface CFT
[18, 19], which is the 4d /' =4 SYM theory with complex coupling 7 jumping across a
3d interface from a value 77 = ie~2? to a value 77 = ie=2*" 9 It is useful to think about
this theory as the infrared limit of 4d N/ = 4 SYM with a smoothly varying coupling
along a space direction parametrized by 2/, with lim,/ 4, 7(2’) = 7%. The exact profile
of 7(2') is irrelevant in the low-energy limit. The configuration is constructed so that
it preserves 3d N/ = 4 supersymmetry.

Sine the J,, solution is a circle compactification of the (extremal) Janus solution
with a J, twist, it is natural to conjecture that their 3d CFT duals are obtained as
the low-energy limit of a circle compactification of the Janus 4d theory with J,, twisted
boundary conditions. We thus look for a Janus configuration which is periodic up to
a J, transformation, namely an A/ = 4 Janus solution with J,,.7(z' + T") = 7(2'), for
some 7" > 0. The N = 4 preserving profiles of 7(2’) are given by [19]

7(z') = a + DeV@) (2.11)

where a € R and D € Ry, are arbitrary constants and #(z) is any function such
that 7(z’) stays in the upper half plane. This means that the trajectories 7(z') must
stay on a circle in the upper half-plane. We must look for such profiles which satisfy
m = 7(2'). We already have candidate solutions which do satisfy this equation.
These are simply the 7/(x, y) profiles of the axio-dilaton in the J,-fold solutions (2.10)
for any fixed value of y, which satisty J,,.7"(z + T,y) = 7/(x,y). So we can try to pick

the varying SYM coupling to be

(1—e M) ire? — (14t
(1—eT)"lide? + (14 T)-1"

T(2') = (2.12)
with any A € R* and 7" = T = In[1(n + v/n> — 4)]. For this to be a solution to our
problem we must show that it can be written in the form (2.11). We find that it is
indeed the case, with

(7 — e 1), ) _ 1L—el —ix(1+eT)e ‘
’ 1 —el +iA(1+eT)e?
(2.13)
With A < 0, 7(2’) is in the upper half plane. The parameter A is here again irrelevant

__1 T =T —
a = 2(6 +e ), D =

since it can be fixed to one (or minus one) by a shift in 2/. A larger class of solutions

9We use abusively the same name 7 to denote both the SYM coupling and the type IIB axio-dilaton.

10



is obtained by replacing A with any negative periodic function A\(z’) with period T".
One can show that this covers all solutions to the problem. The solutions (2.12) are
somewhat degenerate Janus configurations in the sense that the coupling 7/(z) becomes
real at ' = 400, corresponding to infinite Yang—Mills coupling. Of course this is
completely analogous to the gravity construction.

These specific 4d Janus theories admit a quotient by the combined action of a
translation by 7" and a J,, S-duality action. They lead to a 4d N’ = 4 theory on a circle
with J,-twisted boundary conditions, which preserves 3d N/ = 4 supersymmetry. The
infrared limit of such a configuration is a 3d N' = 4 SCFT which we propose as the CFT
dual of the J,,-fold supergravity solutions. On physical grounds, we do not expect the
3d limit to depend on the explicit choice of profile A(x’) along the z’ circle. The infrared
limit should only depend on the monodromy .J,. The resulting 3d N = 4 SCFTs are
thus labeled by n and the rank N only, matching the gravity data. We will call these
3d CFTs J, theories. This construction of 3d theories from Janus configurations on a
circle with duality-twisted boundary conditions was already discussed in [13].1°

The twist of the boundary conditions by an SL(2,Z) element J has no (known)
description in terms of gluing conditions on local fields.!! The 3d interface is only the
boundary of a patch (of a non-trivial SL(2,7Z) bundle) and does not carry local degrees
of freedom and we are free to move the location of the interface without affecting the
theory.

It is possible to obtain a quasi-Lagrangian UV description of the J, theories. In
the description as 4d N' = 4 SYM on a circle with J, twisted boundary conditions,
we can choose a convenient profile by adjusting the periodic function A(2') in (2.12),
since this should not affect the 3d limit. In particular we can tune the 7 profile until
it becomes almost constant along z’ with the variation confined to a tiny region close
to the jump at 2’ = T ~ 0. We obtain a configuration which can be described in the
UV as 4d N = 4 SYM on a circle coupled to a 3d theory with a quasi-Lagrangian
description. Such constructions were studied in [12], and the 3d theory associated to
the monodromy J,, = —ST" is the T'[U(N)| theory with a non-abelian Chern—Simons
term at level n for one of its two U(V) flavor groups. The 3d Chern-Simons term
preserves only A/ = 3 supersymmetry but, since the Janus setup preserves ' = 4, the
supersymmetry must be enhanced at low-energies.

The T[U(N)] theory was introduced in [12] as the IR SCFT of a linear quiver theory

10A related construction of duality surface defects in N/ =4 SYM with SL(2,7Z) monodromies was
studied in [24, 25] (see also [26]).

1 Except for J = T* duality interfaces, which have all fields continuous across the interface and a
3d Chern—Simons term at level £ on the 3d interface.
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with a chain of unitary gauge nodes of increasing rank, from U(1) to U(N — 1), and
with N fundamental hypermultiplets in the U(N — 1) node. The UV global symmetry
U(1)N=! x SU(N) is enhanced to SU(N) x SU(N) in the infrared SCFT. In addition,
in the T[U(N)] theory one regards the global symmetry as U(N) x U(N) with the two
diagonal U(1) factors acting trivially on the theory and one adds a level N N = 4
background mixed Chern—Simons term, or ' = 4 BF term at level N (see [27]), for
the two corresponding U(1) background vector multiplets. This does not modify the
3d theory but it becomes important when we gauge the U(N) global symmetry as we
explain now.'?

This 3d interface theory — the T'[U(N)] theory plus a level n CS term for one
flavor U(N) — is then coupled to the 4d “bulk” theory by gauging one U(N) global
symmetry with the 4d U(N) bulk vector multiplet living on one side of the 3d defect
and the other U(N) global symmetry with the 4d U(N) bulk vector multiplet living
on the other side. The reason why this description is not fully Lagrangian is that the
two U(N) global symmetries are not both present in the UV Lagrangian description
of TIU(N)]. As we flow to the infrared the theory becomes three-dimensional and the
“bulk” vector multiplets on both sides of the 3d interface get identified. The resulting
3d theory is shown in Figure 2. It has a single U (V) gauge node with a supersymmetric
Chern—Simons coupling at level n and a “self-coupling” to the T[U(N)] theory.'®

There is a subtlety about the gauging procedure of the T[U ()] global symmetries
that deserves a comment. We are identifying (and gauging) the two U(NV) global sym-
metries of T[U(N)|, however there are two possibilities for doing so, namely breaking
the symmetry to U(N), = diag(U(N) x U(N)) or U(N)_ = diag(U(N) x U(N)). A
natural convention is to associate these two choices to duality interfaces labeled by S
and —S respectively. Since J, = (=S)T" we will think of the J, theory as defined
with U(N)_ gauging and with CS level n > 2. In the previous section we mentioned
the existence of a J, solution with J, = —J_,, = ST~". The CFT dual of that solu-
tion would have a T[U(N)] theory with U(N); gauging and CS level —n < —2. This
discussion will have a counterpart in localization computations in the next section.'*
The UV description of the J, theory has a Chern-Simons term at level n. Chern—

12Tn most of the literature on the topic, the theory is referred to as T[SU(N)] and the presence or
not of such background Chern—Simons terms is irrelevant.

13The J,, theories (and other J-theories) were already considered in the context of the 3d-3d cor-
respondence in [28] (section 4.1) — see also section 5.2 of [29]— where they were realized by twisted
compactification of the 6d (2,0) theory on a torus bundle over S'. There are still small differences:
the gauge nodes are SU(N) instead of U(N) and an N = 2 adjoint mass term is turned on (punctured
torus bundle).

14Guch a distinction between U(N) gauging procedures was already discussed in [30].
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Figure 2. Quiver description of the J,, theories and their brane realization. The subscript n is the
Chern—Simons level of the U(NN) node.

Simons terms naively break the supersymmetry to N' = 3, however in certain circum-
stances the supersymmetry enhances to N’ = 4 or more in the infrared limit [19, 31].
Since we were able to construct the .J, theory in an N = 4 preserving fashion, as
a compactification of a half-BPS Janus theory, we know that the infrared SCFT has
indeed N/ = 4 supersymmetry. This is confirmed by the gravity dual solution, which
has this amount of supersymmetry as well.

The SU(2)g R-symmetry of the 3d N' = 3 UV theory must be enhanced at low
energies to the SU(2) x SU(2) R-symmetry of an N' = 4 SCFT, represented in the grav-
ity dual solution as the isometries of the two 2-spheres. It is interesting to notice that
the J, SCFTs have no continuous global symmetries besides the N = 4 R-symmetry.
One may regard them as minimal SCFTs with N/ = 4 supersymmetry in this respect.
Correspondingly the supergravity dual backgrounds are very simple, in the sense that
do not have five-brane sources.

The 3d SCFTs and their gravity duals are supposed to be two low-energy descrip-
tions of a very simple brane configuration in type IIB string theory, where we have a
stack of N D3-branes wrapping a circle with J, duality twist, as shown in Figure 2.

2.3 Test of holography

To test the holographic correspondence we compare the on-shell action of the J,-fold
Janus solution to the free energy of the J, theories in the limit where the gravity
approximation is valid, which turns out to be the usual large N limit.

The regularized on-shell action was evaluated in [15, 22] in terms of the harmonic
functions hi, he, using a consistent truncation to pure gravity. It is given by the re-
markably simple formula (in the convention o/ = 4)

S[[B ﬁ/dl’dy h1h28 8 (hlhg)
(2.14)

dx dy h1h28 8 (hlhg)
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The SL(2,R) transformation M used to define the J,, solution does not change the on-

shell action, therefore we can directly use the above formula with the hq, ho functions
of the extremal Janus solution (2.5). We obtain
L3T 1 5 1

SI]B:QT';T-inN In (5 <n—|—vn2—4>) . (215)

We would like to know in which regime this result can be compared with the field

theory free energy. The type IIB action does not receive quantum or string corrections

at the two derivative order. For the higher derivative corrections to the IIB action

to be suppressed we require that R and gé‘s I;Vu¢v,,¢ be small, where the index (s)

indicates that we use the string frame metric, g(), = guwe®. We have the relation
s

GV OV 6 = gV eV e s

The idea behind these conditions is the following. The string theory action has
various terms Si,; with & > 2 derivatives. Each of these consists of a combination
of curvature and derivatives of ¢, with a function of the string coupling fi,;(e?) in
front, which receive both perturbative and non-perturbative contributions. If R and
gggvugbvygb are smaller than €, we expect Sy; < fri€®. Almost all of the f; are
unknown, but unless their convergence radius gets smaller and smaller with increasing
k, there will be an € small enough that fy;e* will be small for all k. Flux terms work
in the same fashion.

The metric of the J, solution scales as ¢, ~ L* ~ VN and the inverse dilaton
e 2% = Im(7’) is independent of N. We find that both higher derivative terms are
bounded gf‘svuqﬁquﬁ, Ry S C’(%)lﬂ7 with C' a positive constant. Thus both are
small in the limit of large N and finite T, and the IIB supergravity approximation
should be valid in this regime.

The result (2.15) should be compared with the large N free energy F' = —In|Z]|,
with Z the three-sphere partition function of the J, theory. The sphere partition
function Z can be computed exactly by supersymmetric localization [32, 33] and the
final result is expressed as a matrix model whose integrand is a product of contributions
from different ingredients of the theory. We briefly review the results of the localization
computation in Appendix B. We also explain there how to account for the coupling to
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the T[U(N)] theory in the matrix model. For the J,, theory the matrix model is'®

1

2= 5 [ 40 2c5(0) Zuelo) Zrwm (0. ~)

N

K 2y Zresy ()T ER oo
ot TT (o) == 216

o I [, sk (o) (216)

1<j=1 8

1<j=1

B % (1) / AN g L1 0f g 2mi T, 0iorG)

TESN

Remarkably the matrix model becomes very simple (gaussian in fact). In appendix C
we use matrix model techniques to evaluate this matrix model.'¢ It is sufficiently rare
to be emphasized that we are able to evaluate exactly, at finite IV, the sphere partition
function Z. Miraculously the parameter 7" of (2.9) pops up in the computation and
the final result, up to a phase, is (C.15)

NT —N2T
e 2 e 2
y— — ) 2.17
[Lo (e = 1) T, (1 —eT) 217
The free energy is then
1
— —T + § In(1—e7") = 5N2T+ O(N° e T). (2.18)

The leading order term matches the supergravity on-shell action (2.15) in the super-
gravity limit that we found above, i.e. large NV and finite 7', providing a very non-trivial
test of the holographic duality that we proposed. We observe that the two results also
match in the limit of large T and finite V. In the CFT dual theory, it corresponds to
the limit of large Chern—Simons level n and finite N. This suggests that the limit is
also a long-wavelength approximation, although this does not follow from our simple
analysis. A more complete treatment of the supergravity higher derivative corrections
would be needed to explain this observation.

15Here we ignore the overall phase of Z which does not play a role in our computation.

6Note added in version 3: This computation was also performed in [29, App. I]. It was then
compared to the large N gravity action of M-theory dual solutions which arise from twisted com-
pactification of M5 branes on three-manifolds [34-36]. Although in principle we expect the M-theory
solutions to be related to the IIB J,,-solutions, such a relation, if it exists, is not obvious. M-theory/IIB
duality requires shrinking an isometry direction in IIB, and there is no natural candidate here.
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2.4 Other J-fold theories

We can find other solutions (J, M(J),T(J)) to (2.7), allowing for the definition of new
compactifications of the extremal Janus solution with twisting by other J € SL(2,7Z).
Taking the trace of (2.7) yields the relation

TrJ=e" +e 17, (2.19)
(with Ty = T'(J)) which implies the constraint
TeJ>2. (2.20)

This excludes for instance S and T* as duality elements to perform the quotient. Ele-
ments satisfying |Tr J| > 2 are called hyperbolic, therefore the condition (2.20) restricts
to hyperbolic elements with positive trace.

We can try to solve for the matrix M in (2.7) for a given J. We find that the
condition (2.20) is enough to find a solution M (J). This means that there is an S-fold
solution for all J € SL(2,Z) satisfying (2.20) and the period T’ is given by the relation

(2.19). Explicitly, with J = j; ﬁ and j, + js = eV + 1Y,
A - j2T
1+e=*1J A(l—e'J
M<J) = ( +)\j3 (1£j4e*T3) > ) (221)
(A+eTr)(1—jae=T7) A1—eT0)

for any \ € R*.

Note that (infinitely) many J elements have the same trace and therefore the same
period T'. They are related by SL(2,R) transformations (this follows from the relation
(2.7)), but are not dual in the full string theory, unless the transformation is in SL(2,Z).

Once again the 3d dual SCFT can be engineered as the low-energy of a 4d U(V)
Janus configuration with pseudo-periodicity J.7(z" + 1) = 7(2’), compactified on a
circle with J-twisted boundary conditions. The profile of the complexified Yang—Mills
coupling 7(z') is the same as in the supergravity dual solution,

(A—jae™TI) - \1 _2a J3
r(a') = e Nt o e

J2 P\ p2x! 1
(17€TJ)Z)\ € + 14+e T

: (2.22)

N € R*, and is of the form (2.11) with a = } <eTj3—j4 - eTJ].;j“), D=1 (eTJjg_M + eT‘;;j‘*)

and e?¥(@) — 1—eT—iN jae? (14e~T7)

1—eT iN jzc2 (14e- T ) PTESCIVILE 3d N = 4 supersymmetry.
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The 3d N' = 4 SCFT dual theories can be described in a more practical way as the
infrared limit of a 3d quiver using the approach of [12]. First we need to express the
duality element .J as a product!?-1®

J = £(=ST™)(=ST") -+ (—=ST"™) = & J Sy - (2.23)

where n; are positive integers. The overall sign 4+ should be fixed by the requirement
TrJ > 2.1

The 3d CFT is then the infrared limit of a quiver-like circular theory with p U(N)
nodes with Chern—Simons terms at levels n;, coupled together via T[U(N)| gaugings.
To be precise when coupling a T'[U ()] theory to two U(N) gauge nodes we can identify
the U(N) x U(N) nodes with the global symmetries U(N) x U(N) or U(N) x U(N)T
of T[lU(N)] (i.e. S or —S interfaces), leading to many choices. However due to the
freedom in redefining what we mean by U(N) and U(N)', there are only two globally
inequivalent choices corresponding the choice of £ in (2.23). If the sign is + we pick all
gaugings with U(N)x U(N)" and if the sign is — we pick one gauging with U(N)xU(N)
and the others with U(N) x U(N)".2% In the abelian case N = 1, these theories reduce
to the Chern—Simons quivers that were studied in [13].

An example with three nodes is shown in Figure 3.

T[U(N)],f'@"‘JIU(N)] N D3
2 %,

&

@ TIU(N)] ®n J

n1 3

Figure 3. Quiver description of a J theory, with J = J,,, J,, Jn,, and its brane realization. Subscripts
of gauge nodes indicate Chern—Simons levels.

Here again the SCFT has naively only N' = 3 supersymmetry due to the presence
of the Chern—Simons terms, however the supersymmetry must be enhanced to N' = 4

17This is the most general form of an SL(2,Z) element up to conjugation by 7% and S.

8Despite the conflicting notation, the SL(2,Z) matrix T, should not be confused with the period
T appearing in the J-fold solution.

9The constraint on the trace also restricts the possible values of ny,ng, -+ ,n,. It is also possible
to take n, > 2, i.e. exclude n, = 1, since TSTST = —5.

20Note that with the U(N) x U(N)' gauging, the level N BF term which is part of the definition
of the T[U(N)] theory becomes a level —N BF term for the diagonal U(1)s of the two gauge nodes
connected by the T[U(NV)] link.
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in the infrared limit, since we constructed it from a compactification of a 4d Janus
configuration preserving N' = 4 supersymmetry, and the gravity dual solution has
indeed the corresponding 16 Killing spinors.

Our construction does not provide holographic dual solutions for J-fold theories
with J elliptic (|Tr J| < 2) or parabolic (|Tr J| = 2). For the parabolic case J = T*,
the 3d theory is simply N' = 3 U(N) Chern-Simons theory, which after integrating out
auxiliary fields is a pure Chern—Simons theory, with no local degrees of freedom. For
elliptic elements there are no known gravity duals.?! It could be that these theories do
not flow to SCFTs.

Holographic test:
The evaluation of the on-shell supergravity action is identical to that of the J,
theory with the period T := T > 0 defined by Tr J := e?7 4 e~ 17,

1
Siip = §N2TJ + O(N?). (2.24)

On the CFT side, the sphere partition function Z;(N), for J = J,, --- J,,, is computed

by the matrix model??

1 P . e .
75 = ﬁ Z (_1)7/ (H dNO'a i na > U?w-> (H e—Zszi Ua,i0a+1,i) 6_27”21' Tp,iT1r(i) |
’ a=1

TESN a=1
(2.25)
For J = —J,, ---Jy,, the last factor in the integrand becomes its complex conjugate
™ 294917 accounting for the different U(N) x U(N) gauging of one T[U(N)] factor,
as explained above. Once again we discard a possible phase factor of the matrix model.
Let us consider J = Jp = Jy, Jn,. The condition on the trace is Tr Jg) = niny—2 >
2. The partition function is

Zpy = % 2: (=1)7 / AV oy dN gp e Dia ot iz Dy 031 o= 2mi I (01,6 01,00)02i

TESN
(2.26)
Integrating out oy, and rescaling o ; = /N2 0;, we obtain
3 — N 62 _omiSN g0,
Z[Q] = N Z(_l)T/dNO_eHT(TunQ 2) >0t 0; e 2miy il 0% 7—(1)7 (227)

TESN

2LA construction of 4d SYM Janus configurations on a circle with topological twist involving elliptic
elements was presented in [37-39].

22This form of the matrix model arises after the cancellation between the vector multiplet factors
(B.2) and the denominators of the T'[U(N)] factors (B.5). Moreover the p sums over Sy permutations
arising from the p Zp(y () factors simplify to a single sum by redefinitions of the eigenvalues.
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matching the partition function of the J,,,,_2-fold theory (up to a possible phase). The
free energy is thus

1
Foy=—-InZpg =—-InZ[Jpn,—2] = §N2TJ

ning—2

1
+O(NY) = 5N2TJ[2]+O(J\/0), (2.28)

where we used Thinyn = TJ[Q], due to TrJyy = TrJpn,—2 = niny — 2. We find
agreement with the on-shell action evaluation (2.24).

We can compute the general Zy, = Z; for J = J,, Jp, - - - Jp, as follows. Introduce

the matrix
n—10 --- 0 —1
0 —1 ng . :
Q=1 . L ; (2.29)
: oo 0 0
0 e =1
-1 0 -1 n,
and call M = Min;1Q = (M“b),;fg,...,p, where we use Min, to denote the matrix

obtained by deleting the a-th row and b-th column, without additional signs. Moreover
we will call min,, = det Min,,. Now we can write

(‘UT N N i 2+ M%0,-0,—204- (8% 014607
Z[p] = Z N dVoy...d Op eim(moi+ M oa-0p=20a-(3%201 pcl))’ (230)
TESN
with the notations o2 = Zf\il 02, 0q.0p = Zf\;l 0qi0p; and o] = o,(;). By performing
. . . ir(p—1) . .
the integral over o, ..., 0,, discarding a phase e = N, and rescaling oy with o, =

(det M)'20 we obtain

T N
Z[p] — Z (_1) /( d 01 eiﬂ'(nlo%7(5“201+5“p0I)M&)1(5b20'1+§bp0f))

2. "N/ (det D)2
TCEON
— Z (_]\}')T /dNUem(detM(m—M,,—pl—M;;)a?—2(detM)M;pla.af)

TESN )
_ Z (;\;")T /dNO' eiﬂ(((detM)nl—minppM—minggM)UQ—2(—1)kmin2pMo-oT)

TESN )

1 | )
_ ﬁ Z (—].)T/dNO' ezw((detQ+2)02—20-a ) ) (231)
) TESN

The identities we used in the last steps are straightforward (if a little involved) appli-
cations of the usual formulas for determinants. The last expression can be recognized
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as the partition function of the J, theory with ¢ = det @) 4 2, which we evaluated in
appendix C,

|
Zy) = ZJJ) = GN*T, + O(N?), (2.32)

with 717, defined by the relation Tr J, = ¢ = el7a +e~17a . To complete the computation
we need to show T';, = T7, or equivalently Tr J, = Tr J. Explicitly we need to show

detQ +2 =Ty, ... J, (2.33)

p *

Both the left- and the right-hand-side of this identity are manifestly cyclic polynomials
in ny,...,n,: they have the property that P(ny,ng,...,n,) = P(na,...,ny,ny). Such a
polynomial is uniquely determined by its restriction to equal values P(7,...,n). Thus
we only have to prove (2.33) when n; = ... =n, = n. In fact in this case @ is equal
to Cp5, the matrix we used in (C.7) to compute the partition function in the p =1
case. (In that context the matrix was acting on a variable o with ¢ components).
So we can use (C.10), using again the trick of writing n = el + ¢~ T. We obtain
2 + det Q|n1:m:np:ﬁ — T + e 7T On the other hand, J; has eigenvalues eif, SO
Tr(J)P = e’T 4+ ¢=T We have thus proven (2.33). Going back to (2.32) we obtain

1
Zy=Zy =5 N*T; + O(N°) (2.34)

with J = J,, ... J,,. A similar computation holds for the choice J = —J,, ... J,,.

We obtain a beautiful agreement with the supergravity on-shell action (2.24) at
large N.

We notice a posteriori that the appearance of the matrix @ (2.29) in the compu-
tation should not be a surprise. Indeed this is the matrix of abelian Chern—Simons
terms in the J-fold theory, up to a multiplicative factor N: n,N are the CS levels of
the diagonal U(1) C U(N) at each node and —N is the level of the mixed CS term
between adjacent gauge nodes, due to the T[U(N)] links. The matrix @ encodes the
data of the quiver theory with T[U(N)] links in an efficient way.

3 S-flip quiver SCFTs

We now turn to the construction of a different class of S-fold solutions, which we call
S-flips. They are obtained as the quotient of A/ = 4 solutions dual to circular quiver
theories by the S element of SL(2,Z). The corresponding 3d dual SCFTs will have
reduced N = 3 supersymmetry and will be circular quiver theories with a T[U(N)]
‘link’.  To construct holographic dual pairs it will be useful to consider the brane
realization of 3d N' = 4 quiver gauge theories, which involves D3-branes wrapping

20



a circle and crossing NS5 and D5-branes [40]. Explicitly we will take the D3s along

2% with 2® compact, the NS5s along 2912456 012789

and the Dbs along x . Such brane
setups preserve eight supercharges and the low energy theory on the D3-branes has 3d
N = 4 supersymmetry. The extra ingredient needed to construct the S-flip theories is
an S-interface associated with the T'[U(N)] link, and will be responsible for breaking

the supersymmetry to N' = 3.

3.1 Half-ABJM theory

The simplest example of such an S-flip 3d quiver theory is the circular quiver with
gauge group U(N) x U(N), with a bifundamental hypermultiplet and with a T'[U(N)]
link between the two nodes, namely a T[U(N)] theory (as described in Section 2.2)
with its U(N) x U(N) global symmetries gauged by the two U(N) gauge nodes.? It
is mirror dual®* to the theory with a single gauge node U(N) with one fundamental
hypermultiplet and a T'[U (V)] link connecting to the same U(N) node. The two quivers
are shown in Figure 4. We will call these theories half-ABJM and half~-ABJM mirror,
for reasons that will be clear shortly.

NS5

X
S
b) D5
S TIUN)] N D3
RN
1 S

Figure 4. a) Hal-tABJM quiver and its brane realization. b) Half~ABJM mirror and its brane
realization.

23 As explained in Section 2.2, there are two inequivalent gaugings of the T[U (V)] global symmetries,
leading to two different theories. Here, however, the two theories are related by a parity transformation
(which reverses the sign of CS and FI terms in the T[U(N)] theory) and are therefore equivalent. (A
parity transformation maps the .J,, theory of Section 2 to the .J,, = —J_,, theory)

24We use the denomination mirror dual abusively here, since as we will discuss these theories have
only N' = 3 supersymmetry and there is no notion of Higgs and Coulomb branch exchange, however
this duality is still implemented by S duality in the type IIB brane realization, as for the mirror
symmetry duality of 3d N = 4 theories.
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The type IIB brane realizations of the half-ABJM theory and its mirror are also
shown in Figure 4. They involve N D3-branes wrapping the x? circle and intersecting
an NSH-brane and an S interface, or a D5-brane and an S-interface, respectively. The
S-interface is a monodromy wall in 10d across which the theory undergoes an S-duality
action and spacetime is glued with the rotation Rg : (2%%¢,2™%) — (2™, —2%) (an
order four involution). The action of S-duality (or mirror symmetry) can be imple-
mented by letting the S-interface wind once around the 22 circle, changing the type of
five-brane from NS5 to D5 or vice-versa. Equivalently we can act on the whole brane
configuration with a global S-duality action and the reflection Rg, exchanging NS5 and
D5, and leaving the S-interface invariant (since S™1SS = 9).

A useful point of view is to consider these brane realizations as arising from an
S-quotient of a more traditional brane configuration. In this case we can start with
the brane configuration with N D3s crossing one NS5 and one D5-branes. This is a
type IIB brane realization of the ABJM theory at CS level £ = 1 (or rather a brane
realization of a mirror dual theory). This brane setup is invariant under the combined
action of S duality and a translation along the 3 circle by a half period. We can then
quotient by this action and the resulting brane configuration is that of the half~-ABJM
theory or its mirror, depending on how we perform the quotient, as shown in Figure 5.

1
NS5 N D3 NS5
S-fold N D3
_>
NN N
X D5 S

Figure 5. A mirror quiver of the ABJM theory at level k = 1. The S-quotient of its brane realization
leads to the brane realization of the half~ABJM theory.

The infrared SCFT resulting from the S-quotient procedure has only N' = 3 super-
symmetry. This is not immediately obvious from the quiver description of Figure 4-a,
because the quiver theory and the T[U(N)] theory preserve N' = 4 supersymmetry.
The T[U(N)] coupling, described by gauging the two U(N) global symmetries with
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two U(N) quiver nodes, also involves an N' = 4 BF coupling [27] between the two
diagonal U(1) C U(N) factors. Such a BF coupling preserves N' = 4 supersymmetry in
an unusual way, exchanging the roles of the R symmetry factors SU(2)¢ and SU(2)y
for the two U(1) vector multiplets; namely, it preserves N/ = 4 supersymmetry when
coupling together a twisted and an untwisted vector multiplet. However, in the present
situation the theory is a circular quiver, so that the two U(1) vector multiplets involved
in the BF term are also coupled through the rest of the quiver (here through a bifun-
damental hypermultipet), therefore they are both untwisted vector multiplets from the
viewpoint of the circular quiver theory. We thus have a BF term which couples two
untwisted vector multiplets and thus preserves only N' = 3 supersymmetry (as any
N = 3 Chern-Simons term). This implies that SU(2)¢c and SU(2)y are identified
and that the R symmetry is only SU(2). This is also visible in the brane construction
where the S-interface includes a twist by the space rotation Rg. This twist breaks the
rotation invariance to SO(3) = diag(SO(3)456 X SO(3)7s9).

Similar observations about the supergravity dual solution will confirm that the 3d
SCFT has N = 3 supersymmetry.

3.2 Supergravity dual background

To find the type I1B supergravity solution dual to the half-ABJM theory, we start with
that of the (dual of the) ABJM theory at level one, which is part of the class of solutions
described in [15] as the holographic dual backgrounds of 3d NV = 4 circular quivers. In
this class of IIB solutions, the metric is a warped product AdS, x S? x S? x X, with
>} a Riemann surface with the topology of an annulus. The solutions are given by the
two real harmonic functions hq, he on 3,

hi(z,2) = —yIn

O (—i(z - 9) ;_t) (3.1)
hao(z,2) = =4 In — +c.c.,
Uy (—z(z —0) ;—t>
where we used the Jacobi Theta functions®®
1(z|7) = 2¢7 sin(2/2) [J(1 = )1 = ¢*e™)(1 = ¢*e ™)
" (3.2)
Va(z2|7) = 247 cos(2/2) [ (1 — ) (1 + ¢"e™) (1 + ¢*"e ™) .
n=1

25We use the convention ¢ = ™7,
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The complex coordinate z = x + 1y on the annulus has periodicity z ~ z + 2t, with
t € Ry and range 0 < y < 7 along the vertical axis. The parameters of the solution
are all quantized by the flux quantization conditions. In the case at hand we have a D5
singularity on the upper boundary with one unit of D5 flux and no D3 flux emanating
from it, and an NS5 singularity on the lower boundary with one unit of NS5 flux and
no D3 flux emanating from it, leading to®%

Nps =1=1, NNS5:1:’AY>

! ) (3.3)
Nps—ps = Npsnss =0 = 6 —0 =t,

using the non-standard convention o' = 4 (following [15]). Common shifts of the § and

b along z, translating five-brane stacks, are immaterial, and we fix § = ) = % In

addition there are N units of D3 flux wrapping the annulus, with the relation

2 —2(n
N = - Z(Qn + 1) arctan (e A +1/2)t) : (3.4)

n>0

which fixes ¢ as a function of N. Thus the solution reads

hi(z,zZ) = —1In 191( t+zz|t +c.c.,
(WzZ +ZZ|Z>
19 ( i }t) (3.5)
ho(2,2) = —In | = )| 4ce..
2(z, 2) n 192( i };t) c.c

The action of S-duality on such a type IIB solution is implemented essentially by
the exchange of the two harmonic functions S : (hy, he) — (ha, h1). To go back to the
convention where D5 singularities are on the upper boundary of > and NS5 singularities
on the lower boundary, one can combine the S action with the symmetry z — & — 2
on Y. The corresponding S’-duality action is then

T

S": hi(z) = he <? - z)
ha(2) — Iy (%T - z) |

In the flat brane picture this transformation can be associated with S-duality combined
with a reflection 22 — —23 of the circle direction. This is not quite the S action that

(3.6)

26The D3 fluxes in such geometries are subject to ambiguities, related to large gauge transformations
of the By and Cy form fields. The discussion here implies a certain choice of gauge for these fields (see

[15]).
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we are looking for. There is another way to define an S-duality action for the solutions
on the annulus ¥, which combines the S action with the symmetry z — % +t+ z,
namely a reflection in the y direction and a translation by a half period t along x,

St hi(z) = h (%THH)
ho(z) = Iy (% +t+z) | (3.7)

This S duality action is suitable for our purposes, because it has no fixed points on X
and thus allows for taking the quotient without introducing singularities. Thus this is
the notion of S action on the supergravity solution that we retain. It is also naturally
identified with the S action on the flat brane configuration that we discussed above,
which involves a translation along the circle direction (here identified with the direction

It is not hard to see that the solution (3.5) is invariant under S, as expected
from the analysis of the brane configuration. This invariance allows us to consider the
quotient of the solution by S, which according to the simple discussion above should
be the gravity solution dual to the half-ABJM theory.

To describe the Zs quotient solution we need to choose a fundamental domain of
the S action in the surface 3. There are various choices, but a simple one is to take the
fundamental domain ¥’ = {z = 2 +iy|0 <z <, 0 <y < T}, with the identification
x ~ x +t (half the period of the initial solution). The local solution is still given by
(3.5) on the patch ', and the values on the vertical boundary x = ¢t ~ 0 are related
by an S-duality transformation (hy, h1)(t,5 —y) = (h1,h2)(0,y). The global solution
is therefore given by the pair (hq, hgy) being a section of a non-trivial S-bundle (Z,
bundle). This is our first construction of an S-flip solution.

Notice that the S-gluing at x =t ~ 0 involves a reflection along the y axis y — 7 —y
and consequently ¥’ has the topology of a Mobius strip. In particular ¥’ has a single
boundary. This will be generic in S-flip solutions, which can be associated to the
solutions with internal Riemann surface 3 having the topology of a Mobius strip.

There is an additional subtlety related to the geometric action on the two S2. In the
S action we exchange the two harmonic functions hq, he. This turns out to correspond
to the action of S-duality on the three-form fluxes Hs, F3, which transform as a doublet,
combined with the exchange of the two S2.2” This implies that the action of S on the
geometry includes both the transformation z — % + t 4+ z discussed above and the

ZTMore precisely the volume forms w;—1 2 on the two S? are transformed as (w1, ws) — (—wa2,ws).
Together with the reflection along y, this geometric action preserves the orientation in the full geometry.
This combined geometric action is the ‘near horizon limit’ of the rotation Rg in the flat brane picture.
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exchange of the two S2. Then, in the S-fold geometry the gluing conditions at z =t ~ 0
include the permutation of the two S?. This implies that the SO(3) x SO(3) rotation
symmetry is broken to the diagonal SO(3) in the S-fold solution. The isometries of
the solution are identified with the R-symmetry of the dual 3d CFT, therefore the dual
half-ABJM SCFT has only N' = 3 supersymmetry, corresponding to a single SU(2)
R-symmetry, paralleling nicely the gauge theory analysis.

The Zs quotient is described in Figure 6. In the resulting S-flip solution, there is
a single D5 singularity on the boundary and an S-interface. By moving the S-interface
along the z axis by a period t, the D5 singularity gets traded for an NS5 singularity,

3 circle in the

similarly to what happened when moving the S-interface around the x
flat brane picture. This can be understood as the action of 3d mirror symmetry in the

gauge theory. In the supergravity solution it is a simple change of S-duality frame.

D5 D5
o— ®
. s-fold S
A e
— y 0 t

NS5

Figure 6. On the left: the ¥ annulus (yellow) with a D5 (red) and an NS5 (blue) singularity,
corresponding to the initial ABJM (k = 1) supergravity solution. On the right: the X’ Mobius strip
with a single D5 singularity and an S-interface (green dashed line), corresponding to the solution
quotiented by S in 3.7.

3.3 Solutions for S-flip quivers

The construction of the previous section can be generalized, starting from circular
quiver theories whose supergravity solution is invariant under the action S (3.7) and
quotienting by §. The 3d N/ = 3 SCFTs dual to these S-fold solutions will comprise
the IR limit of all ‘good’ circular quivers with a T[U(N)] link connecting two nodes of
minimal rank.

Good quivers refer to quiver theories where the number of fundamental flavors at
each node bigger or equal to twice the number of colors, N;; > 2N;.*®* They were

28The other quiver theories with unitary gauge nodes (‘bad’ theories) a priori do not admit new
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labeled in [15] by a triple (p, p, N), where p, p are two ordered partitions of an integer
N satisfying p” > pand N > 0.2 The corresponding infrared fixed points were dubbed
Ci(SU (N), N). In this description N is the lowest rank among the gauge nodes in the
quiver and (p, p) repackage the data of the remaining node ranks and the numbers of
fundamental hypermultiplets for each node. We refer to [15] for a precise dictionary
between the gauge theory data and the triple (p, p, V). In the supergravity solution
associated to C7(SU (N), N), the partition p describes the D3 fluxes emanating from
D5-brane stacks on the upper boundary of the annulus ¥ and p describes the D3
fluxes emanating from NS5-brane stacks on the lower boundary of 3. The data of the
two partitions (p, p) is encoded in the supergravity solution in two sets of parameters
(Vas 0a) and (%, 8,), associated to D5 stacks and NS5 stacks. The integer N is the D3
flux wrapping the annulus and is given as a function of the ”ya,éa,%,gb parameters
and the annulus half-period ¢. We review the dictionary between gauge theory data
and the supergravity parameters in Appendix D. One important point is that the
triples (p, p, N) are defined up to certain shift ambiguities associated to large gauge
transformations which affect the D3 fluxes (see (D.6),(D.7)). This phenomenon is
related to the Hanany-Witten D3-brane creation/annihilation effect in the flat brane
setup, which arises as one moves five-branes around the z? circle.

Explicitly the supergravity solution associated to the SCFT C%(SU (N), N) is given
by the real harmonic functions on the annulus X,

i @(z - 5(1)
I i(z — dq)
5 0, (—i(e - )| (3:8)

U

+
+

where the real parameters 9,, 5y are defined up to an overall real shift. p and p are
the number of D5 and NS5 stacks respectively. The parameters v, and 4, are positive
and equal respectively to the number of D5-branes in the stack a and to the number
of NS5-branes in the stack b (in the convention o’ = 4).

Circular quivers invariant under S can be characterized by the fact that there exists

fixed point SCFTs and therefore there is no supergravity solution associated to them (see [41, 42] for
a recent discussion on the fixed points of bad theories).

29Here p and p are viewed as Young tableaux and the inequality means that the sum of the boxes
in the first n rows of p? is bigger than or equal to the sum of the boxes in the first n rows of p, for all
n.
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a certain gauge®® where the partitions p, p are of the form

p:(glaEQa”'7€k)7 KIZEQZZEka

. (3.9)
P = (—gk, ey, —62, —61) = —p.

In this gauge the partitions sum to zero, ), ¢; = 0, meaning that the total D3 flux
emanating from the D5 or NS5 singularities is vanishing. An example of a brane
configuration realizing such a circular quiver is shown in Figure 7. The condition (3.9)

D5 NS5

BONOL

Figure 7. A brane realization of a circular quiver invariant under the action of S (translation

+ S-duality). The gauge theory data are read from the linking numbers of the five-branes: p =
(2,1,-1,-1,-1), p=(1,1,1,—1,-2). N is the number of D3s stretched between the D5s and NS5s
at the top, here N = 4. On the right is the associated good circular quiver.

can be re-expressed as
p=(p1,—p2), p=(p2,—p1), (3.10)

p

with p1, po two partitions of an integer M > 0 with positive or zero coefficients. In
the example of Figure 7 these partitions are p; = (2,1), p2 = (1,1,1). Note that this
is the criterion for S invariance, but it is not the criterion for the usual S invariance
implemented by the S’ action (3.6), which corresponds to the condition that there
exists a gauge where p = p. Both criteria lead to gauge theories which are self-dual
under mirror symmetry.3! Here we are concerned only with quivers with partitions of
the form (3.9).

Consistently with our discussion we find that the criterion (3.9) implies that the
supergravity solution is invariant under the S action (3.7). In particular this means

30This specific gauge is not the one chosen in [15] to express the constraints p? > p and N > 0. In
this other gauge p, p are really partitions, namely they are sets of positive integers, which is not the
case here.

31The half-ABJM theory discussed in Section 3.1 is an example of a theory with a gravity solution
invariant under both types of S actions. This is not a generic example.
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p=p and (74,0a) = (Y, 0, + t mod 2t), for a = 1,--- ,p, where it is understood that
a labels the D5 stacks and the NS5 stacks from left to right along the z axis.®> An
S-invariant solution is therefore of the form

p 01 (3 +i(z = 02)|2)
h ) Z) = — al . ) i e 7
1(2,2) ;’V G- T (3.11)
p [0 (—i(z — 6, — 1)) |
2 1 it ’
ha(z, %) ;% ! |0 (—i(z — 0, — 1)[%) T

The solution quotiented by S in (3.7) is then described by the same harmonic functions
(hi, hy) restricted (for instance) to the domain 0 < z < ¢, with an S-interface at
x =t ~ 0, which combines the actions of S-duality, S? exchange and y reflection. The
resulting topology of ¥ is again that of the Mobius strip. Here as well the quotient
preserves only 3d N' = 3 supersymmetry. An example of a quotient by S is depicted

in Figure 8.
D5
— o0 - -
S-fold S
A —>
s
it . (=) t 0 t

NS5

Figure 8. An example of S-folding. The resulting S-flip solution has an S monodromy cut (green
dashed line).

If the S-flip quiver is realized with n D5s and m NSbs, it can be constructed as
the S-quotient of a circular quiver with n + m D5s and n + m NSbs. In Figure 9-a
we show an example of an S-flip quiver theory and we describe the associated brane
configuration with an S-interface. We also show a canonical rearrangement of the five-
branes from which one can read the two partitions p;, po. Such an S-flip quiver can
be obtained as the S-quotient of a good circular quiver theory and the corresponding
S-fold supergravity solution can be constructed from the solution of the ‘parent’ quiver
theory. In Figure 9-b we describe the parent circular quiver with S invariance, its

32This is not the same convention as in [15].
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Figure 9. a) An S-flip quiver and its brane realization. On the right: a canonical brane realization
after Hanany—Witten moves, giving the quiver data p; = (1,1,0), p2 = (1,1), N = 3 (number of D3s
at the top). b) The parent circular quiver and its brane realization. On the right: the same brane

configuration after Hanany—Witten moves, and the quotient by S.

brane configuration and the same brane configuration after Hanany—-Witten moves with
separated five-branes.

This construction applies to any S-flip quiver which is a good circular quiver with a
T[U(N")] link connecting two gauge nodes of minimal rank N’ in the quiver. We obtain
a holographic map for a class of S-flip quivers labeled by two partitions with positive
or zero coefficients and a positive integer, (p1, po, N'), or alternatively by a zero-sum
partition p = (p1, —p2) (i.e. an array of positive and negative integers summing to zero)
and an integer N, with N = N'+ M and M = ). p1; = >, p2.i- Reciprocally, it is not
hard to show that any good circular quiver invariant under S gives rise after choosing
the S-quotient appropriately to an S-flip theory with the T[U(N’)] link connecting
nodes of minimal rank.

The S-flip solutions appear naturally parametrized by two partitions p;, po and an
integer N’. However not all partitions describe an S-flip quiver theory. To ensure that
the gauge node ranks in the quiver description are positive, one should take N’ > 0
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and restrict to partitions satisfying the Young tableaux inequalities®?

pL > pa (3.12)

We thus obtain a holographic dictionary for a class of 3d N/ = 3 S-flip theories labeled
by (p1, p2, N') (or (p, N)) satisfying the constraints (3.12).3% As a holographic check
one should find that these constraints are satisfied by the partitions written in terms
of the supergravity data. It is not very hard to find that these inequalities are implied
by the inequalities p > p of the parent good circular quiver. Since the holographic
map is consistent with these inequalities for the parent theories, we deduce that the
holographic map is also consistent for the S-flip theories.

3.4 Large N free energy and holographic test

In this section we perform a holographic test by computing the large N three-sphere
free energy of S-flip theories and comparing it to the regularized on-shell action of the
dual gravity solution. As we shall see, a difficulty arises in the computation because
the free energy is not easy to study in the regime of parameters where the supergravity
approximation is valid. We will present only partial results here, postponing to future
work a more complete analysis.

3.4.1 Free energy

The matrix model computing the exact three-sphere partition function of the S-flip
quiver theories are found using the rules described in Appendix B. In particular it
includes a factor Zr vy (o, o) (B.5) for the T[U(N)] link in the quiver. For instance
for the half~ABJM theory of Section 3.1 we obtain, after simplifications, the matrix
model

1 . H .sh(aij)sh(ﬁij) . -
halt— =— [ dNodV57 ==L h iy 00 3.13
half—ABJM N / oa o HZJ ch(az- — aj) € ( )

The matrix model for the mirror of the half-ABJM theory is instead

2705 00 (5)

1 e
Zhalf—ABJMmirror = m Z <_1)T/dNO-1_[C—hO' . (314)

TeSN

Since the two theories are dual, their sphere partition function should be equal (up to
finite counter-term ambiguities). This is easy to verify by using the Cauchy determinant

33This follows from a reasoning identical to that of [15] leading the Young tableau inequality p? > p
in that paper.

34There is a redundancy in the parametrization with p; and ps because of the zeros in the partitions
which can be transferred from p; to ps and vice-versa without changing the theory.
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formula

[1ic;sh(oi;)sh(ai;) B v 1
Hz‘,j ch(o; — 0;) - T§V< ) Hz]il ch(o; — 0-;))

in the half~fABJM matrix model and then integrating over the o; eigenvalues, with

(3.15)

i dxcf(:ji) = ei:;y. This match is already a consistency check of our holographic
construction.

We now generalize to an S-flip quiver theory with M+1 gauge nodes and with M
fundamental hypermultiplets distributed in various nodes. When all the gauge node
ranks are of the same order N much larger than the differences between these ranks,
we expect that the leading term in the free energy is only sensitive to IV, to the total
number of gauge nodes M+ 1, and to the total number of fundamental hypermultiplets
M, thus it is enough for our purposes to consider the circular quivers with gauge group
U(N )ﬁ 1 with M fundamental hypermultiplets in one node and with a T[U(N)] link
between two nodes, as shown in the upper part of Figure 10. The corresponding brane
realization has M NS5-branes, M D5-branes and an S interface. The zero-sum partition
describing such a quiver is simply a collection of M + M zeros.

----- NS5

N D3

L,

FTIUN)]

Figure 10. Quiver with gauge group U(N)]‘//i“, M fundamental hypermultiplets and a T[U(N)]
link. The corresponding brane realization has M NS5s, M D5s and an S interface. After moving the
S interface we can reach a description with K = M + M D5s, corresponding to a simpler quiver theory
(pure D5 dual theory).
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The description of the theory can even be further simplified by going to a dual
description obtained by moving the S interface in the brane realization along the ®
circle until it reduces to M + M D5-branes and an S interface, as in the lower part
of Figure 10. The corresponding dual theory has a single gauge node U(N) with
K = M + M fundamental hypermultiplets and a self-T [U(N)] link. We will refer to
this alternative field theory description as the “pure D5” dual description.®® From this
argument we understand that the large N free energy should only depend on N and
K.

As a non-trivial test of this proposal we can show that the sphere partition functions
of the dual theories match. This computation was already done in [30] and we reproduce
it in Appendix E. Since the three-sphere partition function of the initial theory and
that of the pure D5 theories are equal, we can use the latter to study the large N free
energy. The matrix model of the pure D5 theory reads

627ri0'.07-

1 T N
7= (-1 [ d T o)k (3.16)

TeSN

We are not able to evaluate this seemingly simple matrix model, however we can study
more easily its large K limit. Taking K large, the leading contribution comes from the
region o ~ \/L? and the matrix model can be approximated by

1 1 . 2
S 2. (—DT/dNUQKNezm'UTe_QKZ%U?- (3.17)

TesSN

This is essentially the same matrix model as for the partition function of J,, theories
(up to complex conjugation), which we evaluated in Appendix C. We find (up to a
phase)

NT'

7 = €z
2KN TN ((~1)iei™ — 1)

(3.18)

with €T + 7" = K, el = mK <1 +4/1+ %) This leads to the free energy

1
F:KNln2+§N2an+O(KO), (3.19)

at large K. In this derivation we have kept N finite and taken K large. However, to
compare with the supergravity on-shell action we will need to assume large N and it is
not clear whether our evaluation holds in this limit. Let us look in some more detail at

350f course, there are many other dual descriptions obtained by moving the S interface at different
positions along 23. They form an orbit of “mirror dual” theories.
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the approximation above. We can define a; = ™K o, and expand the ch(...) functions
(= 2cosh(n(...))) at large K and fixed a;,
1 = 1 ey 1 = 6_%_‘_1[;%(_‘—0(%)
Ch(O’j)K 2K COSh(?TO'j)K 92K COSh(CLj/\/?)K

S o
— 2
€ t o TO\w) )

Plugging the expansion in Z we get

21
1 - N eﬁziaiaf(i) flzz\i 2
ZIMZN(—1> /d CLW{E2 ’—1’<1+ﬁza +O(K2>>
TES
(3.21)
The approximation that we did consists in dropping the terms in the parenthesis after
the 1. The next term after 1is 1 K Z a} and its contribution to Z scales with a factor

=1"
% compared to the first contribution, therefore it is subleading only if K > N. This

[

(3.20)

indicates that our approximation is valid only when K > N. Since we are interested
in the free energy which is the logarithm of Z, we can even trust our approximation for
F when the correction is of the same order as the leading term (since it only corrects
F by a constant). We conclude that our approximation is valid when N < K,

1
K>land NSK: F:KNln2+§N2an. (3.22)

We notice that when K > N, the first term KN In 2 dominates, while for K ~ N > 1
the second term %N 21n K dominates, so there seems to be a phase transition at K ~ N.

3.4.2 On-shell action and holography

The SCFT free energy must be compared with the large N on-shell action of the dual
supergravity solution. This solution is very similar to the half ABJM solution. It has a
single stack of D5-branes (or a single stack of NS5-branes in another S-duality frame).
It is obtained by starting from the “double cover” circular quiver theory with one stack
of K Dbs and one stack of K NS5s (this corresponds to p = p = (0,0,---,0) with
K zeros), and doing the quotient by §. The operation on the brane setups and the
corresponding supergravity solutions are shown in Figure 11.

The supergravity solution is the same as for the half-ABJM theory, with harmonic
functions multiplied by K,

m—it it
hi(z,2) = —K1In 191(”2 —Hz";) +c.c.,
192( 2 ‘?)
)y (e 4 12) (3.23)
_ 1 P
ha(z,2) = =K In 192( O +c.c.,
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S-fold S

K NS5

Figure 11. S-quotient leading to the pure D5 theory. The double cover theory has K U(N) nodes
and K fundamental hypermultiplets in one node. The double cover supergravity solution has single
stacks of K D5s and K NS5s.

on the Mobius strip (z,y) ~ (z + ¢, 5 —y) with S duality gluing conditions. The
parameter ¢ is now given in terms of N by the relation (3.4), which has an extra factor
of K? due the presence of the five-brane stacks [15],

2
N =Z2K? Z(Qn + 1) arctan (e_Q("H/Q)t) . (3.24)
T n>0
The regularized on-shell action is evaluated as before with using the formula (2.14).
There are two natural limits one can study: small ¢ or large t.

Small ¢ limit (or fat Mdbius strip):
In the small ¢ limit we have
2

K2 [+ » , SR .
=% duu;arctan(e )+ O(t") = WK +O(t). (3.25)
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It corresponds in terms of field theory data to having N > K?2,
t<l & N> K2 (3.26)

In this limit the five-brane stacks gets smeared along the upper and lower boundaries
of 3 (see [15]). Using the asymptotics of Jacobi theta functions one finds

K
hi(z,2) = T et o(t),
2t
. anK i (3.27)
ho(z,2) = 57 (z - 5) +c.c.+O(t),
leading to
4 K4 -
T = KN (3.28)

St = QW BENG; )
at leading order at large .
In this small ¢ limit, it is not clear whether higher derivative corrections to the
supergravity action may not be neglected. The dilaton goes from oo at y = 0 to —oo at
= 7/2. The curvature Rs) and dilaton factors (V¢)? are suppressed by 1/v/N factors
but they are functions of y over ¥ and have both divergences at y = 0 and y = 7, which
are the location of the smeared five-branes. Therefore these corrections are not small
in the full geometry and it is not clear whether the supergravity computation above
is valid or not. Moreover the contribution of the D5-brane action could also compete
with Si;p.

Long wavelength limit (or long M&bius strip):

The alternative limit ¢ > 1 may be more appropriate to the holographic test. In
this limit the fields of the supergravity solution vary slowly with x in the bulk geometry.
In terms of field theory data we now have

2
N =ZK?%", (3.29)
m

so the large ¢ limit corresponds to N < K?2,
t>1 < N<K?. (3.30)
In this limit the harmonic functions reduce to
0<z< % () = —2iKe 7 + .

ho(z) = 2Ke 277 + c.c. ,
2(2) t (3.31)
—<xz<t: h(z)=2iKe2"* +cc.,

ho(z) = 2Ke 2% 4 c.c..
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This is the same local geometry as in the extremal Janus solution with appropriate
factor identification.

To study the validity of the supergravity approximation it is enough to focus on
the region with 0 < z < %, since the region % < x <t is related to it by a reflection.
For the higher derivative corrections to the IIB supergravity action to be suppressed
we require that R, and gg;”)vuqsqus be small, as discussed in Section 2.3.

In the region 0 < # < % we have g,, ~ Ke /> ~ /N and ¥ ~ e 2*. We

find gé‘svuqﬁquﬁ ~ e®/v/N and Ry ~ ¢*/v/N. The maximal values are obtained at

z = t/2 and are of order €"/?/v/N ~ K/N.
Putting things together we find that the supergravity approximation is a priori
valid in the regime
K<SN<K?, (3.32)

where we allowed the limiting case K ~ N for which Ry and (V¢)? become order one
only in a thin region around = = t. The range of validity can be recast as N'/? <«
K < N. We also assume that the contributions from the five-brane effective actions is
subleading in this limit. The evaluation of the on-shell action proceeds as before and
gives at leading order at large ¢,

K2

2 4 _—2t 1 2

Holographic match

We can now compare the result with our evaluation of the free energy (3.22) for
the dual CF'T for ranges of N and K for which both computations are reliable. The
range of validity of the two computations are almost non-overlapping and indeed the
two evaluations are not the same. However there is still a borderline situation where
both computations should be reliable and this is when K and N are of the same order,
K ~ N. In that case both computations agree with

1
K~N>1: F=§N21nN. (3.34)
This is quite a non-trivial match, confirming the proposed holographic duality.

Beyond the supergravity regime

As we commented after (3.28), in the small ¢ regime the backreaction of the branes
is felt all over the geometry, and it is not clear that the supergravity approximation is
valid. One might be curious to see what happens to the field theory computation in
this regime, which as we saw in (3.26) corresponds to N > K2
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As an extreme test, we can take K = 1, which corresponds to the original half-
ABJM theory, whose matrix model we wrote in (3.13). Its saddle configurations have
o = ¢; a numerical study reveals that both the real and imaginary parts of ¢ scale with
N'/3 in the large N limit, and that they follow a linear pattern in the complex plane.
One can study this more precisely with the techniques of [17, 43|, rewriting the matrix
model in terms of a local action for a single continuum field o(z). This local action
turns out to be formally identical to [17, (8.2)], and leads to F—; ~ %6_”/6]\75/3.
This N®? scaling is typical of massive ITIA solutions [44]. Its appearance in our IIB
context is intriguing, and might be suggestive of a ITA dual in this limit. T-duality
is not obviously applicable, because not all the fields are x-independent, but one can
speculate that our solution is the back-reacted form of an object that does have a
nontrivial ITA T-dual. (T-duality of non-perturbative objects is sometimes challenging
in supergravity, and often requires some smearing.)
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A Local supergravity solutions and SL(2,R) action

The general local solutions of IIB supergravity with OSp(4|4) invariance were found in
[9]. They are parametrized by two harmonic functions hq, he on a Riemann surface X.
One first introduces auxiliary functions

W = 00(h1hy), Nj = 2h1hs|Ohy|> — h5W . (A1)
The Einstein frame metric is given by
ds® = fidsias, + ffds%i + f22ds§§ + 4p*dzdz (A.2)
with warp factors
Ny N NoW?2 N W?2 Ny N,W?2
8 14V2 8 84V2 8 84Vl 8 14V2
fr =165 fi = 16h1T13, fy = 16h2T23> TS (A.3)

The solution is written in an SL(2,R) gauge where the axion field vanishes. The
axio-dilaton takes the (purely imaginary) form

N
T=x+ie =i F: (A4)
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Note that we use an unconventional normalization for the dilaton ¢. In addition there
are 3-form and 5-form backgrounds. To specify the corresponding gauge potentials we
need to introduce dual harmonic functions h?, h2

h1 = —i(Al — ./_ll) — th = -/41 + Al )

! L , (A.5)
h2:A2+A2 — h2 :Z(.AQ—AQ).

The dual harmonic functions are defined up to constant shifts corresponding to large
gauge transformations of the background. The NS-NS and R-R 3-forms are expressed
by

Hs = w® Adby Fy = w® A db,, (A.6)

where w? and w5 are the volume forms of the unit-radius spheres S? and S3, and

hiha(Oh10hy — OhyOhs)

by = 2ih, ~ + 2h%
sy (s O — DDy (A1)
b2:2’ih2 172 1]\; ! 2 —2h1D
2

The expression for the self-dual 5-form is a little more involved and we refer to the
original papers [9, 10] for its expression.

The choice of harmonic functions hq, hy is constrained by a number of conditions
ensuring the regularity of the solution. In particular the boundary of ¥ must be di-
vided into regions where one harmonic function obeys (vanishing) Dirichlet boundary
conditions while the other obeys Neumann boundary conditions.

Other solutions can be generated by SL(2,R) transformations of the above back-
ground, which act on the axio-dilaton and 3-form fields as follows,

, dr+c Hj ab H;
g br +a’ <F§) (Cd)(Fg) (A-8)

The Einstein-frame metric and the 5-form are invariant under SL(2,R).

With this choice of conventions, the SL(2,Z) subgroup is generated by the elements

- (2) (1),

satisfying S? = —1 and (ST)® =1, and acting on 7 by S.7 = —1/7, T.1 =7+ 1.
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B Sphere partition function and matrix models

The (undeformed) three-sphere partition function Z of a 3d N' > 2 supersymmetric
Lagrangian gauge theory can be computed exactly via supersymmetric localization, as
first shown in [32] following the seminal work of Pestun [45]. The final evaluation of

the sphere partition function is expressed as a matrix model,3¢
do
Z = |W| Zvec( ) Zchiral(a) ZCS<0) ZFI<U) ) (Bl)

where 0 = {0;} are the (real) ”eigenvalues” taking values in the Cartan subalgebra of
the gauge group, |W/| is the order of the Weyl group, and the integrand is a product of
contributions associated to the vector multiplet, chiral multiplets, Chern—Simons terms
and FI terms. The factors appearing in the integrand simplify for an N' > 3 theory.
For a U(N) gauge group with fundamental matter we have N eigenvalues o;_;. ... n,
|W| = N! and the vector multiplet and fundamental hypermultiplet factors

N

_ 1
Z\'/,\éc H Sh2 0-1.7 Zhyper(o') = H m s (BZ)
i=1 !

1<j=1

with the notation sh(z) = 2sinh(nz), ch(z) = 2cosh(nz) and o;; = 0; — 0;. The
parameter m above is a real mass for the hypermultiplet. The factor for a bifundamental
hypermultiplet of U(N) x U(N) is

Zhyper(0,0) H H (o5, —m) (B.3)

=1 j=1

Finally the contributions of a supersymmetric U(/N) Chern—Simons term at level k € Z
and an FI term with parameter ) are

Zos(o) = €™ 2R (o) = HmEm (B.4)

The coupling to a T[U(N)] theory by gauging its U(N) x U(N) global symmetry is en-
coded in a contribution Zzy(ny (o, o) to the matrix integrand, where o;—;.... 5, 0i=1,... N
are the eigenvalues of the two U(N) symmetries. This contribution is nothing but the
sphere partition function of the T[U(N)] theory which was computed via supersym-
metric localization in [46]. It is given by

N =
7 (0' 5) = ZTESN(_]')TB%MZi:I 7i%7(0)
TIU(N 5 — — .
v Hi<j Sh(aij) Hi<j Sh(Uij)

(B.5)

36Here and later we suppress pure phase factors of the matrix model which play no role in the
computation of the large N free energy.
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The identification of this factor as describing an S duality interface contribution was
first described in [47] and further studied in [30].

We explained in section 2.2 that there are two possible ways to couple the T[U(N)]
theory, by gauging U(N) x U(N) or U(N) x U(N)". One gauging corresponds to
inserting the above factor in the matrix model, while the other gauging corresponds to
inserting Zrp(ny (o, —o). The relevant gauging for the J, theory is associated to the
insertion of Zyy(ny (o, —o) in the matrix model as in (2.16).

C Sphere partition function of J, theories

In this appendix we evaluate the matrix model (2.16) computing the partition function
Z(N). We will be able to compute it axactly, namely at fintie N. For computational
convenience we add an overall phase e~ to the matrix model.

The matrix model (with the extra phase) has the form of a Fermi gaz partition
function [48]

20 = 31 S 07 [ o [[elilon). (1)

TESN

with density operator
(a|plo) = e T eI g 2T p(o,o0). (C.2)
It is convenient to change ensemble and to define the grand canonical partition function

O(z) =1+ > Z(N)2N ='W zi=et. (C.3)

N>1

The grand canonical potential J(u) then takes the form

J() ==Y %Zz et (C.4)

>1
with
/—1
2i=Te (i) = [ dotolg'lo) = [ d'o plor.on) [] (o, 0us)
a=1
| . (C.5)
— 67% dfo_ eiﬂnag 6727ricrg01 H 6i7rn026727ri0a0a+1 ]

=1

<)

The evaluation of Z(N) can be extracted from e’ by an inverse Legendre trans-
form and the problem is reduced to computing Z, (which is simpler that Z(N)) and
performing the inverse Legendre transform.
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To evaluate Z,, we write

Zy = e_i”€/4/d‘ea explinatCy o] = (det Cp,,) Y2, (C.6)
where o = (01,...,0,)" and the matrix
Cé,n = nlg — P — Pt, (C7)

with P is the matrix realizing the permutation (23.../¢1). Cy(n) is a cyclic matrix.
The eigenvalues of Cy,, are n —w; — w; ! where w; are the (-th roots of unity, wf = 1.
Hence its determinant is
-1
det Cp,, = H(n —w; —w; ). (C.8)

1=0

Now consider the meromorphic function

-1 -1
f(z) = H(z + 27 w4 wil) =179 H(l + 2w;) (1 + 27 wy) (C.9)
i=0 i=0

It is Ze-invariant: f(w;z) = f(z). Hence its Laurent series can only contain integer
powers of z*. From its definition as a product it is clear that it can in fact only contain
2f, 27% and a constant, and in fact that f(z) = 2* + 27% + f, with fy a constant. To
fix fo, consider the case z = —1. We have f(—1) = (—)“det Cy_o; but Cy_5 is minus
the Cartan matrix of an affine Lie algebra, which is known to have zero determinant.
Hence we have 0 = f(—1) = 2(=1) + fo, leading to f(z) = 2+ 27% — 2(=1)". Now
notice that, if we define 7" such that n = e’ + ¢™1 as in (2.9),

det Cp,, = (—1)°f(=€T) =T e —2 = (72 — ¢=1/2)2, (C.10)

From (C.6) it now follows

1

ez —e 2
From here the grand potential J(u) can be computed as follows

Y
J(M):_Z( gl) T ! ETeué

>1 e2 —e 2
14
_ Z Z (_ﬁl) T (m+1/2) ut (C.12)
¢>1 m>0

=3 tn (14 en Tl

m>0
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leading to the grand canonical partition function

02) = T (12 7m2) = (cze 2T, ©13)

m>0

where we used the Pochhammer symbol in the last expression. The partition function
Z(N) is recovered by the residue computation

dz dz —T(m+1/2)
Z(N) = / —6() = / iz [ (14 2 ) -
m= C.14
- ) e N2 TELim:

mi>mo>-->mpy >0

The sum over m; are simple geometric series which can be performed one by one leading
to the remarkably simple final expression

NT

2

[T, (e — 1)

Z(N) = . (C.15)

D Fluxes in elliptic solutions and quiver data

In this appendix we briefly review the dictionary between the triples (p, p, N') describing
good circular quiver theories and the data (ya, da, Y, Sb,t) of the elliptic supergravity
solutions dual to their fixed point SCFTs, as described in [15].

The triple (p, p, N) is obtained by considering the brane realization of the circular
quiver, with D3s, D5s and NSb5s, and by moving the five-branes along the circle direction
23 until all D5s are on one side and all NS5s are on the other side. Because of Hanany—
Witten brane creation effects one obtains a configuration with various D3s ending on
both types of five-branes. The net number of D3s” ending on a given five-brane is called
its linking number. The partition p is the array of D5s linking numbers, the partition
p is the array of NSbs linking numbers and N is the total number of D3-branes at a
chosen position in 3. There is large redundancy in the choice of triples (p, p, N) which
describe a given good circular quiver. The holographic dictionary proposed in [15] uses
a ‘gauge’ with

p:(€1>€2,"'7€k)a =
p=(ly, 0y, j;;), ey

o
V
S
v
Vv
~
Y]

(D.1)

>
>

v
v

0,
k O’

v

3TFor D5s, this is the number of D3s ending on its left minus the number of D3s ending on its right.
For NS5s it is the opposite number.
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satisfying the constraint p > p. To compare with the supergravity data, one should
re-label the partitions in terms of ‘stacks’,
p=(W .. O @) )y
——— ——
p=(0D ... (W o g )y (D-2)
— —
N@) N®)
The number ~,, resp. 4, of D5-branes, resp. NS5-branes, in a stack is given by
a:N(a)7 a217"'7pa
A : (D.3)
’Yb:N()a b:]-)ap
The linking numbers are mapped to the D3 flux emanating from a given five-brane
stack, averaged over the number of five-branes in the satck. They are related to the
data of the supergravity solution by

D 00 o°
(@ =3 RO [Z F(By b0 = 2nt) = 3 F(=6y + b — 2nt>] >
b=1 n=0 n=1

p 0 >
=3 N@ [Z F(=0y+ 60— 2nt) = > f(by — 00 — 2nt)] :
a=1 n=1 n=0

with f(z) = %arctan(e:”). Finally the paramter N is identified with the D3 flux going
through the annulus with

(D.4)

N = zp: Ep: N@N® f:n [f(éb — 6, — 2nt) + (8, — 0y — znt)] . (D.5)
n=1

a=1 b=1

Changes of gauge affect the above formulas. They correspond to moving five-brane
stacks around the 22 circle in the flat brane picture. The basics moves are

~

(O lay - ) = (loy-  le, by — k)
by, la, - 0) = (b =10y —1,--- 0 —1) (D.6)
N — N+k—1,
and
(O lay - ) = (b= 10— 1, 0, —1)
by, la, - 0) = (fyy-- 0 by — k) (D.7)

N — N+k—1{,

as well as the reverse moves.
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E Equivalence of S? partition functions

The matrix model computing the three-sphere partition function of the initial theory
U(N)M+1 with M fundamental in one node is, after some simplification,

M+1 M
dNo(@) 1
/ H [ & H h ( EJa))] H (a) (a+1)
i<j a=1 H” ch(o;" — 0; )

(M+1) 5(1)

(E.1)
Nle 2mio

Y (M+1) 1y’
Hi Ch(gz ) HZ‘<J Sh( ) Hi<j Sh(aij )

with the notation o,; = 0; — 05, 0.0 = Zf\il 0;0;. The standard trick to simplify the
matrix model expression is to use the Cauchy identity

Hi<j sh(o) Hi<] (03) Z

Hij ch(o; —0;) (E.2)

pESN - OP )

After simplifications we end up with
M1 27TZU(M+1) (1) M

N, 1
:/gd N‘;v ()HHch(“ oty ()

1 2mixy
- / des—— (E.4)

Using the identity

ch(y) ch(z)
one can reach the following form of the matrix model
N 1 27ria.ap
Z = /d 0o— (—=1)? (E.5)
N2 T eha(o) Mo

corresponding to the matrix model of the pure D5 dual theory.
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