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1 Introduction

Form factors of local gauge-invariant operators appear ubiquitously in gauge theories and

compute quantities of great phenomenological interest. For a certain operator O(x), we

define the form factor between the vacuum and an n-particle state as

FO(1, . . . , n; q) :=

∫
d4x e−iq·x〈1 . . . n|O(x)|0〉 = (2π)4 δ(4)

(
q −

n∑
i=1

pi

)
〈1 . . . n|O(0)|0〉 ,

(1.1)

where the momentum conserving δ-function follows from translational invariance. Note-

worthy examples of such quantities include form factors of the hadronic electromagnetic

current with external hadronic states, which are the building blocks of the e+e−→hadrons

and deep inelastic scattering matrix elements; and the form factor of the electromagnetic

current, which computes the (electron) g−2.

An important class of form factors, which will be the focus of this paper and its

companion, makes its appearance in the study of amplitudes involving the Higgs boson and

many gluons in QCD. At one loop, the Higgs couples to the gluons through a loop of quarks,

with the top quark loop giving the largest contribution to the gluon fusion process. These

amplitudes can then be treated in an effective Lagrangian description, where the quark

loop is effectively replaced by a set of local interactions of increasing classical dimension.

In the limit where the mass of the Higgs mH is much smaller than the mass of the top

quark mt, the leading interaction is a dimension-five operator of the form [1–3]

L5 ∼ H Tr(F 2) , (1.2)

where H represents the Higgs boson and F is the gluon field strength. Hence the scattering

amplitude of a Higgs and a gluonic state 〈g . . . g| in the infinite top-mass limit, is nothing but

a form factor of the dimension-four operator Tr
(
F 2(0)

)
, i.e. 〈g . . . g|Tr

(
F 2(0)

)
|0〉. Sublead-

ing interactions (in 1/mt) will appear at dimension seven and include terms of the type [4–8]

L7 ∼ H Tr(F 3) , L′7,i ∼ H Tr(DFDF ) , (1.3)

where i schematically labels the three possible index contractions. In pure Yang-Mills,

only one of the three possible operators among L′7,i is independent due to the equations of

motion [8, 9], and we pick

L′7 ∼ H Tr(DµFνρD
µF νρ) . (1.4)

We also mention an additional source of interests in such quantities — at zero momentum

transfer (q = 0 in (1.1)), a form factor of an operator O represents a potential correction

to a certain Standard Model scattering amplitude due to the inclusion in the theory of a

new local interaction proportional to O(x). For instance, the operator F 3, a close relative

of which will be the primary focus of this paper, arises as the first correction in the low-

energy effective action of bosonic strings. Interestingly, it is also the only gauge-invariant

modification to the three-gluon vertex which is non-vanishing at three points [10], see for

instance [11–14] for examples of such effective amplitudes.
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While it is clearly of great phenomenological importance to study such quantities di-

rectly in QCD, experience shows that many interesting properties and underlying structures

may better be highlighted by focusing on simpler models such as supersymmetric theories,

N =4 supersymmetric Yang-Mills (SYM) being the prime example of such a model. When

making comparisons between form factors in different theories, however, one must face the

issue that operators with the same classical dimensions and quantum numbers mix under

renormalisation. Furthermore, in different theories the set of operators involved in the

mixing will generically be different. As a case in point, in pure Yang-Mills Tr(F 2) does not

mix with any other operator [8] while in N =4 SYM there is a large number of operators

that can potentially mix with it. Therefore, the question arises as to which form factors

are we to compare in the two theories if we wish to gain some deeper understanding of the

secret structures of such quantities.

Focusing initially on the operator Tr(F 2), in the case of N = 4 SYM the answer to

this question is suggested by supersymmetry, since Tr(F 2) appears in the so-called on-shell

Lagrangian, which has the schematic form

Lon-shell ∼ Tr(F 2) + gTr(ψψφ) + g2 Tr([φ, φ]2) . (1.5)

This operator is obtained as a supersymmetric descendant of the protected operator Tr(φ2),

where φ is any given scalar in N = 4 SYM, by acting with four supersymmetry charges.

Both Tr(φ2) and Lon-shell are components of the chiral part of the stress-tensor multiplet

T2 [15]. Their supersymmetric form factors have been studied and formulated in superspace

in [16], which puts them on a similar footing as superamplitudes [17].

The extra length-three and four terms in (1.5) ensure that the operator Lon-shell is

protected (half-BPS) and does not mix with other operators, in contradistinction to Tr(F 2).

Given the special status of Lon-shell, it is therefore natural to compare form factors of Tr(F 2)

in QCD with form factors of Lon-shell in N = 4 SYM. Furthermore, supersymmetric Ward

identities can be used to relate form factors of Lon-shell to those of Tr(φ2) with different

external states, as was done in [18]. Supersymmetry also allows to package form factors of

the stress-tensor multiplet operator T2 into supersymmetric form factors [16].

Before addressing the story for Tr(F 3), we should first ask ourselves what lesson we

can learn by computing form factors of half-BPS operators in N =4 SYM, when comparing

them to form factors of Tr(F 2) in, say, pure Yang-Mills. A surprising answer to this question

was found in [18] where, following earlier studies in [19], the form factors 〈φφ g+|Tr(φ2)|0〉
of the lowest-weight operator Tr(φ2) in the stress-tensor multiplet were studied at two

loops, with the particular state containing two scalars and one gluon g+. Comparing this

quantity to the result for 〈g+g+g±|Tr(F 2)|0〉 at two loops [20] showed that, remarkably —

and for reasons currently not explainable via symmetries — the maximally transcendental

part of these form factors is identical to the result for 〈φφ g+ |Tr(φ2)|0〉 (which by itself

contains only terms of maximal transcendentality — four, at two loops).

For Tr(F 3), the main subject of this paper, the situation is more involved since this

operator mixes with a variety of operators both in QCD/pure Yang-Mills and in N = 4

SYM. In pure Yang-Mills, it can mix with Tr(DµFνρD
µF νρ); in QCD with three addi-

tional dimension-six operators; while in N = 4 SYM, mixing can potentially occur with a

– 3 –
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large number of operators formed by elementary fermion and scalar fields. What is the

appropriate translation of the operator Tr(F 3) to the N =4 theory?

A first thought might indicate that the form factor 〈φφφ |Tr(φ3)|0〉, studied in [21]

and [22], might be the correct translation of 〈g+g+g+|Tr(F 3)|0〉, however one quickly re-

alises that Tr(φk) is half BPS for any k, while Tr(F 3) is not protected. One may however

note that at one loop, Tr(F 3) has the same anomalous dimension as the Konishi operator.

An obvious candidate is therefore the Konishi descendant obtained by acting with eight

Q̄-supersymmetries on the Konishi operator εABCD Tr(φABφCD), which is proportional to

Tr(F 3) plus appropriate additional terms generated by supersymmetry.1 This descendant

is obtained by acting with tree-level supersymmetry generators, and therefore mixing is

deferred to one loop. Supersymmetric form factors of the full Konishi multiplet were re-

cently studied in [23, 24], allowing for the efficient use of supersums in our calculations.

This also allows for an immediate generalisation to N <4, which will be discussed in [25].

In this paper we outline in detail the calculation in N = 4 SYM of the two-loop form

factors of two operators: Tr(F 3) and the appropriate translation given by the Konishi

descendant mentioned above, with an external state of three positive-helicity gluons. This

expands the results and observations of [26] and sets the stage for the calculations in N <4

which will be discussed in [25].

The most interesting observation, already made in [26], is the remarkable similarity

of the QCD and the SYM results, regardless of the amount of supersymmetry. First of

all, there is a universality of the maximally transcendental part of the results across all

theories, including pure Yang-Mills [26]. Furthermore, this maximally transcendental part

is the same as the complete result for the minimal form factor of the half-BPS operator

Tr(φ3), which was computed in [22]. Hence this is another illustration of the fact that

half-BPS operators in N = 4 SYM play a surprising role in theories with less or no su-

persymmetry including QCD [18, 26]. It is also a beautiful appearance of the principle of

maximal transcendentality [27, 28] which, in its original formulation, relates the anomalous

dimensions of twist-two operators in N = 4 SYM to those calculated in QCD [29, 30] by

simply deleting all terms of transcendentality degree less than maximal (or 2L−1 at L loops,

in Mellin moment space). In our framework we see another incarnation of this principle

across different theories, however for complicated, kinematic-dependent quantities. This is

even more surprising since scattering amplitudes in general do not have this property, e.g.

one-loop MHV amplitudes in pure Yang-Mills contain additional pieces that have maximal

transcendental degree [31–33]. We also note a different type of universality across form

factors of different operators in N = 4 SYM namely for the scalar Konishi and the three

closed SU(2), SU(2|3) and SL(2) sectors in the N =4 theory, respectively [34–37]. Further

recent manifestations of the principle of maximal transcendentality include configurations

of semi-infinite Wilson lines [38, 39] and the four-loop collinear anomalous dimension [40].

Second, our form factors (or more precisely their remainders) contain terms of tran-

scendentality ranging from four to zero. In an earlier paper [36] we considered the simpler

1φAB are the scalar fields of the theory, and A, . . . ,D = 1, . . . , 4 are fundamental indices of SU(4).
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scalar descendant of the Konishi operator

OK = OB −
gN

8π2
OF , (1.6)

where OB := Tr(X[Y, Z]) and OF := (1/2)Tr(ψψ), with X := φ12, Y := φ23, Z := φ31 and

ψα := ψ123,α. This operator is part of the SU(2|3) closed subsector of the N =4 theory [41].

In that paper we considered the two-loop minimal form factor of OK which also contains

terms with transcendentality ranging from four to zero. While, as mentioned earlier, the

maximally transcendental part is universal, we find that the transcendentality three and

two terms are also universal building blocks of the two-loop form factors considered here, as

already shown in [26], and to be expanded upon in the companion paper [25]. For the two

operators considered in this paper — Tr(F 3) and the particular Konishi descendant de-

scribed earlier — a new feature appears: the result of their minimal form factor remainders

at two loops also contains polylogarithmic functions multiplied by ratios of kinematic in-

variants. Only few universal functions are needed which, interestingly, also appeared in [36]

as well as in related spin-chain Hamiltonian computations in [35, 37]. What is more, we find

that the rational factors we find are precisely needed to cancel potential unphysical simple

and double poles. This requires unexpected, delicate inter-transcendental cancellations.

Third, and even more remarkably, the computations in N < 4 SYM to appear in the

companion paper [25] will reveal further striking similarities with N =4 SYM.2 In partic-

ular we will make an important observation on the terms subleading in transcendentality:

the difference between the result in different theories with any amount (or no) supersym-

metry and the result in N = 4 SYM is confined to a tiny class of terms, mostly simple ζn
terms and coefficients of simple logarithms. This can be explained by the fact that, for

the operator Tr (F 3), the matter content of the different theories only enters through one-

loop sub-diagrams, hence allowing effectively for a supersymmetric decomposition of the

computation similar to that for one-loop amplitudes [31].3 This diagrammatic explanation

also implies that the form factor of Tr(F 3) in QCD differs from the corresponding calcula-

tion in N =4 SYM only by certain single-scale integrals of sub-maximal transcendentality

which only bring about logarithms or constant terms. The consequence of this observation,

already made in [26], is that in the three-gluon case, N = 4 SYM captures not only the

maximally transcendental part of the leading-order (in 1/mt) Higgs plus three-gluon am-

plitudes [18], but also of the subleading corrections from Tr(F 3). The universal building

blocks observed in [36] also make another appearance in the context of N <4 SYM [25].

A final comment is in order here. Throughout this paper we have made use of the

four-dimensional helicity scheme and four-dimensional cuts to compute our two-loop form

factors. At present there is no proof that the so-called µ2-terms, potentially arising from

D-dimensional cuts, would not affect the final result for remainder functions. However,

there are a number of examples where it has explicitly been proved that four-dimensional

2These results were anticipated at the 2017 IFT Christmas workshop and the 2018 Bethe forum [42, 43].

We thank the organisers of these events for their invitations.
3However note that for the supersymmetric completion of this bosonic operator, called OS throughout

this paper and introduced in section 2.2, there would be additional two-loop topologies not of this type,

and this statement would not apply.
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cuts are sufficient for calculational purposes, namely the two-loop computations of the

four- [44] and five-point [45] MHV amplitudes in N = 4 SYM and the remainder of the

six-point MHV amplitude [46]. The latter case is particularly interesting since there is a

remarkable cancellation between such µ2-terms in the two-loop amplitude, and terms van-

ishing strictly in four dimensions in the one-loop amplitude, which also enters the definition

of the remainder and contribute when multiplied by 1/ε poles in the one-loop amplitude.4

We mention that our result passes a number of important consistency checks, including

reproducing the correct infrared and ultraviolet divergences (and hence anomalous dimen-

sions), and soft/collinear factorisation at two loops. Also note that issues encountered with

dimensional regularisation in the case of the Konishi operator in [47] do not arise in the

present work since the operator definition does not involve state sums.

The rest of the paper is organised as follows. In section 2 we discuss the various oper-

ators considered in the paper and their tree-level form factors. In section 3 we describe the

calculation of the one-loop form factors of these operators, finding their one-loop anoma-

lous dimensions. In section 4 we move on to the two-loop form factor calculations and

provide the details of the computations of results presented in [26]. In section 5 we solve

the operator mixing, finding an appropriate operator that diagonalises the dilatation op-

erator, and then compute the BDS remainder function of renormalised operators in N =4

SYM. Finally, in section 6 we conclude by discussing the results of our paper.

2 Operators and tree-level form factors

2.1 Form factors of Tr(F 3)

We begin our investigation by considering form factors of the operator Tr(F 3). In four

dimensions it can be rewritten as a sum of selfdual and anti-selfdual terms

Tr(F 3) = Tr(F 3
ASD) + Tr(F 3

SD) ∝ OC +OC , (2.1)

where the subscript C stands for Component. The precise normalisation involved in the

definition of OC ∝ Tr(F 3
ASD) and OC is conveniently fixed in such a way that the minimal

tree-level form factor of OC with three positive helicity gluons as external states is given by

F
(0)
OC (1+, 2+, 3+; q) = −[12][23][31] , (2.2)

and hence the minimal form factor for OC ∝ Tr(F 3
SD) is

F
(0)

OC
(1−, 2−, 3−; q) = 〈12〉〈23〉〈31〉 . (2.3)

4In our case, we note that the one-loop form factor, which enters the form factor remainder, computed

using four-dimensional cuts is valid in D dimensions [6].
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Examples of non-minimal form factors of OC at tree level that will be needed later on

include5

F
(0)
OC (1+, 2+, 3+, 4−; q) =

([12][23][31])2

[12][23][34][41]
,

F
(0)
OC (1+, 2+, 3+, 4+; q) =

[12][23][34][41]

s12

(
1 +

[31][4|q|3〉
s23[41]

)
+ cyclic(1, 2, 3, 4) ,

(2.4)

where the first line of (2.4) can be obtained from (2.2) multiplying by the soft factor

− [31]
[34][41] , while the second line has been calculated using Feynman diagrams and MHV

diagrams in [8] (and confirmed now by an independent calculation). The first line of (2.4)

is a member of an infinite family of MHV form factors with three positive helicity gluons

and an arbitrary number of negative helicity gluons:

F
(0)
OC (1−, . . . , i+, . . . , j+, . . . , k+, . . . , n−; q) = (−1)n

([ij][jk][ki])2

[12][23] · · · [n1]
. (2.5)

Note that form factors belonging to this family but with different number of negative helic-

ity gluons are related by soft factors − [s−1, s+1]
[s−1, s−][s−, s+1]

. We also mention that the expression

of these form factors at q=0 was known already for four and five points in [11], and later

extended to a generic number of particles in [12].

2.2 Supersymmetric form factors and mixing

The operator OC can mix with other operators under renormalisation, and hence we need

to address mixing before embarking on concrete calculations. An important observation is

that in N = 4 SYM OC is contained within a certain descendant of the Konishi operator

generated by acting with tree-level supercharges6 QAα and Q
A
α̇ on the lowest-dimensional

operator

OK ∼ εABCD Tr(φABφCD) . (2.6)

Here we denote A = 1, . . . , 4 the R-symmetry index and α, α̇ = 1, 2 the Lorentz spinor

indices. Importantly, acting with eight tree-level supercharges Q
A
α̇ on OK we generate an

operator OS such that

OS = OC +O(g) , (2.7)

where the subscript S stands for Supersymmetric and the additional O(g) terms are of

length four or more in fields.

To be more concrete we give the schematic structure of OS , up to terms with four

fields,

OS ∼ Tr(F 3
ASD) + gTr(F 2

ASDφφ̄) + gTr(FASDφFASDφ̄)

+ gTr(FASDψψφ) + gTr(FASDψφψ) + gTr(ψψψψ) ,
(2.8)

5In the expressions for the n-particle form factors of OS,C (OM) in this and the coming sections we omit

a factor of gn−3 (gn−2) to make the formulae more transparent.
6As opposed to the free supersymmetry generators which are implicit in the Nair superspace formalism

used to define the states.
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where we also assume that all Lorentz or R-symmetry indices are contracted to form an

invariant.

These correction terms appear multiplied by powers of the Yang-Mills coupling g, and

not the ’t Hooft coupling.7 Furthermore, they only affect tree-level non-minimal form

factors with more than three external lines. In particular, in section 2.3 we illustrate in

detail the effects of these terms on four-point tree-level form factors where they give rise

to extra contact term interactions. At loop level, this mixing can affect also minimal

form factors. Importantly, OS solves the mixing problem at one loop, thus any further

corrections to OS due to mixing can only be detected in a calculation at two loops or

higher — see section 5.1 for the resolution of the mixing at two loops.

Luckily the explicit expression for the supersymmetric completion terms are not re-

quired for our computations. Indeed, the tree-level MHV form factors of the full Konishi

multiplet in N =4 SYM have been constructed and expressed in a compact formula in [24],

〈1, 2, . . . , n|K(θ, θ̄)|0〉(0)
MHV =

e
∑n
l=1[l|θ̄θ|l〉+ηl〈θl〉

〈12〉 · · · 〈n1〉
(2.9)

×
∑

i≤j<k≤l
(2−δij)(2−δkl)εABCDη̂iAη̂jB η̂kC η̂lD〈jk〉〈li〉 ,

where η̂A := ηA + 2[λ̃ θ̄A] and ηA are the usual on-shell superspace coordinates labelling

the external on-shell states [48], with A = 1, . . . , 4. The θAα and θ̄Aα̇ label the components

of the Konishi super-multiplet.

MHV form factors of OK are obtained by setting θ = θ̄ = 0, while the form factors of

OS are obtained by setting θ̄ = 0 and extracting the θ8-term:

F
(0)

OS ,MHV
(1, 2, . . . , n; q) =

1

144

δ(8)(
∑n

i=1 ηiλi)

〈12〉 · · · 〈n1〉
(2.10)

×
∑

i≤j<k≤l
(2−δij)(2−δkl)εABCDηiAηjBηkCηlD〈jk〉〈li〉 .

We notice that for this particular component operator we recover the on-shell supermomen-

tum conservation δ-function for the external on-shell particles, which simplifies calculations

of supersymmetric unitarity cuts such as the ones we employ below in section 4.

In this paper we perform two-loop computations of form factors with an external state

of three positive-helicity gluons. Taking into account these constraints, there are several

further gluonic operators which will appear in the mixing at two loops and need to be

considered, namely Tr(DµF νρDµFνρ) and two further operators with different Lorentz

contractions. The equations of motion relate these to OC , the operator q2 Tr(F 2), and

further operators containing fermions and scalars,8 which are irrelevant for the present

discussion given the gluonic external state. The effect of this for the two-loop mixing

problem is that the only other operator we expect to enter in the two-loop mixing is

OM∝q2 Tr(F 2) . (2.11)

7A simpler situation was addressed in [36] in the SU(2|3) sector, where it is known that two operators

mix at dimension three, see section 7 of that paper for a detailed discussion.
8See [8] for a discussion of operator bases in QCD.

– 8 –



J
H
E
P
1
2
(
2
0
1
8
)
0
7
6

We choose its specific normalisation in such a way that

F
(0)
OM(1+, 2+, 3+; q) =

q6

〈12〉 〈23〉 〈31〉
=

F
(0)
OC (1+, 2+, 3+; q)

uvw
, (2.12)

where u := s12/q
2, v := s23/q

2, and w := s31/q
2.

2.3 Further tree-level form factors

To conclude this section we present further examples of tree-level MHV form factors of OS
up to four external legs and contrast them with those of OC . We will make use of these

results in our explicit two-loop calculations in section 4. They also illustrate the effects of

the O(g) terms of OS presented in (2.8).

Firstly, from (2.10) and its appropriately chosen prefactor, we find that the minimal

form factors are independent of the choice of operator:

F
(0)

OS ,OC
(1−, 2−, 3−; q) = 〈12〉〈23〉〈31〉 , (2.13)

and correspondingly

F
(0)
OS ,OC(1

+, 2+, 3+; q) = −[12][23][31] . (2.14)

The situation for four external particles is more involved, and the results depend in general

on which of the two operators is chosen. However, for purely gluonic external lines there

is no difference and from (2.10) we recover

F
(0)
OS ,OC(1

+, 2+, 3+, 4−; q) =
[12][23][31]2

[34][41]
, (2.15)

in agreement with (2.4). Similarly, if there are two fermions on the external lines the

result does not depend on the operator, and only if the fermions are adjacent the result is

non-vanishing:

F
(0)
OS ,OC(1

+,2+,3ψ
4
,4ψ̄

123
;q) =

[12][23][31]

[34]
, F

(0)
OS ,OC(1

+,2+,3ψ̄
123
,4ψ

4
;q) = − [12][24][41]

[34]
,

(2.16)

where we have explicitly indicated the R-symmetry indices. If at least one scalar is included

in the external states, then we need to distinguish the two cases, e.g.

F
(0)
OC (1+, 2+, 3φ

12
, 4φ

34
; q) = −1

2

[12]

[34]
([13][24] + [14][23]) , (2.17)

while

F
(0)
OS (1+, 2+, 3φ

12
, 4φ

34
; q) = F

(0)
OC (1+, 2+, 3φ

12
, 4φ

34
; q) +

1

6
[12]2 , (2.18)

where the extra term arises due to a correction of the form, schematically, Tr(F 2φφ̄) in

OS . On the other hand if the two scalars are not adjacent we find

F
(0)
OC (1+, 2φ

12
, 3+, 4φ

34
; q) = 0 , F

(0)
OS (1+, 2φ

12
, 3+, 4φ

34
; q) = −1

3
[13]2 . (2.19)
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Figure 1. A two-particle cut of the one-loop minimal form factor of OS or OC .

Finally we present a few examples involving fermions in the external states which have

vanishing form factor for the operator OC .

F
(0)
OS (1+, 2ψ

4
, 3φ

23
, 4ψ

1
; q) = −2

3
[12][14] ,

F
(0)
OS (1+, 2ψ

4
, 3ψ

1
, 4φ

23
; q) =

1

3
[12][13] ,

F
(0)
OS (1ψ

4
, 2ψ

3
, 3ψ

2
, 4ψ

1
; q) =

1

3
([12][34]− [14][23]) .

(2.20)

The examples in (2.20) and (2.19) have no kinematic poles and are produced by the contact

terms inside OS .

A final comment is in order. One could equivalently consider form factors of the parity-

conjugate operator OC , with all helicities of external particles flipped. These are obtained

from the form factors of OC by the replacement 〈a b〉 ↔ −[a b]. In terms of states, this

corresponds to performing the transformation

φAB → 1

2
εABCDφ

CD := φAB = (φAB)∗ , ψABC → εABCDψ
D , ψD → 1

3!
εABCDψ

ABC .

(2.21)

Similarly, we also note that the MHV form factors of OS are easily found using the helicity-

flip rule 〈a b〉 ↔ −[a b] on (2.10).

3 One-loop minimal form factors

An important ingredient needed to compute two-loop form factors using generalised uni-

tarity cuts is the one-loop correction to the minimal form factor of the operators OS and

OC . In both cases the only non-vanishing result is obtained for an external state of three

positive-helicity gluons and we will shortly see that the form factors of operators OS and

OC turn out to be identical at one loop.

The form factors of OS or OC are completely determined by the two-particle cut shown

in figure 1 together with its cyclic permutations.

The tree-level MHV gluon amplitude entering this cut is

A(0)(`−1 , `
−
2 , 2

+, 3+) = i
〈`1`2〉3

〈`22〉 〈23〉 〈3`1〉
, (3.1)
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whereas the tree-level form factor is given in (2.14).9 Denoting the m-particle cut of an

L-loop form factor in a generic P 2-channel by

F
(L)
O (. . . ; q)

∣∣∣
m,P 2

, (3.2)

the two-particle cut of the one-loop form factor is given by

F
(1)
OS ,OC(1

+, 2+, 3+; q)
∣∣∣
2,s23

= i [23]2
[1|`1 `2|1]

2(p2 · `1)
. (3.3)

The cuts in the s12- and s13-channels are obtained by relabelling this expression. Putting

everything together, manipulating the cut integrand and performing a Passarino-Veltman

(PV) reduction, we arrive at an expression where the cut integrals can be lifted off shell

unambiguously. Indeed, any ambiguities would arise from the numerator of (3.3) and would

necessarily have the form [1|`1`1|1] = 0. We obtain10

F
(1)
OS ,OC(1

+,2+,3+;q) = iF
(0)
OS ,OC

2× + s23× + (cyclic1,2,3)

 .

(3.4)

Note that this formula should be multiplied by g2N , which combines into a factor of the

’t Hooft coupling

a :=
g2N

(4π)2
, (3.5)

after absorbing a factor of 1/(4π)2 from the definition of the integral functions. Inspect-

ing (3.4), we can make the following observations:

1. Due to the normalisation of the tree-level form factor (2.2) the one-loop correction

is universal for both operators OS and OC . It is moreover important for the results

presented in [25] to note that the one-loop form factor is theory-independent, i.e. the

same whether computed in pure or supersymmetric Yang-Mills. Theory-dependence

will manifest itself at two and more loops.

2. As mentioned in the Introduction, and crucially for future investigations at higher

loops, the result (3.4) has no additional rational terms even in pure Yang-Mills which

could arise from the use of D-dimensional cuts as compared to four-dimensional cuts,

see the discussion in [6].

3. Comparing (3.4) with the expression for the one-loop form factor of OB = Tr(X[Y, Z])

obtained in [36],11 we see that the one-loop form factors coincide, up to factoring out

the corresponding tree-level form factor.

9Note that in the pictorial notation we employ in this paper each line represents a propagator stripped

of the factor of i. Such factors of i arising from (cut) propagators are collected separately.
10Expressions for the one-loop master integrals can be found in appendix A.
11X, Y and Z are the three complex scalar fields of N =4 SYM.
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4. Using (3.4) we can extract the one-loop anomalous dimensions of OS and OC at

one loop from the coefficient of the ultraviolet-divergent bubble integral. It turns

out that at this order these operators are eigenstates of the dilatation operator with

anomalous dimension

γ
(1)
OS ,OC = 12 a . (3.6)

This is the same as the one-loop anomalous dimension of OB found in [36].

The latter two observations, together with the fact that at zero coupling OB and OS are

related by supersymmetry transformations, was the original motivation for the study of the

two-loop form factor of OB presented in [36] — a stepping stone towards understanding

the two-loop form factor of OS .

4 Two-loop minimal form factors in N =4 SYM

In this section we determine the two-loop form factors of the operators OS and OC intro-

duced in section 2 using the following strategy.

1. First, we consider two-particle cuts in one of the possible kinematic channels, for

example the s23-channel. There are two cuts to consider, shown in figure 2(i) and (ii).

2. We then move on to the three-particle cut in the q2-channel, as in figure 2(iii), which

we use to fix potential “ambiguities” of the previous result and to detect integral

topologies which do not have a two-particle cut. By ambiguity we mean here the fact

that for two cut momenta, pi and pj , it is impossible to distinguish between their

Mandelstam invariant (pi+pj)
2 and their scalar product 2(pi ·pj). This is due to the

fact that the cutting procedure puts the two momenta on shell, p2
i,j = 0. As a result,

if a dot product involving these momenta features in the numerator of an integral

detected by a cut involving pi and pj we must use further cuts, which do not involve

simultaneously both momenta pi and pj , in order to resolve the ambiguity.

3. Finally we turn to the more involved three-particle cut in the s23-channel, presented

in figure 2(iv), where we fix all remaining ambiguities of the integrand.

4. By consistently merging the results of all the cuts, we construct the complete four-

dimensional integrand at two loops.

4.1 Two-particle cuts

We begin by calculating the two-particle cuts of the two-loop form factor. These can only

be considered in the s23-channel as in the q2-channel the two-particle cut would lead to

a subminimal tree-level form factor, which does not exist at this loop order. We proceed

to consider the following two different two-particle cuts in the s23-channel: the case with

F (0) ×A(1) and that with F (1) ×A(0).
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Figure 2. Four different cuts of the two-loop form factors which will be used to construct the

two-loop integrand.

Figure 3. A double cut of the two-loop minimal form factor of OS , OC : the case of a tree-level

form factor joined to a one-loop amplitude.

4.1.1 Tree-level form factor × one-loop amplitude

We consider the two-particle cut presented in figure 3, whose ingredients are a tree-level

form factor and a one-loop amplitude. Similarly to the one-loop case, this cut is universal

for the two operators, OS and OC , due to the equality of the tree-level minimal form

factors (2.14).

The four-point one-loop amplitude in N = 4 SYM on the right-hand-side of the cut

has a very simple form,

A(1)(`−1 , `
−
2 , 2

+, 3+) = A(0)(`−1 , `
−
2 , 2

+, 3+)

−s23s`22 ×

 , (4.1)

Gluing the amplitude (4.1) to the form factor (2.14) and reinstating the cut propagators

we arrive at the following result for this two-particle cut:

F
(2)
OS (1+, 2+, 3+; q)

∣∣∣
2,s23

= F
(0)
OS s

2
23

[1|q `1|1]

[12]〈23〉[31]
× + cyclic(1, 2, 3) . (4.2)
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Figure 4. A double cut of the two-loop minimal form factor of OS , OC — the case of a one-loop

form factor joined to a tree-level amplitude.

4.1.2 One-loop form factor × tree-level amplitude

Next we turn our attention to the second of the two-particle cuts, shown in figure 4, in

which we glue a one-loop minimal form factor and a tree-level amplitude. As discussed in

section 3 the one loop form factor is the same for OS and OC and as a result this entire

cut is identical for the two operators.

In order to construct the integrand, it is important that we use the expression for

the one-loop form factor (3.4) prior to PV reduction. One reason is that the reduction

procedure discards certain integrals that vanish in dimensional regularisation, e.g. scaleless

bubbles. Such an integral may appear as a sub-topology inside a two-loop integral, with

the momentum flowing in the sub-bubble being now off shell (when lifted off the cut); this

topology should therefore not be discarded. Thus, in order to obtain the complete result

for this cut we use the expression for the one-loop form factor before the reduction, namely:

F
(1)
OS ,OC(1

+, 2+, 3+; q) = i

(
s23

〈23〉

)2

[1|q `|1]× + cyclic(1, 2, 3) . (4.3)

Using the tree-level amplitude in (3.1) and conveniently rewriting it as

A(0)(`−4 , `
−
3 , 2

+, 3+) = − i 〈`3`4〉
2

〈23〉2
s23

2(p2 · `3)
= −i s23

(
〈`3`4〉
〈23〉

)2

× , (4.4)

we arrive at the following expression for the two-particle cut:

F
(2)
OS (1+, 2+, 3+; q)

∣∣∣
2,s23

= −s23

(
〈`3`4〉
〈23〉

)2

×


(
s`3`4
〈`3`4〉

)2

[1|q `|1]× (4.5)
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Figure 5. Integral topology that cannot be detected by the two-particle s23-channel cut.

+

(
s`41

〈`41〉

)2

[`3|q `|`3]× +

(
s1`3

〈1`3〉

)2

[`4|` q|`4]×


.

The first integral in (4.5) with its numerator can be simplified to

− s3
23

〈23〉2
[1|q `|1]× = F

(0)
OS s

2
23

[1|q `|1]

[12]〈23〉[31]
× . (4.6)

We immediately see that this is identical to the result of the two-particle cut (4.2), where

we have computed the case of F (0) × A(1). This would lead to the conclusion that the

correct answer is obtained by simply lifting (4.6) off shell, however an important subtlety

arises here. Indeed, any term proportional to `2 (or (`+ p2 + p3)2) would cancel one of the

propagators and generate the integral topology in figure 5 (or its mirror).

When `3 and `4 are cut a (scale-free) bubble on the form factor side is isolated, which

vanishes in dimensional regularisation. As a result, we cannot make any meaningful state-

ment about the presence of this topology given the information provided only by this pair

of two-particle cuts, and we must defer the verdict until three-particle cuts have been

considered. This will be discussed in detail in section 4.4.

In order to perform an integral reduction using LiteRed [49, 50], it is useful to rewrite

the numerator of (4.6) as

s2
23

[1|q `|1]

[12]〈23〉[31]
=

s23

2s13
(s23s`1 − s`3s12 + s13s`2) − s23

2s12
(s23s`1 − s`2s13 + s12s`3) . (4.7)

We now perform a PV reduction on the terms which contain the invariant s1` since any

dependence on p1 is unphysical (only the combination q−p1 is relevant). Following standard
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steps we find that

s1` × =
1

s23

[
s12s3` + s13s2`

]
× . (4.8)

Inserting this result into (4.7), we find that (4.6) becomes

− s3
23

〈23〉2
[1|q `|1]× = F

(0)
OS (1+, 2+, 3+; q) s23 (s2` − s3`)× . (4.9)

Note that p1 no longer appears in the numerator, as desired. Inspecting the result of

the two-particle cut in (4.9) we see that, because of the numerator factor (s2` − s3`) it is

impossible to say at this stage whether s2` and s3` stand for a full invariant or just a scalar

product of two momenta — the `2-terms which would arise from the full invariants cancel

in the difference. This is a manifestation of the ambiguity mentioned earlier, leading to

topologies of the type depicted in figure 5. This matter will be settled in section 4.4 by

means of a three-particle cut.

We now move to the second term of (4.5). After factoring out the tree-level form

factor, it can be rewritten as

(
s`41

〈`41〉

)2

[`3|q `|`3]× = F
(0)
OS (1+, 2+, 3+; q) (4.10)

× Tr+(1 q `3 q ` `3 q 1 3 2)

s12s23s13
× ,
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Integral

topology

Numerator s23 (s2` − s3`)
Tr+(1 q `3 q ` `3 q 1 3 2)

s12s23s13

Tr+(1 q `4 q ` `4 q 1 2 3)
s12s23s13

Ambiguity ` `3, `4 `3, `4

Table 1. Summary of the results of the two-particle cuts so far. All numerators have the tree-level

form factor factored out. The propagators which appear cut are still ambiguous given the cuts

performed so far.

while the numerator of the third integral of (4.5) can be obtained from (4.10) upon rela-

belling (`3 ↔ `4 , 2↔ 3)

F
(0)
OS (1+, 2+, 3+; q)

Tr+(1 q `4 q ` `4 q 1 2 3)

s12s23s13
× . (4.11)

4.1.3 Summary of results after two-particle cuts

For the reader’s convenience, we summarise in table 1 the results of the cuts we have per-

formed so far. We have presented each distinct topology with the corresponding numerator

we have detected. The result after the two particle cuts consists of the three topologies

with their numerators and the two remaining cyclic shifts of the external momentum labels.

4.2 Three-particle cut in q2-channel

In this section we consider the three-particle cut of the two-loop form factor in the q2-

channel, as presented in figure 6. We note that for this channel there exists only one

possible helicity assignment for the momenta running in the loop — all gluons.
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Figure 6. Triple cut of the two-loop form factor in the q2-channel. Only one possible helicity

assignment exists.

For the six-point tree-level gluon amplitude, we use the expression of [51], which reads

A(1+, 2+, 3+, 4−, 5−, 6−) = i

[ β2︷ ︸︸ ︷
([23]〈56〉[1|p2+p3|4〉)2

s234s23s34s56s61
+

γ2︷ ︸︸ ︷
([12]〈45〉[3|p1+p2|6〉)2

s345s34s45s61s12

+

βγ︷ ︸︸ ︷
s123[23]〈56〉[1|p2+p3|4〉[12]〈45〉[3|p1+p2|6〉

s12s23s34s45s56s61

]
,

(4.12)

and for the tree-level form factor, as before, we use (2.14). We now consider the contribution

of each term separately.

β2-term. The first term in (4.12) gives rise to a previously-detected topology, namely

F
(0)
OS (1+, 2+, 3+; q)

Tr+(1 q 4 5 6 4 q 1 2 3)

s12s23s13
× . (4.13)

After an appropriate relabelling, it is easy to see that the numerator becomes identical to

that of (4.11), obtained from a two-particle cut.

γ2-term. Considering the second term in (4.12) we detect a similarly familiar topology,

namely

F
(0)
OS (1+, 2+, 3+; q)

Tr+(3 q 6 5 4 6 q 3 2 1)

s12s23s13
× . (4.14)

Once again, after an appropriate relabelling we observe that the numerator is the same as

in (4.10), showing that the results for this topology obtained from two- and three- particle

cuts are mutually consistent.
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Integral

topology

Numerator s23 (s2` − s3`) Tr+(1 q `3 q ` `3 q 1 3 2)
s12s23s13

Tr+(1 q `4 q ` `4 q 1 2 3)
s12s23s13

s123
s12s23s13

Tr+(1q46q3)

Ambiguity ` `3 `4 p4, p6

Table 2. Summary of the result after the two-particle cuts and the three-particle cut in the q2-

channel. All numerators have the tree-level form factor factored out. The propagators which are

cut are still ambiguous given the cuts performed so far.

βγ-term. Finally, we consider the third term in (4.12), for which we obtain

F
(0)
OS (1+, 2+, 3+; q)

s123

s12s23s13
Tr+(1q46q3)× . (4.15)

This is a new topology which could not have been detected by any of the two-particle cuts.

As such, we add it to our result for the integrand. The numerator of this last integral

will be confirmed by a different three-particle cut considered in the next section. Table 2

summarises the integrand as found by the cuts studied up to this point.

4.3 Three-particle cut in s23-channel

In this section we compute the last three-particle cut of the two-loop form factor we need

to consider: the s23-channel cut presented in figure 7. This is the most intricate cut, as

it involves a non-minimal form factor, and we will see that it provides the necessary final

constraints to fix the two-loop form factor integrand completely. The motivation to analyse

this cut is two-fold: first, we would like to fix potential ambiguities in the numerators of the

other previously detected topologies (shown in table 2) since they all have a non-vanishing

three-particle cut in the s23-channel. Moreover, we expect to observe new integrals which

have non-vanishing cuts only in this channel.

This cut also carries important information that distinguishes the two-loop form factors

of the operators OS and OC , as well as the theory under study. Since it features a non-

minimal tree-level form factor, fermions and scalars can run in the loops, unlike the case
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Figure 7. Triple cut of the two-loop form factor in the s23-channel.

Figure 8. Triple cut of the two-loop form factor in the s23-channel with only gluons running in

the loop involving an MHV amplitude.

of the triple cut in the q2-channel. As a result, the non-minimal form factor is sensitive to

the choice of operator and number of supersymmetries, as confirmed by the expressions for

tree-level form factors in section 2.3. In what follows, we will work first with the operator

OC , and then move on to consider the operator OS . We begin by presenting the ingredients

of the computation and subsequently discuss the methodology and results. Form factors

with reduced amount of supersymmetry are discussed in [25].

4.3.1 Component calculation

Working in components, the triple cut in the s23-channel requires us to consider separately

all possible configurations of gluons, fermions and scalars for the particles running in the

loop. Below we discuss each case in turn.

Gluons in the loop. First, we consider diagrams where only gluons are running in the

loop. There are two possible cases, involving either an MHV or MHV amplitude (and a

corresponding MHV or next-to-MHV form factor respectively). The case with an MHV

amplitude is presented in figure 8, and there is only one possible helicity configuration for

the internal particles.

We have computed the tree-level form factor entering the cut using MHV diagrams [52]

applied to form factors [8, 12, 16]. The result was quoted in the second line of (2.4), and

we write here for convenience:

F
(0)
OC (1+,−6+,−5+,−4+; q) = −[16][65][54][41]

[
1

s16

(
1− [51][4|q|5〉

s56[41]

)
− 1

s56

(
1− [46][1|q|4〉

s45[16]

)
− 1

s54

(
1− [15][6|q|1〉

s14[65]

)
+

1

s14

(
1 +

[64][5|q|6〉
s16[54]

)]
,

(4.16)

while the five-point tree-level MHV amplitude is given by

A(0)(2+, 3+, 4−, 5−, 6−) = −i [23]3

[34][45][56][62]
. (4.17)
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Figure 9. Triple cut of the two-loop form factor in the s23-channel with only gluons running in

the loop: FMHV ×AMHV.

Figure 10. Triple cut of the two-loop form factor in the s23-channel with scalars and a gluon

running in the loop.

The second possible internal helicity assignment involves an MHV amplitude. In this case,

there are three configurations depending on the position of the internal positive-helicity

gluon. These are indicated in figure 9. The form factors entering the cuts above are a part

of an MHV family whose expression is known for any number of legs [14], in particular

F
(0)
OC (1+,−6+,−5+,−4−; q) =

[16][65][51]2

[54][41]
,

F
(0)
OC (1+,−6+,−5−,−4+; q) =

[16][64]2[41]

[65][54]
,

F
(0)
OC (1+,−6−,−5+,−4+; q) =

[15]2[54][41]

[16][65]
.

(4.18)

For the tree-level MHV amplitudes entering the cut we have

A(0)(2+, 3+, 4+, 5−, 6−) = i
〈56〉3

〈23〉〈34〉〈45〉〈62〉
,

A(0)(2+, 3+, 4−, 5+, 6−) = i
〈46〉4

〈23〉〈34〉〈45〉〈56〉〈62〉
,

A(0)(2+, 3+, 4−, 5−, 6+) = i
〈45〉3

〈23〉〈34〉〈56〉〈62〉
.

(4.19)

Scalars in the loop. We now consider the case where we allow scalars to run in the loop

in addition to gluons, as presented in figure 10. The non-minimal tree-level form factor for

the configuration in figure 10 (i) is

F
(0)
OC (1+,−6φ,−5φ̄,−4+; q) = −1

2

[14]

[65]
([54][16] + [51][46]) , (4.20)
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Figure 11. Triple cut of the two-loop form factor in the s23-channel — fermions and a gluon

running in the loop, the first possible configuration.

while the tree-level amplitude is given by

A(0)(2+, 3+, 4−, 5φ, 6φ̄) = i
〈45〉〈46〉2

〈23〉〈34〉〈56〉〈62〉
. (4.21)

We note that the result of this diagram needs to be multiplied by a factor of 3 to account for

the three distinct complex scalar/anti-scalar pairs arising from the splitting of the gluon in

N =4 SYM. One could also imagine diagrams where we assign the scalars in the opposite

way, with φ̄ incoming into the form factor on leg p6 and φ on leg p5. However, the form

factor and amplitude turn out to be identical to those of the previous case, hence such

diagram would lead to the same result as that in figure 10 (i). We multiply our result by

a further factor of 2 to account for this.

The second configuration of scalars we need to consider is presented in figure 10 (ii)

(note that the two scalars can only be adjacent as they arise from the splitting of a gluon

into a scalar/anti-scalar pair). In this case, the tree-level form factor and amplitude read

F
(0)
OC (1+,−6+,−5φ,−4φ̄; q) = −1

2

[16]

[54]
([46][51] + [41][56]) ,

A(0)(2+, 3+, 4φ, 5φ̄, 6−) = i
〈56〉〈46〉2

〈23〉〈34〉〈45〉〈62〉
.

(4.22)

Similarly to the case discussed above, we need to multiply this result by 6 in order to

account for the helicity state sum and the opposite assignment of scalar/anti-scalar pair

for the internal legs.

Fermions in the loop. Finally, we consider the case with fermions running in the loop,

as shown in figure 11. The calculation of the non-minimal tree-level form factors gives

F
(0)
OC (1+,−6+,−5ψ,−4ψ̄; q) = − [51][56][16]

[54]
,

F
(0)
OC (1+,−6+,−5ψ̄,−4ψ; q) =

[41][46][16]

[54]
,

(4.23)

while the tree-level amplitudes entering the cuts are

A(0)(2+, 3+, 4ψ, 5ψ̄, 6−) = i
〈56〉2〈46〉

〈23〉〈34〉〈45〉〈62〉
,

A(0)(2+, 3+, 4ψ̄, 5ψ, 6−) = −i 〈46〉3

〈23〉〈34〉〈45〉〈62〉
.

(4.24)
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Figure 12. Triple cut of the two-loop form factor in the s23-channel - fermions and a gluon running

in the loop, the second possible configuration.

The second possible helicity configuration is that presented in figure 12.

In this case, the tree-level form factors are

F
(0)
OC (1+,−6ψ̄,−5ψ,−4+; q) =

[54][51][41]

[65]
,

F
(0)
OC (1+,−6ψ,−5ψ̄,−4+; q) = − [64][61][41]

[65]
,

(4.25)

and the tree-level amplitudes are

A(0)(2+, 3+, 4−, 5ψ̄, 6ψ) = −i 〈45〉2〈46〉
〈23〉〈34〉〈56〉〈62〉

,

A(0)(2+, 3+, 4−, 5ψ, 6ψ̄) = i
〈46〉3

〈23〉〈34〉〈56〉〈62〉
.

(4.26)

We note that each of the results for the calculation of a cut involving fermions should

be multiplied by a factor of 4 in order to account for the possible R-symmetry index

assignments.

As mentioned earlier, this three-particle cut carries the most distinguishing information

between the operators OC and OS and the theory. Having collected all of the ingredients

necessary for the calculation of the two-loop form factor of the component operator OC ,
we move on to do the same for the supersymmetric descendant of the Konishi, OS . The

methodology to derive this cut is the same for both operators and as such we defer the

discussion of it to section 4.3.3.

4.3.2 Supersymmetric calculation

The operator OS introduced in section 2 is a tree-level descendant of the Konishi operator,

whose MHV form-factors can be extracted from (2.9) [24]. Once an appropriate component

of the super form factor (parity conjugate of (2.9)) has been extracted, it captures all the

helicity assignments discussed in the previous section, with the exception of the all-plus

gluon case (4.16) since the form factor is not MHV. As a result, an easier way to compute

this cut is to multiply the appropriate MHV component of the tree-level (parity conjugate

of the) super-form factor (2.9) by the corresponding MHV tree-level N =4 super-amplitude,

AMHV
5 (λi, λ̃i, ηi) = i

δ(8)
(∑5

i=1 λ
α
i η

A
i

)
〈12〉〈23〉〈34〉〈45〉〈51〉

, (4.27)
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Figure 13. Maximal two-loop topologies.

and integrate the internal fermionic variables. To this result, we then add the all-plus gluon

form factor of (4.16) multiplied by the corresponding amplitude (4.17). The individual

expressions are lengthy and we refrain from presenting them here in full. We discuss the

result of this calculation and contrast it with that of the component operator in section 4.5.

4.3.3 Solving for the three-particle cuts

Having collected all the ingredients for the evaluation of the triple cut in the s23-channel,

we proceed to discuss the methodology for finding the correct two-loop integrand for the

desired form factors. Due to the complexity of the terms to be summed in this channel,

each depending on high powers of loop momenta, we generate an ansatz with all possible

integrand topologies and fix the precise combination by demanding consistency with the

cut. The procedure is as follows, explained here for the component operator OC and

equivalent for the supersymmetric operator OS :

1. We combine the cut integrand expression, consisting of the sum of tree-level form fac-

tors (4.16)–(4.25) multiplied by the corresponding tree-level amplitudes (4.17)–(4.26),

taking into account appropriate multiplicities arising from R-symmetry assignment.

2. The integrated form factor does not contain parity-odd terms, but its integrand does.

In order to work with a parity even integrand ansatz, we add to the cut expression

its parity conjugate (and divide by 2).

3. We construct an ansatz for the integrand in terms of integrals with non-trivial nu-

merators in the following way. All possible two-loop topologies are obtained from

the two maximal ones presented in figure 13 by pinching propagators; each topology

produced in this way must then be cut in the s23-channel in all possible ways, thereby

generating the ansatz.

4. Each of these cut topologies can be described using a basis of irreducible scalar

products of the two loop momenta and the three external momenta. There are

nine irreducible scalar products involving the loop momenta [49] and three further

scalar products involving only the external legs, resulting in twelve irreducible scalar

products from which to build numerators.

5. After choosing a basis of irreducible scalar products for the maximal topologies, we

generate all possible numerators, up to a maximum power of loop momenta restricted

by a theory-specific power counting. For example, for a Yang-Mills theory, a three-

point (minimal) form factor carries three powers of momenta and each three-point

Yang-Mills vertex carries one power of momentum.
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Figure 14. Three cuts of one of the integral topologies.

6. We then write down a general linear combination of the integral topologies generated

above and solve for the coefficients of each integral. Schematically, we have:

Cut integrand =
∑
i,j

cij Numeratorij ×
[
Cut Topology

]
j
, (4.28)

where i runs over all possible numerators appearing for a certain topology j. The result

of the computation in this channel consists of hundreds of terms which we need to merge

with the integrals obtained in the other cuts (see table 2) to solve for the ambiguities and

detect new integrals. In some cases, the comparison is immediate. In others, as discussed

next, important subtleties arise.

4.4 Merging the cuts

In this section, we combine the results of all generalised unitarity cuts of the two-loop form

factor to finally obtain its integrand. Having obtained the triple cut in the s23-channel we

proceed to gather and reconcile the information obtained from different cuts in order to

remove any ambiguities in the numerators of integral topologies.

We illustrate this procedure using a specific example. Figure 14 presents three different

cuts of one of the integral topologies contributing to the result for the two-loop form factor.

After PV reduction, the three numerators detected by the cuts are:

Ni = −s23 [s23 + 4(` · p3)] , (4.29)

Nii = −s23

[
s23 + 4(˜̀· p2)

]
, (4.30)

Niii = s23(s2` − s3`) , (4.31)

and we recall from the discussion in section 4.1.2 that on the basis of two particle cuts

alone we were unable to conclusively tell whether the s2` and s3` in (4.31) denote the

scalar products 2(p2,3 · `), or the full Mandelstam invariants (p2,3 + `)2. With additional

information from the three-particle cut in the s23-channel we are now able to merge the

three numerators into an unambiguous expression for the integrand.

The merging between (4.29) and (4.30) is straightforward. We can rewrite the two

numerators as

Ni = −s23

[
s23 + 2(`+ p3)2

]
, Nii = −s23

[
s23 + 2(˜̀+ p2)2

]
, (4.32)
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Figure 15. Examples of topologies with only one valid cut, namely the three-particle cut in the

kinematic s23-channel.

which on the cut, at `2 = 0 and ˜̀2 = 0, respectively reduce to (4.29) and (4.30). Momentum

conservation `+ ˜̀+ p2 + p3 = 0 implies that (p3 + `)2 = (p2 + ˜̀)2, we see immediately that

the two numerators are equivalent.

The merging between these two numerators and (4.31) is more subtle. We rewrite

2(`+ p3)2 = (`+ p3)2 + (˜̀+ p2)2

= `2 + 2(` · p3) + ˜̀2 − 2(` · p2)− 2(p2 · p3)

= `2 + ˜̀2 + s3`

∣∣∣
`2=0
− s2`

∣∣∣
`2=0
− s23 ,

(4.33)

where in the second line we made use of momentum conservation. As a result, we have

Ni = −s23

[
s23 + 2(`+ p3)2

]
= −s23(s23 + `2 + ˜̀2 + s3` − s2` − s23)

= Niii − s23(`2 + ˜̀2) . (4.34)

The last term in (4.34) constitutes precisely the kind of ambiguity which could not have

been detected by any two-particle cut. Using the information obtained from the three-

particle cut, we add this term to our numerator, which now becomes:

N = 2s23 [(` · p2)− (` · p3)]− s23(`2 + ˜̀2) . (4.35)

We note that the merging procedure could have been carried out using numerators before

the PV reduction. We refrain from presenting such discussion here as the numerators

involved are more complicated but the outcome is, upon PV reduction, equivalent to (4.35).

The result of the computation described in section 4.3.3 contains several topologies

with only an s23-channel three-particle cut, some of which are presented in figure 15. Since

we cannot obtain any other information about numerators of these topologies, we take them

directly from the s23-channel cut expression, which we then lift off shell. These topologies

also do not carry any ambiguities as shrinking of any of the cut propagators would result in

a vanishing integral in dimensional regularisation. We are now ready to present the results

for the two-loop form factors of OS and OC .

4.5 Final result for the two-loop integrand in N =4 SYM

We begin by presenting the answer for the two-loop form factor of the supersymmetric

operator OS as discussed in section 4.3.2. We then move on to present the result of

the component calculation for OC but we note that the sole difference between the two
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I1 I2 I3 I4

I5 I6 I7 I8

I9 I10 I11 I12

Table 3. Integral basis for the two-loop form factor F
(2)
OS ,OC

(1+, 2+, 3+; q) in N =4 SYM.

form factors lies in topologies detected only in the s23-channel triple cut. In order to

avoid redundancy, we will present the component result in terms of a difference from

the supersymmetric result. We list integrals constituting the basis in table 3 and the

corresponding numerators in appendix B.

4.5.1 The integrands of the form factors of OS and OC

The two-loop integrand of the minimal form factor of the Konishi descendant OS is given by

F
(2)
OS = F

(0)
OS

12∑
i=1

Ni × Ii . (4.36)

The expressions for the complete numerators are somewhat involved, and we present them

in appendix B.1.

In order not to repeat lengthy numerator expressions, we present the result for the two-

loop form factor of the component operator OC in terms of a difference when compared to

the two-loop form factor of the supersymmetric operator OS . Specifically, we have

F
(2)
OC = F

(2)
OS + ∆N=4 , ∆N=4 =

12∑
i=5

Ñi × Ii , (4.37)

i.e. the difference between the two form factors consists solely of topologies which have only

an s23 triple cut, denoted by I5 to I12 in table 3. The numerators are listed in appendix B.2.
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Figure 16. Triple cut in the q2-channel of the two-loop subminimal form factor F
(2)
OS ,OC

(1+, 2+; q).

4.6 Components vs. super-cut comparison

Having obtained and presented the results for the two-loop form factors of supersymmetric

operator OS and component operator OC we note the following observations resulting from

the comparison of the two results:

1. As previously noted, the difference between the two-loop form factors of OS and OC
consists of topologies only present in the s23-channel triple cut.

2. These topologies have five propagators or fewer and are of sub-maximal transcenden-

tal weight. As a result, we observe that the maximally-transcendental part of the

form factor is universal for the two operators.

3. Moreover, explicit evaluation of the difference between the two form factors reveals

terms of order 1/ε and constant. Therefore, we conclude that the cancellation of

infrared poles in the remainder function works exactly in the same way, the difference

between the remainders of both operators lying in the 1/ε term which is associated

to renormalisation of the operators.

With these observations in mind, we now discuss the remainder function of the two-loop

form factor of the supersymmetric operator OS .

4.7 The subminimal form factor 〈1+2+|OS,C|0〉 at two loops

In order to discuss, in the next section, renormalisation and operator mixing, we also need

to determine the sub-minimal form factor

FOS ,OC(1
+, 2+; q) (4.38)

up to two loops. Note that at tree and one-loop level this form factor vanishes. At two

loops, there is only one triple cut contributing which involves the product of the minimal

form factor and a five-point MHV gluon tree-level amplitude, shown in figure 16. Note that,

since the form factor is minimal, it can only involve three gluons and hence is identical for

both OS and OC .
We find for the cut

F
(2)
OS ,OC(1

+, 2+; q)
∣∣∣
3,q2

= i3 (−[−`3,−`2][−`2,−`1][−`1,−`3])
(−i)[12]3

[2`1][`1`2][`2`3][`31]
, (4.39)
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with `3 = −p1 − p2 − `1 − `2. After some manipulations and taking the loop momenta off

shell, we find the two-loop integrand

F
(0)
OM(1+, 2+; q)

s12s`1`3 − s1`1s2`3 + s1`3s2`1

s12s2`1s1`3`
2
1`

2
2`

2
3

, (4.40)

which integrates to our final result

F
(2)
OS ,OC(1

+, 2+; q) = F
(0)
OM(1+, 2+; q)

ε2e2εγE

(1− 2ε)2

Γ(1 + 2ε)Γ(−ε)3

Γ(2− 3ε)

(−s12)1−2ε

s12

= F
(0)
OM(1+, 2+; q)

[
1

ε
(−s12)−2ε + 7 +O(ε)

]
,

(4.41)

where

F
(0)
OM(1+, 2+; q) =

s3
12

〈12〉〈21〉
. (4.42)

This result includes a factor of 2 from the fact that the two orderings of particle 1 and 2

make equal contributions. Interestingly it coincides with the sub-minimal two-loop form

factor computed in section 6 of [36] up to a factor of 6 and a spinor bracket.

It is important to note that the result is free of IR divergences, since the tree and

one-loop result vanish, and the 1/ε pole of the result has a purely ultraviolet origin.

5 Remainder functions in N =4 SYM

In the previous section we have described the computation of the complete integrands of the

two-loop minimal form factors of the supersymmetric operator OS and of the component

operator OC with a final state consisting of three gluons of positive helicity. In addition,

we have also considered the form factor with a state of two external positive-helicity glu-

ons, which is needed in order to address mixing and for the study of soft/collinear limits

performed in section 6. In the next step, we have reduced the corresponding integrals

to a basis of master integrals using the Mathematica package LiteRed [49, 50]. The ex-

plicit expressions of all master integrals in terms of (multiple) polylogarithms are provided

in [53, 54]; furthermore, whenever possible we have simplified the answer using the symbol

of transcendental functions [55].

Our next goal consists in using these results to compute the IR and UV finite remainder

functions of the renormalised operator Oren
S , whose expression we have to determine by

studying mixing. Doing so, we will also diagonalise the dilatation operator and find the

anomalous dimensions and the appropriate diagonal operator. With this information at

hand, we compute the two-loop remainder functions of the form factor of the renormalised

operator Oren
S . For completeness, we also present the remainder function of the two-loop

form factor of the bare operators OS and OC .

5.1 Disentangling operator mixing and the dilatation operator

We have already briefly mentioned mixing in section 2.2. Expanding on that discussion,

we note that the operator OS can mix with three other operators — limiting ourselves to
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external states containing only up to three gluons of positive helicity, the only operators

that can mix at two loops are OS and the operator OM ∼ Tr
[
DµFνρD

µF νρ
]
∼ q2Tr

(
F 2
)

whose precise definition is given in (2.12). In order to simplify the discussion we can in fact

take OM ∼ q2Lon-shell, where we recall that the on-shell Lagrangian is a protected operator

(and hence its form factors are UV finite).12 In summary, we need to solve mixing in a

two-dimensional space, similarly to what was done in the SU(2|3) sector in [36].

We define the renormalised operators as(
Oren
S

Oren
M

)
=

(
Z S
S Z M

S

Z S
M Z M

M

)(
OS
OM

)
, (5.1)

where OS and OM are the bare operators used to compute form factors in earlier sections.

The matrix of renormalisation constants Z, or mixing matrix, is determined by requiring

the UV-finiteness of the form factors of the renormalised operators Oren
S and Oren

M with the

external states 〈1+2+3+| and 〈1+2+|.
The UV divergences of the form factors of these two operators with three and two

positive-helicity gluons have the following structure:

F
(1)
OS (1+, 2+, 3+; q)

∣∣∣
UV

= a(µR)
b
(1)
1

ε
F

(0)
OS (1+, 2+, 3+; q) ,

F
(2)
OS (1+, 2+, 3+; q)

∣∣∣
UV

= a2(µR)

[
b
(2)
1

ε
+
b
(2)
2

ε2

]
F

(0)
OS (1+, 2+, 3+; q)

+ a2(µR)
b̂
(2)
1

ε
F

(0)
OM(1+, 2+, 3+; q),

F
(2)
OS (1+, 2+; q)

∣∣∣
UV

=
a2(µR)

g

k

ε
F

(0)
OM(1+, 2+; q) ,

(5.2)

where F
(0)
OS (1+, 2+, 3+; q) and F

(0)
OM(1+, 2+, 3+; q) are given in (2.14) and (2.12), respec-

tively; furthermore, from the one- and two-loop computations of the preceding sections,

we can infer the values for the coefficients in (5.2),

b
(1)
1 = −6 ,

b
(2)
1 = 12 , b

(2)
2 = 18 , b̂

(2)
1 = 1 ,

k = 1 .

(5.3)

Here

a(µR) :=
g2Ne−εγE

(4π)2−ε

(
µR
µ

)−2ε

, (5.4)

is the running ’t Hooft coupling, and µR is the renormalisation scale. Note that the form

factors of OM ∼ q2Lon-shell are UV finite, which is why they do not make an appearance

in the previous list.

12The tree-level definition (2.12) is unaltered by this choice. At one loop there is no difference in the

UV divergences of form factors of Tr(F 2) and Lon-shell, while any difference at two loops between the

corresponding form factors will not be relevant at the loop order we are working.
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A comment is in order here. From (2.12) we know that

F
(0)
OM(1+, 2+, 3+; q) =

F
(0)
OS ,OC(1

+, 2+, 3+; q)

uvw
. (5.5)

The presence of the 1/(uvw) factor gives a distinctive, useful signature of mixing in all

quantities we compute in this paper.

Next we introduce the renormalisation constants that are relevant for our problem:

Z S
S = 1 + a(µR)

b̃
(1)
1

ε
+ a2(µR)

(
b̃
(2)
1

ε
+
b̃
(2)
2

ε2

)
+ · · · ,

Z M
S =

a2(µR)

g

B̃

ε
+ · · · ,

(5.6)

where the ellipses denote terms of higher order in a(µR). In addition we can solve the

mixing with the further simple choices:

Z S
M = 0 + · · · , (5.7)

Z M
M = 1 + · · · , (5.8)

where the dots stand for terms that can be discarded at two loops. Requiring the finiteness

of the form factors of the renormalised operators leads to the conditions:

b̃
(1)
1 = −b(1)

1 ,

b̃
(2)
1 = −b(2)

1 ,

b̃
(2)
2 = −

[
b
(2)
2 −

(
b
(1)
1

)2]
,

B̃ = −b̂(2)
1 = −k .

(5.9)

Note the appearance of a consistency condition b̂
(2)
1 = k which is indeed satisfied given our

results (5.3). In conclusion, we arrive at the following expansion for the renormalisation

constants:

Z S
S = 1 + a(µR)

6

ε
+ a2(µR)

(
− 12

ε
+

18

ε2

)
+ · · · ,

Z M
S = −a

2(µR)

g

1

ε
+ · · · ,

Z S
M = 0 + · · · ,

Z M
M = 1 + · · · ,

(5.10)

from which one can determine the renormalised operators using (5.1).

Next we derive the form of the dilatation operator D := 1+δD. Its quantum corrections

are encoded in the matrix δD, which is related to the mixing matrix Z as

δD = lim
ε→0

[
− µR

∂

∂µR
log(Z)

]
. (5.11)
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In order to compute δD, we first compute the matrix logZ. Up to two loops we find

logZ =

a(µR)
6

ε
− a2(µR)

12

ε
−a

2(µR)

g

1

ε

0 0

 , (5.12)

where we note the cancellation of all 1/ε2 poles. Finally, using (5.11) we arrive at

δD = 2×

6 a− 24a2 −2
a2

g

0 0

 , (5.13)

where a is the ’t Hooft coupling defined in (3.5). Indicating by ÕS and ÕM the eigenvectors

of δD, we find that the corresponding eigenvalues are, up to two loops,

γÕS = 12 a − 48 a2 , γÕM = 0 . (5.14)

Note that γÕS precisely coincides with the anomalous dimension of the Konishi multiplet

at this loop order. This is an important consistency check of our calculation. It might also

be of interest to compute the eigenvector corresponding to γÕS . The result of this is

Õren
S = Oren

S − a

3 g
Oren
M . (5.15)

In the next section we will compute various remainders, and in particular the remain-

der of the renormalised operator Oren
S . For convenience, in the following we choose the

renormalisation scale to be

µ2
R = q2 . (5.16)

5.2 Definition of the BDS form factor remainder

The remainder function for form factors in N =4 SYM [18] is defined in the same way as

for scattering amplitudes, namely through the subtraction of the BDS ansatz [56, 57]. For

a generic operator O, the form factor remainder function at two loops is defined as

R(2)
O := F (2)

O (ε) − 1

2

(
F (1)
O (ε)

)2 − f (2)(ε) F (1)
O (2ε) +O(ε) , (5.17)

where F (L)
O = F

(L)
O /F

(0)
O . The function f (2)(ε) = −2(ζ2 +ε ζ3 +ε2 ζ4) is determined from the

iteration of the splitting amplitudes [56, 57] and hence it is the same for form factors, as

was explicitly shown in [18]. Note that we define the remainders (bare and renormalised)

by taking out a factor of

a
[
4πe−γE

]ε
(5.18)

per loop, where a is the ’t Hooft coupling, defined in (3.5).

In dimensional regularisation, the definition (5.17) allows for the cancellation of all

infrared poles as well as the 1/ε2 pole of ultraviolet origin. Computing remainders of

renormalised operators, also 1/ε poles of UV origin cancel. We note that in theories with

non-trivial beta functions, the BDS remainder (5.17) is not appropriate and in the com-

panion paper [25] we will switch to the more general remainder introduced by Catani [58].
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5.3 The remainder of Oren
S

Our result for the remainder of the form factor of Oren
S has the following properties:

1. All poles 1/εk vanish as expected — there are no UV poles since we are using renor-

malised operators, and there are no IR poles since we are computing the BDS re-

mainder, which is taking care of all infrared divergences.

2. The finite part of the remainder function is surprisingly simple for an operator as

intricate as Oren
S : it is comprised of classical polylogarithms only and classical zeta

functions. It can be split into slices of fixed transcendentality ranging from zero to

four. Moreover, each slice features universal building blocks which have appeared

already for operators in other sectors.

In the following, we present and discuss each transcendentality slice of the remainder

function in turn.

Transcendentality four. We find that the maximally transcendental slice of the re-

mainder function is the same as that of the BPS operator Tr(φ3) [22],

R(2)
Oren
S ;4 = R(2)

BPS = −3

2
Li4(u) +

3

4
Li4

(
−uv
w

)
− 3

2
log(w) Li3

(
−u
v

)
+

1

16
log2(u) log2(v)

+
log2(u)

32

[
log2(u)− 4 log(v) log(w)

]
+
ζ2

8
log(u)

[
5 log(u)− 2 log(v)

]
+
ζ3

2
log(u) +

7

16
ζ4 + perms (u, v, w) . (5.19)

Transcendentality three. The transcendentality-three piece has a feature which was

also observed in the SL(2) sector in [37]: it contains terms with kinematic-dependent

prefactors taken from the list {u
v
,
v

u
,
v

w
,
w

v
,
u

w
,
w

u

}
(5.20)

in addition to terms without any kinematic-dependent prefactor — which we refer to as

“pure”. The pure part of the degree-three slice is

R(2)
Oren
S ;3

∣∣∣
pure

= Li3(u) + Li3(1− u)− 1

4
log2(u) log

(
vw

(1− u)2

)
+

1

3
log(u) log(v) log(w)

+ ζ2 log(u) +
13

3
ζ3 + perms (u, v, w) . (5.21)

Interestingly, this result can be related to another known quantity, the remainder function

of the operator Tr(X[Y,Z]) calculated in [36]:

R(2)
Oren
S ;3

∣∣∣
pure

=
1

2

(
R(2)

non-BPS;3 + 4ζ2 log(uvw)− 24 ζ3

)
, (5.22)
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where R(2)
non-BPS;3 is given in (4.11) of [36]. The term with coefficient u/w in the “non-pure”

part of the transcendentality-three piece is

R(2)
Oren
S ;3

∣∣∣
u/w

=

[
− Li3

(
− u
w

)
+ log(u)Li2

(
v

1− u

)
− 1

2
log(1− u) log(u) log

(
w2

1− u

)
+

1

2
Li3

(
−uv
w

)
+

1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u↔ v)

]
+ Li3(1− v)− Li3(u) +

1

2
log2(v) log

(
1− v
u

)
− ζ2 log

(uv
w

)
. (5.23)

The coefficients of the other factors in the list (5.20) are obtained by taking the appro-

priate permutation of the function above. We also anticipate that there is an intriguing

relation between (5.21) and the quantity obtained after summing (5.23) over permutations

of (u, v, w), as we discuss in the next section.

Transcendentality two. The degree-two part also contains terms with kinematic-

dependent prefactors taken from the list{
u2

v2
,
v2

u2
,
u2

w2
,
v2

w2
,
w2

u2
,
w2

v2

}
. (5.24)

The pure part reads

R(2)
Oren
S ;2

∣∣∣
pure

= −Li2(1− u)− log2(u) +
1

2
log(u) log(v)− 13

2
ζ2 + perms (u, v, w) , (5.25)

while the coefficient of the u2/w2 part is given by

R(2)
Oren
S ;2

∣∣∣
u2/w2

= Li2(1− u) + Li2(1− v) + log(u) log(v)− ζ2 . (5.26)

Again, the coefficients of the other terms in (5.24) are obtained through permutations of

the function above.

Transcendentality one and zero. The transcendentality-one slice is simply given by

R(2)
Oren
S ;1 =

(
−4 +

v

w
+

u2

2vw

)
log(u) + perms (u, v, w) . (5.27)

Finally, the degree-zero part of the remainder is

R(2)
Oren
S ;0 = 7

(
12 +

1

uvw

)
. (5.28)

5.4 The remainder of the bare OS operator

In this section we quote for completeness the remainder function of the bare operator OS . A

short calculation making use of the mixing matrix (5.1) and (5.10), as well as the definition

of BDS remainder given in (5.17) and of the running coupling constant (5.4) shows that

the non-renormalised remainder still contains a 1/ε pole of UV origin,

R(2)
OS = R(2)

Oren
S

+

(
− q

2

µ2

)−2ε [
1

ε

(
12− 6ζ2 +

1

uvw

)
− 6ζ3

]
. (5.29)

Note that the 1/(uvw) pole is due to the mixing between OS and OM, as alluded to in (5.5),

while the ζ2 and ζ3 terms arise from the last term in the BDS remainder (5.17).
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5.5 The remainder of the bare OC operator

We now discuss the remainder of the two-loop form factor of the bare component operator

OC . It has the following properties:

1. Like the remainder of OS , it has a 1/ε pole arising from a UV divergence,

R(2)
OC

∣∣∣
1
ε

= 9− 6 ζ2 +
1

uvw
. (5.30)

Again, the term 1/(uvw) indicates mixing with OM.

2. We recall from section 4.6 that the difference between the form factors of operators

OS and OC , denoted as ∆N=4 in (4.37) contained only terms of order 1/ε and a

constant. As a result, also for R(2)
OC all poles in 1/εk vanish for k > 1, as expected.

3. Even more strikingly, we find that the remainder function of the operator OC is almost

identical to that of operator OS given in (5.29),

R(2)
OC = R(2)

Oren
S

+

(
− q

2

µ2

)−2ε [
1

ε

(
9− 6ζ2 +

1

uvw

)
− 6ζ3

]
+ log(uvw)− 51

2
. (5.31)

In particular, this implies that

R(2)
OC ;i = R(2)

OS ;i , i = 4, 3, 2 . (5.32)

6 Consistency checks of the result and discussion

In this final section we comment on some nontrivial consistency checks of the result and

make some final observations on the results we have presented.

6.1 Soft and collinear limits of the bare two-loop form factor

We can obtain some nontrivial consistency checks on our calculations by considering soft

and collinear limits of the results. For clarity, we find it convenient to present our discussion

at the level of the bare quantities.

The first observation is that, at tree level and at one loop, soft (and collinear) limits

vanish because of the explicit form of the tree-level form factors (2.14) and (3.4). This is

consistent with factorisation theorems, since the minimal form factors cannot factorise on

anything at this loop order.

The situation is more interesting at two loops, since at this order F
(2)
OS (1+, 2+, 3+; q)

can factorise onto the subminimal form factor F
(2)
OS (1+, 2+; q) computed in section 4.7. This

form factor is for the first time non-vanishing at two loops; its expression is given in (4.41),

and contains only two terms, which we will now identify in the factorisation. Beginning

with the soft limit p2 → 0, at two loops we expect

F
(2)
OS (1+, 2+, 3+; q)→ Softtree(1, 2+, 3) F

(2)
OS (1+, 3+; q) , (6.1)
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with

Softtree(a, s+, b) =
〈ab〉
〈as〉〈sb〉

. (6.2)

In the collinear limit p1||p2 we expect

F
(2)
OS (1+, 2+, 3+; q)→ alignedtree

− (1+, 2+) F
(2)
OS

(
(1 + 2)+, 3+; q

)
, (6.3)

with

alignedtree
− (a+, b+) =

1√
z(1− z)〈ab〉

, (6.4)

where in the collinear limit p1 → zP , p2 → (1− z)P with P = p1 + p2.

Due to the vanishing of the tree-level prefactor in the soft/collinear limits, we only need

to consider terms in the result with rational factors that could lead to additional poles in

the limit such as 1/(uvw). We now organise the discussion by degree of transcendentality.

At transcendentality degree four, we have only pure terms without any rational fac-

tors.13 A particular feature of the remainder described in the previous section is that “non-

pure” terms with rational coefficients of the type v/u, v2/u2 and vw/u2 come at transcen-

dentality three, two and one, respectively. At first glance they are problematic as they could

potentially lead to unphysical simple or even double poles in collinear/soft limits when one

or two of the three kinematic ratios u, v and w tend to zero. This may occur in the collinear

limit p1||p2, where u→ 0, or in the soft limit p2 → 0 where we have both u→ 0 and v → 0.

Let us begin by looking at the “non-pure” transcendentality-three terms given by (5.23)

(plus permutations of (u, v, w)) with rational coefficients such as v/u. To study the collinear

limit u→ 0 (with v 6= 0, 1) we simply expand (5.23) around u = 0. Keeping only the terms

diverging in the limit we find

u

w
R(2)
OS ;3

∣∣∣
u/w

+ perms(u,v,w) →
u→0

log(u)
v2(log(v) log(1−v)−ζ2)+(2v−1)Li2(v)

v(1−v)

− 1

2
log(u)2 v

2 log(v)+(1−v)2 log(1−v)

v(1−v)
+finite ,

(6.5)

which displays only logarithmic divergences. Importantly, all potential simple poles have

cancelled out, and since the overall tree-level form factor vanishes in this limit, these

contributions to the form factor vanish in the limit too.

Similarly, for the soft limit p2 → 0 we need to expand around u = v = 0 with the

result

u

w
R(2)
OS ;3

∣∣∣
u/w

+ perms(u, v, w) →
(u,v)→(0,0)

2 + 2ζ2−log(u)+
log(u)2

2
−log(v)+

log(v)2

2
+ finite .

(6.6)

Again there are only logarithmic divergences and the dangerous poles have cancelled.

Next let us consider the transcendentality-two terms given by (5.26) (plus permutations

of (u, v, w)) which contain potentially even more problematic double poles. Following the

same procedure as for the transcendentality-three terms one finds now not only logarithmic

13The soft/collinear limits of the maximally transcendental terms were already studied in [22].
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singularities — the simple poles do not cancel. Naively one would expect that terms of

different degree of transcendentality separately have the correct kinematic limits, and this

would be a serious problem. However it magically turns out that we have to add the

transcendentality-one terms (5.27) in order to cancel the dangerous poles. Doing so, in the

collinear limit u→ 0 we find only logarithmic terms

u2

w2
R(2)
OS ;2

∣∣∣
u2/w2

+ R(2)
OS ;1 + perms(u, v, w) (6.7)

→
u→0

log(u)
v(1− v)(1− 10v(1− v)) + v4 log(v) + (1− v)4 log(1− v)

v2(1− v)2
+ finite ,

while in the soft limit p2 → 0 we expand around u = v = 0,

u2

w2
R(2)
OS ;2

∣∣∣
u2/w2

+ R(2)
OS ;1 + perms(u, v, w) →

(u,v)→(0,0)
−1

2
[1 + 15 log(uv)] + finite . (6.8)

Hence we find that the transcendentality-two and one terms of the remainder conspire

in a way to cancel all unphysical poles, leaving only logarithmic terms which vanish in

soft/collinear limits due to the presence of the tree-level prefactor.

Finally we come to the transcendentality-zero term in (5.28), which turns out to be

particularly interesting. In the soft/collinear limits the rational term 7/(uvw) survives

and combines with the UV divergent term of the form factor, that is cancelled by the

OM counterterm. The only relevant terms of the bare form factor contributing in the

soft/collinear limits are

− [12][23][31]

uvw

[
(−q2)−2ε

ε
+ 7

]
, (6.9)

which reproduces exactly the expected soft/collinear factorisation — for instance, in the

soft limit p2 → 0 we find

〈13〉
〈12〉〈23〉

s3
13

〈13〉〈31〉

[
(−s13)−2ε

ε
+ 7

]
= Softtree(1, 2+, 3) F

(2)
OS (1+, 3+; q) , (6.10)

where the expression for the sub-minimal form factor F
(2)
OS can be found in (4.41). This

provides a strong consistency check of our results and highlights an intricate conspiracy

among the peculiar rational factors appearing in the remainder function. We also note that

the discussion for both operators considered in this paper, namely OC and OS , is identical

since their remainders only differ by terms without rational factors.

6.2 Further observations on the result

1. In [37], the authors discuss the idea of assigning a degree of transcendentality to har-

monic numbers, already explored in e.g. [59] and propose the concept of “hidden maximal

transcendentality” of the remainder function. For our purposes, we are particularly inter-

ested in assigning transcendentality to ratios of Mandelstam invariants which multiply the

“non-pure” pieces of the remainder, presented in (5.23) and (5.26). It turns out that we
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can think of ratios of invariants such as (1− v)/w as having transcendentality degree one,

due to the expansion

lim
m→∞

m∑
k=1

1

k

(
1− v
w

)k
= − log

(
1− 1− v

w

)
. (6.11)

In order to see the hidden maximal transcendentality manifest itself in the (part of) our

result we rewrite the ratios of Mandelstam invariants multiplying the transcendentality-

three piece in (5.23) using the fact that u+ v + w=1, for example

u

w
=

1− v − w
w

=
1− v
w
− 1 . (6.12)

Upon such trivial rewriting, it turns out that the pure transcendentality-three part of the

remainder (almost) cancels out, namely

R(2)
OS ;3

∣∣∣
u/w

+ perms (u, v, w) = R(2)
OS ;3

∣∣∣
pure
− 4ζ2 log(uvw) + 6ζ3 , (6.13)

leaving “non-pure” terms, now multiplied by ratios such as (1−v)/w — resulting in uniform

transcendentality four.

2. Finally, we note that the constant part of the remainder in (5.28), when multiplied

by −4/7 gives the value of the two-loop Konishi anomalous dimension, i.e. −48. The same

feature was first noted in [35] for remainders of operators in the SU(2) sector.
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A One-loop integral functions

Throughout the paper, we use the following conventions for the one-loop massless

scalar integrals in dimensional regularisation (upper/lower-case letters correspond to mas-
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sive/massless momenta) [31]:

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− P )2
= i

cΓ

ε(1− 2ε)

(
−P

2

µ2

)−ε
,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− P )2
= −i cΓ

ε2

(
−P 2/µ2

)−ε
(−P 2)

,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p−Q)2(p− P )2

= −i cΓ

ε2
(−P 2/µ2)−ε − (−Q2/µ2)−ε

(−P 2)− (−Q2)
,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− q − r)2(p− P )2

= −i 2cΓ

st

{
− 1

ε2

[(
− s

µ2

)−ε
+

(
− t

µ2

)−ε
−
(
− P 2

µ2

)−ε]
+ Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+

1

2
log2

(
s

t

)
+
π2

6

}
.

where

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
.

B Numerators

In this appendix we present the numerators of the integral topologies which constitute the

two loop integrands for form factors of OS and OC in N =4 SYM. The integral topologies,

denoted as Ii, i = 1, . . . , 12 are presented in table 3.
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B.1 Two-loop integrand for the OS form factor in N =4 SYM

The integrand of the two-loop minimal form factor of the Konishi descendant operator OS
is given by

F
(2)
OS = F

(0)
OS

12∑
i=1

Ni × Ii ,

where14

N1 =
1

2

s23

s12s13

[
2s12s23s13 − 2p1 · (p3 + `)s23(s12 − s13) + (s12 + s13)2(p3 + `)2

]
,

N2 =
Tr(1 q k q ` k q 1 3 2)

s12s23s13
,

N3 = N2

∣∣∣
p2↔p3

,

N4 =
s123

s12s23s13
Tr(1q`kq3) ,

N5 =
1

2

[
− 3(s2` + s23 + s1k)−

s3
23 + 2s23s3ks1` + s23s3ks2` + 2s2

23(s1k + s2`)

2s12s13

− s23 (s1k + s2` + 2s3k + 4s1` + 2s23) + 2s1ks2`

s12

+
s13 (s3k + s1` − 3s2` + s23) + s3k (s1` + s2`)

s12

+
s12s3k − s1ks2`

s23
+
s12s3k(s12 − s1`)

s13s23

]
+ (p2 ↔ p3, k ↔ `)

N6 = s23

(
s1`

s12
− s1`

s13
+

s13

2s12
− s12

s13
− 1

2

)
,

N7 = N6

∣∣∣
p2↔p3

, (B.1)

N8 = −2 +
s23(s1` − s23)

2s12s13
+

s12s1`

2s13s23
+
s1` − 2s23 − s13

2s12
+

2s1` − s23 + 2s12

2s13

+
s1` − s12 − s13

2s23
,

N9 = N8

∣∣∣
p2↔p3

,

N10 = −(s12 + s13) 2

s12s13
,

N11 = N10 ,

N12 =
s12 + s23 + s13

2s12s13
.

14Note that the N1 quoted here is before the PV reduction, in contrast to (4.35). PV reduction procedure

relates the two, but it affects the numerators N6 and N7 accordingly.
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B.2 Two-loop integrand for the OC form factor in N =4 SYM

The two-loop integrand of the form factor of the component operator OC can be conve-

niently expressed in terms that of the supersymmetric operator OS plus an offset term:

F
(2)
OC = F

(2)
OS + ∆N=4 , ∆N=4 =

12∑
i=5

Ñi × Ii ,

Ñ5 =
s3ks2`

s23
− s3ks1`

s13
− s1ks3ks2`

s12s23
+

s2
3k

2s23
+

5s3k

2
− 3s1ks3k

2s12
− 3s23s1k

2s12

+ s23 + (p2 ↔ p3, k ↔ `) ,

Ñ6 =
s2ks1`

2s13
− s3ks1`

2s12
− s23s1k

2s13
+
s2k

2
+
s3k

2
+
s12 (s2k + s3k)

2s13
,

Ñ7 = Ñ6

∣∣∣
p2↔p3

,

Ñ8 = 4 +
s2ks1`

s12s23
+

4s2k + 3s3k + 6s3`

2s23
+
s2ks1` + s12 (s2k + s3k + s3`)

s13s23

− s1k

s13
− 3s1`

s12
+

3s12

2s13
,

Ñ9 = Ñ8

∣∣∣
p2↔p3

,

Ñ10 = − s1k

2s12
+
s2k

s23
+

s13s2k

2s12s23
+

s12s2k

2s13s23
+ (p2 ↔ p3) ,

Ñ11 = Ñ10 ,

Ñ12 =
3s12 − s1k

s13s23
+

3s13 − s1`

s12s23
+

8

s23
.

(B.2)
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