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1 Introduction and summary

Quantum field theories (QFTs) can be defined as points along a renormalization group

(RG) flow between scale-invariant fixed points. One advantage of this formulation is that

it does not make reference to a Lagrangian or a weak coupling expansion, but instead puts

conformal field theory (CFT) fixed points front and center. As methods for describing CFTs

become more sophisticated, this formulation becomes increasingly useful as a practical

computational tool.
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Of course the CFT endpoints are only half of the story, the other half being the

dynamics of the RG flow. In many cases of interest, the flow is triggered by deforming the

Hamiltonian by one of the relevant operators of the CFT,

H = HCFT + V, V ≡ λ
∫
dd−1xOR(x). (1.1)

The resulting theory can then be studied through non-perturbative Hamiltonian truncation

techniques, which involve restricting the Hilbert space to a finite-dimensional subspace and

numerically diagonalizing the truncated Hamiltonian exactly. Yurov and Zamolodchikov

were the first to derive the low-lying spectrum of QFT using the truncated spectrum ap-

proach [1, 2]. Recently, Hamiltonian truncation has been revived, in part thanks to several

technical advancements that have improved the numerical predictivity of the method [3–7].

In the past few years Hamiltonian truncation has been applied with success to a variety

of models, and to study several aspects of QFT, such as spontaneous symmetry break-

ing [4, 8, 9], scattering matrices [9], and quench dynamics [10, 11].1

While many of the results and considerations in this paper should be generalizable to

different UV bases, in this work we will focus on the particular implementation of conformal

truncation [13–16], which uses the eigenstates of the UV CFT Hamiltonian. These states

can be organized into representations of the conformal group, each of which is associated

with a primary operator O(x). Working in momentum space, we can write the states in

the general form

|O, ~P , µ〉 ≡
∫
ddx e−iP ·xO(x)|0〉 (µ2 ≡ P 2). (1.2)

These states are characterized by an eigenvalue C under the quadratic Casimir2 of the

conformal group, spatial momentum ~P , and invariant mass µ. We can then truncate this

basis by keeping only those states with Casimir eigenvalue below a particular threshold,

C ≤ Cmax. This approach allows us to study the resulting RG flow using only data from

the original CFT (see [16] for a more detailed discussion). Specifically, the Hamiltonian

matrix elements associated with the relevant deformation are constructed purely from CFT

three-point functions.

However, in using this method (or any other Hamiltonian truncation approach), we

must choose a quantization scheme in order to define both the basis states and the re-

sulting Hamiltonian matrix elements. The focus in this paper will be on lightcone (LC)

quantization. This quantization scheme involves using one spatial direction x to define

new LC coordinates x± ≡ 1√
2
(t± x). The Hilbert space is then defined on spacetime slices

of fixed LC ‘time’ x+, with x− viewed as a spatial coordinate, along with the remaining

transverse components ~x⊥. The resulting Hamiltonian corresponds to the generator of LC

time translations

HLC ≡ P+. (1.3)

1A more comprehensive list of references can be found in [12].
2This takes the familiar form C = ∆(∆− d) + `(`+ d− 2) in terms of operator dimensions and spins.
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Because equal-time (ET) quantization is better understood conceptually than LC quan-

tization, it will be useful to know how to directly compare matrix elements in the two

quantization schemes. The comparison is given by the fact that LC quantization can be

understood (and in fact was originally derived [17–21]) as the infinite momentum limit of

equal-time quantization. The individual matrix elements of the full theory (CFT + defor-

mation) generically depend on the CFT invariant masses µ, µ′ of the two external states,

as well as the overall spatial momentum ~P . The corresponding LC quantization matrix

elements can be obtained by taking the limit |~P | → ∞,3

lim
|~P |→∞

M2
ET(µ, µ′, ~P ) = M2

LC(µ, µ′), (1.4)

where M2 = E2 − ~P 2 = 2P+P− − ~P 2
⊥ is the mass-squared operator. The main subtlety

is that, due to truncation, the infinite momentum limit of the eigenvalues of M2
ET are

sometimes not the eigenvalues of M2
LC, and one may need to add new terms to the LC

Hamiltonian to compensate for this effect.

In this paper we will develop a prescription that matches LC and ET Hamiltonians

to all orders in the relevant deformation parameter. This matching is non-trivial because

LC quantization discards physical “LC zero modes” that are present in ET quantization.

This fact is responsible for many of the advantages of LC quantization, but also for several

potential problems. Our prescription was partly motivated by a desire to better understand

when these advantages reflect true simplifications from LC quantization, and when they

indicate that the LC treatment is missing a crucial aspect of the physics. Before we

explain the prescription, we will review some of these advantages and disadvantages, and

the precise relation between LC and ET quantization. Much of our discussion reviews

well-known results [22–24], but we will also emphasize a major advantage associated with

large N theories, which will be crucial to exploit in future applications.

1.1 Advantages of lightcone quantization

Lack of vacuum renormalization. Probably the most well-known simplification in LC

quantization is the lack of vacuum renormalization. Physical states in LC quantization are

required to have positive LC momentum,

P− ≡
1√
2

(E − Px) > 0, (1.5)

leaving the vacuum as the unique state with P− = 0. So conservation of LC momentum

forbids any matrix elements which mix the vacuum with other states, and the interacting

vacuum is naively the same as the Fock space vacuum,

|Ω〉LC = |0〉LC. (1.6)

3Part of the non-trivial content of this relation is that the matrix elements of M2 in LC quantization

are independent of the choice of reference frame P−. In other words, the matrix elements only depend on

Lorentz invariant parameters, namely the original masses of the external states. This is due to the fact that

boosts simply rescale the LC Hamiltonian P+ and can be used to completely factor out its P− dependence.

We show this explicitly in appendix D.
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This is advantageous as it eliminates the dependence of the physical state energies on the

vacuum energy.4

As we will discuss, the correct interpretation of the statement that the vacuum state

is not renormalized is a bit subtle. In particular, the fact that physical states in LC have

P− > 0 really is the statement that states with P− = 0, which are present in ET, have

been discarded, and our main focus will be on how to correctly reintroduce their effects.

Additional selection rules. Positivity of LC momenta actually forbids a large class

of Hamiltonian matrix elements, not just those involving the vacuum. For example, in

the case where both external states are created by scalar operators, the matrix elements

associated with the relevant deformation vanish when the scaling dimensions are related

by an even integer,

〈O, ~P , µ|VLC|O′, ~P ′, µ′〉 = 0 (∆′ = ∆ + ∆R + 2n). (1.7)

We can clearly see that matrix elements involving the vacuum are merely a special case of

this more general class, with ∆ = 0 and ∆′ = ∆R.

When the original CFT is a free theory, these lightcone selection rules forbid any

process involving the creation of particles from the vacuum. For example, if our relevant

deformation is a mass term, in ET quantization this operator would mix the one-particle

state with all states containing odd numbers of particles. However, in LC quantization all

of these matrix elements are set to zero, such that there is no mixing between states with

different particle numbers.

Major simplifications for large N theories. The selection rule (1.7) also simplifies

large N CFTs which are deformed by a relevant single-trace operator. As we will now

explain, in lightcone quantization large N RG flows appear to be fully determined by the

planar OPE coefficients of (only) single-trace operators; in contrast equal-time quantization

requires all planar OPE coefficients, including those of all multi-trace operators.

To understand this simplification, we must first briefly review the behavior of three-

point functions in the large N limit. For single-trace operators Oi, all OPE coefficients are

suppressed by at least one power of N ,5

〈OiOROj〉 ∼
1

N
. (1.8)

Consequently, the relevant deformation must scale linearly with N in order to ensure that

the resulting Hamiltonian matrix elements will be O(1),

V = Nλ

∫
dd−1xOR(x), (1.9)

where the coefficient λ is held fixed as N →∞.
4A noted closely related advantage is the potential absence of the “orthogonality” catastrophe, consisting

in the fact that non-perturbative states in finite volume have exponentially small overlaps with perturbative

states (see [7], appendix A.1).
5More precisely, this is our operational definition of “N”. For some large N CFTs, this “N” will be a

power of the rank of the underlying symmetry group. Also, note that all operators are normalized such

that the two-point functions are O(1).
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Matrix elements which mix these single-trace operators with generic multi-trace states

[Oi · · · Oj ] are suppressed by higher powers of N . For example, the three-point function

involving a double-trace operator behaves as

〈OiOR[OjOk]〉 ∼
1

N2
. (1.10)

The associated matrix element therefore vanishes in the infinite N limit. However, there is a

crucial exception, which is multi-trace operators [Oi . . .OR] involving the relevant operator

OR itself. For instance,

〈OiOR[OiOR]〉 ∼ 1 +
1

N2
, (1.11)

where the leading O(1) term corresponds to the known OPE coefficients for a generalized

free field (GFF) [25]. In ET quantization, the matrix elements of V between states created

by the single-trace operator Oi and the double-trace operator [OiOR] will therefore be

O(N). Such contributions complicate the large N limit and in particular prevent one from

simply discarding matrix elements that vanish at infinite N , since diagonalization of the

Hamiltonian can effectively multiply the N -suppressed matrix elements by the N -enhanced

ones. In order to apply conformal truncation in ET quantization, we therefore need the

full set of planar limit OPE coefficients for the large N CFT.

However, the leading GFF contributions to the Hamiltonian vanish in LC quantization,

precisely because the scaling dimensions of single- and double-trace operators are related

by an integer at infinite N . Because of this, there are no longer any O(N) terms in the

Hamiltonian, which suggests that we can safely ignore any matrix elements which go to

zero as N →∞. Amazingly, this eliminates all matrix elements that mix single-trace states

with multi-trace ones, which naively means we only need the planar limit OPE coefficients

of single-trace operators in LC quantization. This is a much smaller set of data than the

planar limit OPE coefficients of all operators, so the elimination of GFF matrix elements

naively represents a striking simplification of the initial data that is required for conformal

truncation.

1.2 The problem of zero modes

Many of the above virtues have a corresponding dark side, associated with LC zero modes.

In LC quantization, any degrees of freedom with LC momentum p− = 0 are non-dynamical

and can therefore be removed from the Hilbert space. This removal of zero modes auto-

matically follows from the definition of LC quantization as the infinite momentum limit

of ET quantization, as all Hamiltonian matrix elements involving zero modes vanish as

|~P | → ∞. In fact, it is precisely these vanishing matrix elements that lead to many of the

simplifications discussed above.

This naively suggests that we can simply ignore zero modes in LC quantization, espe-

cially if we focus on states with finite P−, and there are multiple examples in the literature

where doing so apparently yields valid results (see [26] for a recent review). However, as

is well-known, there are also many cases where discarding zero modes leads to conceptual

confusions and explicit, physical mistakes. Some of the most important of these problems

are the following:

– 5 –
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Apparently trivial vacuum. This problem is the flip-side of the advantage that the

LC vacuum is apparently not renormalized and the vacuum energy naively receives no

corrections, which suggests that there is no cosmological constant problem in LC quanti-

zation [27, 28]. However, this claim is clearly in conflict with both ET quantization results

and standard Feynman-diagram perturbation theory [29–33], and furthermore leads to

conceptual difficulties in the case of spontaneous symmetry breaking (SSB) [34–37].

Insensitivity to tadpoles. The problems associated with zero modes are not just lim-

ited to the vacuum, however. An especially simple example is that of a scalar field theory

deformed by a tadpole,

V (φ)→ V (φ) + λφ. (1.12)

For typical V (φ), the addition of the tadpole shifts the mass and couplings in the theory,

with observable consequences for the resulting spectrum and RG flow. Yet, the contribution

of the tadpole to the action is purely a zero mode of φ, which means it will have no effect

on the Hamiltonian matrix elements if zero modes are not included.

Incorrect predictions for simple holographic models. While the above tadpole

example (1.12) may seem a bit special, there is a very similar problem which arises in

deformations of large N theories by single-trace operators. A simple toy example is a large

N CFT dual to an effective field theory in anti-de Sitter (AdS) with the bulk Lagrangian

Lbulk =
1

2
∂µφ∂µφ−

1

2
m2φ2 − 1

4

g4

N2
φ4. (1.13)

If we deform this theory by the single-trace operator O dual to the scalar field φ, the

arguments of the previous section suggest that the resulting RG flow depends at leading

order only on the single-trace three-point function 〈OOO〉, since any contributions to the

LC Hamiltonian from multi-trace operators vanish in the limit N → ∞. However, it is

clear from solving the bulk equations of motion for φ that the dynamics are sensitive to g4

even in the infinite N limit.

Discrepancy between bare parameters in ET and LC. If the lightcone Hamilto-

nian VLC is defined as the infinite momentum limit of the equal-time Hamiltonian VET,

then naively the bare parameters (which are Lorentz invariant) associated with the rele-

vant deformations should be the same in both quantization schemes. However, there are

cases where the two schemes obtain different mass eigenvalues when using the same bare

parameters [38, 39].

Obstacles to integrating out zero modes. All of the foregoing difficulties with zero

modes reduce to the same core problem: LC quantization is missing contributions to the

Hamiltonian which are present in ET quantization. In some cases these contributions

can safely be ignored, while in others they can’t, with no clear a priori diagnostic for

determining when and no systematic method for reintroducing the necessary effects.

A natural strategy for trying to deal with the problem of the missing zero modes is

to try integrating them out, rather than simply discarding them. However, there are signs

that in Discrete Lightcone Quantization (DLCQ) integrating out zero modes can lead to

new strongly coupled interactions between the remaining modes [40].

– 6 –
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1.3 Our prescription

In this work, we will describe how to overcome most of the problems described above, by

proposing a general prescription for absorbing the effects of zero modes into a new effec-

tive LC Hamiltonian to all orders in the relevant deformation parameter. This proposal is

formulated directly in terms of correlators of the UV CFT, and is thus not restricted to

theories with known Lagrangian descriptions. The prescription is essentially a matching

procedure, where we construct an effective lightcone Hamiltonian Heff for the theory with-

out any zero modes that reproduces all correlation functions of the theory in the presence

of zero modes. To connect the Hamiltonian to correlators, we define it in terms of the LC

unitary evolution operator U as

Heff ≡ lim
x+→0

i∂+U(x+), (1.14)

where the evolution operator is constructed from the naive lightcone Hamiltonian VLC

(i.e. without including the effects of zero modes). Through the Dyson series for U(x+), the

matrix elements for Heff can be written in terms of correlators of the original CFT involving

multiple insertions of VLC. We thus “integrate out” the zero modes by embedding their

contributions to higher-point functions into Heff via eq. (1.14).

We can therefore understand the effects of zero modes by looking at higher-point

correlation functions of the general form

〈O, ~P , µ|T {OR(x1) · · · OR(xn)}|O′, ~P ′, µ′〉. (1.15)

If these correlators are regular as x+
ij → 0, then all the higher-point contributions to (1.14)

will vanish, reducing our prescription to the standard definition of Hamiltonian matrix

elements in terms of three-point functions. However, as we will show, there are cases

where these correlators include effects that do not have a spectral representation in LC

quantization, which leads to factors of δ(x+
ij). This singular behavior is picked up by our

prescription for Heff, resulting in corrections to the naive Hamiltonian.

We demonstrate that our conjectured prescription:

• results in a non-zero contribution to the vacuum energy,

• reproduces the shifts in masses and couplings due to tadpole deformations,

• includes the effects of multi-trace operators on large N RG flows,

• explains the discrepancy between bare parameters in ET and LC perturbatively,

• automatically integrates out non-dynamical fields.

In fact, in most CFTs, Heff will not get any contributions from zero modes aside from the

vacuum energy. In addition, we will provide evidence that in many theories where Heff does

get contributions from zero modes, those contributions simply shift the bare parameters in

the original theory.

– 7 –
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Our prescription for matching the LC and ET Hamiltonians is perturbative in the

relevant deformation parameters, and can fail non-perturbatively. We will discuss an ex-

plicit example of this failure in section 4.3. One might nevertheless hope that knowing the

perturbative matching can still be useful for understanding qualitative or even quantita-

tive aspects of the non-perturbative matching.6 We leave a more detailed analysis of such

non-perturbative matching effects for future work.

Another remaining important open question is how to get the vacuum structure cor-

rect in cases of spontaneous symmetry breaking (SSB). It will be important to determine

whether the LC methods we adopt in this approach are sufficient for correctly reproducing

the broken phase of SSB, or whether they must be supplemented with additional inputs.

For instance, one concern is that there is no SSB in finite volume, since mixing between

different vacua lead the true ground state to be a superposition of the infinite volume

symmetry-breaking vacua. Although formally we work in a framework where the volume

is infinite, one may worry that the truncation itself causes the system to behave more like

finite volume for SSB effects. At a more technical level, we will see that our prescription

applied to the theory of a scalar field perturbed by a source term L ⊃ Jφ simply gener-

ates the terms in the Hamiltonian produced by expanding around the new shifted vacuum.

However, there are generally multiple local extrema of the potential, and it is not clear

if the correct choice needs to be put in by hand in the LC treatment, or whether it can

be selected dynamically.7 A useful concrete check would be to compute the spectrum of

the theory in the broken phase, for instance in λφ4 theory, and see if the result correctly

reproduces the spectrum of fluctuations around one of the Z2-breaking vacua.

This paper is organized as follows. In section 2, we describe in more detail some

of the problems with LC quantization mentioned above. In section 3, we present our

prescription for the effective LC Hamiltonian Heff , together with a quantitative diagnostic

test in momentum space for whether or not the prescription generates new contributions to

Heff in a given theory. In section 4, we demonstrate how the prescription works in a number

of applications. One of the main applications is to λφ4 theory in 2d, where the prescription

reduces to a previous prescription due to Burkardt [38]. Our numeric results are consistent

with the conjecture that the prescription works to all orders in perturbation theory, but

indicate that it fails non-perturbatively. In section 5, we conclude with a discussion of

future directions.

2 Lightcone quantization and its discontents

In this section, we provide a more detailed discussion of some of the problems with LC

quantization listed in the introduction. We begin with a definition of lightcone zero modes

in section 2.1 and a discussion of their role in CFTs. Then we briefly review the discrepancy

6Moreover, the prescription is still non-perturbative in terms of the parameters of the UV CFT, which

can for instance include the gauge coupling if the UV CFT is a gauge theory.
7For an illuminating physical picture of how this can occur, see [41]. Essentially the same issue of whether

or not a fundamental field vev must be set by hand in a LC treatment arises in holographic models we

consider, where a necessary input to the boundary value problem for a bulk field φ profile is the boundary

vev 〈O〉 of its boundary dual operator.

– 8 –
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between ET and LC bare parameters in section 2.2. Finally, in section 2.3 we discuss a

new problem that has great importance for the application of Hamiltonian truncation to

large N gauge theories.

2.1 CFT definition of zero modes

Free and large N CFTs have a Fock space description. In these cases lightcone zero modes

can be easily identified as the states where one or more Fock space modes have vanishing

lightcone momentum p− = 0.

However, we would like to have a more general, non-perturbative definition of zero

modes, which can be applied to any CFT. Here, we construct such a definition in terms

of the associated Hamiltonian matrix elements, which will allow us to easily demonstrate

why these contributions naively vanish in LC quantization (or equivalently, in the infinite

momentum limit of ET quantization). The derivation of this result will be somewhat

schematic, with a more careful proof presented in appendix A.

In the standard formulation of conformal truncation, Hamiltonian matrix elements

associated with a relevant deformation OR are defined as the Fourier transform of CFT

three-point functions,

〈O, ~P , µ|V |O′, ~P ′, µ′〉 ≡ λ
∫
ddx1 d

d−1x2 d
dx3 e

i(P ·x1−P ′·x3)〈O(x1)OR(x2)O′(x3)〉. (2.1)

As is well-known, these three-point functions are completely fixed by conformal symmetry,

up to overall constants corresponding to OPE coefficients. For the case where the two

external operators are scalars, these correlators take the form

〈O(x1)OR(x2)O′(x3)〉 =
COO′OR

x∆+∆R−∆′

12 x∆′+∆R−∆
23 x∆+∆′−∆R

13

. (2.2)

A useful formal trick for studying the universal kinematic structure of this three-point

function (and thus the resulting Hamiltonian matrix element) is to pretend that the three

operators are composites constructed from building blocks A, B, and C,

OR ≡ AB, O ≡ AC, O′ ≡ BC, (2.3)

where the scaling dimensions for these new operators are

∆A =
1

2
(∆ + ∆R −∆′), ∆B =

1

2
(∆′ + ∆R −∆), ∆C =

1

2
(∆ + ∆′ −∆R). (2.4)

Note that we are not assuming that this CFT is free or has a large N expansion. These

building blocks are merely a means of representing the kinematic structure of three-

point functions. Because these operators are fictitious, their dimensions are not neces-

sarily bounded from below due to unitarity and can therefore even have negative scaling

dimension.

Using these building blocks, the kinematic structure of this three-point function simply

becomes a product of two-point functions,

〈O(x1)OR(x2)O′(x3)〉 ∝ 〈A(x1)A(x2)〉〈B(x2)B(x3)〉〈C(x1)C(x3)〉 =
1

x2∆A
12 x2∆B

23 x2∆C
13

.

(2.5)

– 9 –
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O′

OR

O p

P − p P ′ − p

Figure 1. Triangle diagram associated with the matrix element 〈O|V |O′〉, demonstrating the flow

of momentum. Each leg of the triangle can be thought of as the momentum space two-point function

of a fictitious “building block” operator. Lightcone zero modes are defined to be contributions where

one of the legs has vanishing lightcone momentum.

Similarly, we can rewrite the Hamiltonian matrix element in terms of the spectral densities

of these fictitious operators,

〈O, ~P , µ|V |O′, ~P ′, µ′〉 = λCOO′OR δ
d−1(P − P ′)

∫
ddp ρA(P − p)ρB(P ′ − p)ρC(p). (2.6)

We can therefore think of this matrix element as an integral over the momentum space

two-point functions of the building blocks, as shown in the schematic “triangle diagram”

in figure 1. These diagrams are useful in picturing the flow of momentum in the associated

matrix element. The vertices correspond to the insertions of the physical local operators,

while the legs correspond to the internally propagating building blocks.

We can now use this representation of the matrix elements to define the contribution

of zero modes in a general CFT as any diagram where one of the legs has zero lightcone

momentum (i.e. p− = 0 or p− = P−). Note that this definition naturally encompasses

the more familiar case of free field theory, where the legs of the triangle diagram simply

correspond to one or more internally propagating Fock space modes.

Generically, we expect such contributions to be a measure-zero part of the full integral.

However, in the special case where the dimensions of the three external operators are related

by an non-negative even integer,

∆′ = ∆ + ∆R + 2n, (2.7)

one of the fictitious building blocks obtains a non-positive integer scaling dimension,

∆A = −n, ∆B = ∆R + n, ∆C = ∆ + n. (2.8)

For this special case, the associated spectral density is given by a derivative of the Dirac

delta function. For example, in d = 2 we obtain

ρA(P − p) = δ(n)(P+ − p+)δ(n)(P− − p−) (∆A = −n), (2.9)

with similar expressions in higher dimensions. The spectral density for A therefore fixes

the internal momentum P− − p− = 0, such that only zero modes contribute.
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Focusing specifically on the lightcone momentum dependence of the Hamiltonian ma-

trix element (and suppressing all other factors), we can then obtain8

〈O, ~P , µ|V |O′, ~P ′, µ′〉 ∝
∫
dp− δ

(n)(P− − p−) (P ′− − p−)∆R+n− d
2 p

∆+n− d
2

−

∝ (P− − P ′−)∆R− d2 .

(2.10)

These zero mode matrix elements are thus set by the difference in total lightcone mo-

mentum between the two external states. In LC quantization, conservation of momentum

automatically sets this difference to zero, but we can also see that this difference vanishes

in the infinite momentum limit of ET quantization,

P−−P ′−=
(√

µ2+P 2
x−Px

)
−
(√

µ′2+P 2
x−Px

)
∼ µ

2−µ′2
2|Px|

→ 0 (|Px|→∞). (2.11)

For deformations with ∆R > d
2 , we therefore find that all zero mode contributions

vanish in lightcone quantization. For deformations with ∆R ≤ d
2 , the story is somewhat

more subtle. Rather than vanishing, the associated matrix elements are all IR divergent.

We expect that one can regulate these divergences with some IR cutoff, and then take

the limit ΛIR → 0, so that all contributions from zero modes decouple from the resulting

low-energy states and can be removed.9

Note that for free or large N theories, these zero mode matrix elements precisely

correspond to the case where one of the operators is a composite built from the other two,

O′ = [OOR]n ≡ O
↔
∂2nOR, (2.12)

such that we can interpret these vanishing contributions as the creation of the OR degrees

of freedom from the vacuum.

2.2 Concrete bare parameter discrepancies

In some cases it had already been recognized in the literature that the “naive” light-

cone Hamiltonian is missing contributions that prevent a precise matching to equal time

computations. In particular, in [38] (see also [39]) it was pointed out that in a scalar theory,

the effect of zero modes is to renormalize bare parameters on the lightcone.

For example, consider the deformation of free scalar field theory by both a mass term

and a quartic interaction,

V =

∫
dd−1x

(
1

2
m2φ2 +

1

4!
λφ4

)
. (2.13)

As was demonstrated in [38], if we compute the one-particle mass perturbatively, we find

that there are a class of Feynman diagrams which contribute in ET quantization but vanish

8Here we’ve used the fact that CFT spectral densities scale as ρO(p) ∼ p2∆−d.
9For more details in the particular case of a free theory, see [16], where the decoupling of zero modes

due to IR divergences naturally led to a rearrangement of the naive conformal basis into new “Dirichlet”

states with no overlap with zero modes.
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in LC quantization, leading to a discrepancy in the resulting physical mass eigenvalues as a

function of the bare parameters m2 and λ. From the perspective of conformal truncation,

these Feynman diagrams are constructed from intermediate Hamiltonian matrix elements

which vanish on the lightcone. This discrepancy can in principle be fixed by shifting the

LC bare mass relative to the ET value,

m2
LC = m2

ET + δm2(λ), (2.14)

where the coupling-dependent counterterm corresponds to resumming all diagrams which

contribute in ET but not LC quantization. However, this fix may seem unsatisfying, as

the counterterm must be introduced by hand, with no general prescription for determining

when corrections are necessary.

In [38, 42], it was argued by inspection of Feynman diagrams that the correct matching

should be

m2
LC = m2

ET +
λ

2
〈φ2〉, (2.15)

where the vev of φ is evaluated in ET quantization. In section 4.3, we will verify this

formula explicitly to the first few orders in perturbation theory, and discuss its failure

non-perturbatively.

2.3 A problem with holographic models

Simply discarding zero modes leads to incorrect predictions in a simple class of CFT models

defined holographically using AdS Lagrangians. The main point is quite simple: AdS

models can have contact interactions involving n > 3 bulk fields that have very important

effects on RG flows, which are represented as non-trivial classical solutions in the bulk. But

these interactions will be invisible if one only studies the OPE coefficients of single-trace

operators (i.e. 3-pt interactions of bulk fields). At large N , this is in direct conflict with

the naive LC selection rule (1.7), which implies that only single-trace data should affect

RG flows.

The simplest explicit example includes a real scalar field in AdS with bulk10 Lagrangian

LAdS =
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4

g4

N2
φ4. (2.17)

We are just going to work in the semi-classical limit at large N , so we will rescale the field

φ→ Nφ to put the AdS Lagrangian in the form

LAdS = N2

(
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4
g4φ

4

)
. (2.18)

10We will work with Poincaré patch coordinates

ds2 =
−dz2 + dx2

d

z2
. (2.16)
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We assume that g4 > 0 for stability at φ → ±∞. We will be interested in deforming the

boundary theory by the CFT operator NOR dual to φ, and we take m2 = `−2
AdS∆R(∆R−d)

negative, which corresponds to OR being a relevant operator with ∆R < d.

The key point is that at infinite N , the quartic coupling g4 does not affect any of the

single-trace OPE coefficients. In fact, for this particular example, the Z2 symmetry of the

AdS Lagrangian restricts all single-trace OPE coefficients to be exactly zero. Therefore, if

the logic in the previous section is correct, g4 cannot have any effect on the theory at infinite

N , even after deforming by the relevant operator OR in the boundary CFT Hamiltonian.

In fact, the argument from the previous section would predict that there is no resulting

RG flow, since all Hamiltonian matrix elements for this deformation vanish at infinite N

in lightcone quantization. We will now demonstrate that there is a resulting RG flow and

g4 does in fact affect the IR of the theory, so something in the previous section must have

been too fast. The idea is very simple — holographic RG flows involve solutions to the

classical equations of motion for φ, and g4 will obviously affect these solutions.

Turning on the relevant deformation OR in the boundary CFT corresponds in the bulk

description to imposing a non-zero boundary condition for φ:

V = NλOR ↔ φ(z)
z∼0∼ λzd−∆R + αz∆R . (2.19)

The second boundary value α can be determined dynamically once the bulk profile is

known. To find the bulk profile, one imposes the bulk equations of motion for φ. For φ

constant in the boundary directions xµd , the bulk equation of motion is just

∂2
zφ−

d− 1

z
∂zφ−

m2

z2
φ =

1

z2
g4φ

3. (2.20)

For any value of λ and α, there is a unique solution φcl to this equation, and α is chosen

to minimize the action S[φcl] evaluated on this solution. When g4 = 0, the bulk theory

is free and the equation of motion is easily solved by φcl = λzd−∆R + αz∆R everywhere.

Substituting back into the action,

Sg4=0[φcl] =
N2

2

[
zd−2∆Rλ2(d−∆R) + z2∆R−dα2∆R

]zUV

zIR
. (2.21)

This action is minimized at α = 0.

However, the situation is qualitatively changed for any non-zero value of g4. For g4 > 0,

the bulk equations of motion cannot be solved in closed form. In appendix C we describe

a supersymmetric version of this model where an analytic solution is possible, but the

important qualitative points can be understood intuitively as follows. Because ∆R < d,

λzd−∆R grows as z increases for any non-zero value of λ, and therefore the bulk term g4φ
4

in the potential eventually becomes important for large enough z. The value of α that

minimizes the action is the one that causes φ to asymptotically approach the minimum of

its bulk potential VAdS(φ) = 1
2m

2φ2 + g4

4 φ
4 at large z. In other words, since m2 < 0, any

non-zero λ pushes φ away from the origin and, as it evolves into the bulk, it rolls down

its potential to the true minimum at φ = ±
√
−m2

g4
. A numeric solution exhibiting this

behavior is shown in figure 2.

– 13 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
0

��-� � ��� ���
���

���

���

���

���

���

�

ϕ
(�
)

Figure 2. Numeric solution of the bulk profile φ(z) in the toy model. (Black, solid): exact numeric

solution; (red, dashed): asymptotic value at φ =
√
−m2

g4
; (blue, dotted): free theory behavior

φ=λzd−∆R . Parameters are ∆R=1.7, λ=0.1, g4 =0.5, zUV =10−4, d=2, all in units of `AdS =1.

To determine the spectrum of the theory, one expands φ around the background so-

lution φcl. In the deep IR, the background φcl is just a constant and so one can do

this expansion analytically. The fluctuations around φcl = ±
√
−m2

g4
have a bulk mass of

V ′′AdS(φcl) = −2m2. This mass corresponds to an IR dimension for OR of

∆IR = 1 +
√

1 + 2∆R(2−∆R). (2.22)

In the language of the CFT, turning on the relevant deformation triggers an RG flow from

a UV CFT where OR has dimension ∆R to an IR CFT where it has dimension ∆IR.

To summarize the main point, at large N g4 is completely invisible in the OPE co-

efficients of single-trace operators, yet from the bulk solution we see that the value of g4

controls when the theory deformed by OR transitions from the UV behavior with dimen-

sion ∆R to the IR behavior with dimension ∆IR. In fact, any term φn in the bulk potential

with n ≥ 4 is invisible to the single-trace OPE coefficient in the infinite N limit, yet from

the bulk perspective it is clear that they affect the IR of the theory.11

2.4 The role of zero modes in a holographic model

One can see intuitively that zero modes are the culprit behind the incorrect LC prediction

above. The problem arises from the non-trivial background profile φcl, which is manifestly

pure zero mode since it is momentum-independent. In this subsection, we will analyze the

11The questions raised by this discussion have broader implications that go beyond conformal truncation

itself. If one can show that single-trace OPE data is sufficient to determine large N RG flows in a given

class of theories, then all bulk contact interactions in the AdS duals of these theories, such as g4 (or e.g. the

R4 term in gravity) are, in a certain sense, fully determined by the 3-pt interactions. This has a natural

interpretation in tree-level string theory, where one expects that knowledge of the 3-pt interactions for all

string states determine the full string scattering amplitude. But it appears very surprising from the point

of view of AdS effective field theory, where contact interactions would seem to be independent parameters.
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nature of the missing zero mode contributions in more detail. We work in d = 2 spacetime

dimensions for simplicity.

We can bring the zero mode contributions back into view by starting with equal-time

quantization and then taking the lightcone limit via an infinite boost. For this purpose,

we need only introduce a small momentum q− > 0 for the relevant deformation:

V = λ

∫
dx−eiq−x

−O(x−) + h.c. ≡ λO(q−). (2.23)

The deformation now has time-like energy-momentum, which means we are performing

equal-time quantization in some q−-dependent frame.

We will see that in the limit q− → 0, the contributions from double-trace operators

in the bulk model get pushed to infinitely high dimension, outside the space of the trun-

cated basis used for Hamiltonian truncation. To start, we can write out the old-fashioned

perturbation theory (OFPT) for the perturbation V at second order:[
〈O, p, µ|H|O, p′, µ′〉

](2)
∼
∑
ψ

〈O, p, µ|V |ψ〉〈ψ|V |O, p′, µ′〉
Eψ − EO

. (2.24)

The sum over ψ is a sum over all states retained by the truncation. We will restrict

our attention to the double-trace states, which are parameterized by their twist n, spin

`, momentum P−, and invariant mass-squared µ2. As shown in the previous subsection,

the matrix elements of V between a single-trace operator O and a double-trace operator

[O2]n,0 (with twist n and, for simplicity, spin 0) are proportional to a power ν = ∆− 1 of

the momentum q−:

〈O, p, µ|V |[O2]n,0, P,M〉 ∝ δ(P− − p− − q−)qν−, ν ≡ ∆− 1, (2.25)

and therefore vanish at q− = 0 for ∆ > 1. However, in addition to the sum over double-

traces, there is also a divergent integral over their invariant mass-squared M2. The crucial

point is that the infinite sum over all the double-traces resums into a function of M2 that

vanishes at large M2 � p−/q−:[
〈O, p, µ|H|O, p′, µ′〉

](2)
M�µ
p�q−∼

∫ ∞
0

dM2 q−
p−
f

(
M2 q−

p−

)
. (2.26)

We relegate the explicit details of the sum and the function f for the toy model to

appendix B, but the basic point is independent of its precise form.

Individual double-trace states and their descendants just contribute to a finite number

of terms in the Taylor series of f ; therefore they vanish at q− → 0, and their integral over

M2 diverges at finite q−. Both problems are solved in the infinite sum, where the integral

over M2 converges, and absorbs the q− dependence at small q−. In other words, there is

a problem with the order of limits — if we perform the infinite sum before taking q− → 0

then zero modes will be correctly included, but taking the lightcone limit before performing

the sum discards all zero mode contributions.

To summarize, at finite q−, the “zero mode” contributions are present in the sum

over physical double-trace states, but at q− → 0, their contributions are lifted from the
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spectrum. In the next section, we will introduce a prescription to recapture the zero mode

contributions that get discarded by lightcone quantization, using only the correlators of

the UV CFT fixed point. A key lesson of the above analysis is that we will be trying to

reintroduce contributions that, as q− → 0, no longer have any representation as a sum over

physical intermediate states in the Hilbert space.

3 Integrating out the zero modes: a prescription

As compared to the standard, equal-time description, lightcone quantization can often

provide striking simplifications. But these advantages may come at a cost, because the

lightcone appears oblivious to the complexities of vacuum structure, as it ignores zero

modes and their mixing with other states. Thus we need a prescription for detecting these

zero mode contributions, determining if they affect observables, and including them where

necessary. In this section we will develop such a prescription and provide both a position

and momentum space version. Then in section 4 we will show how our prescription resolves

a number of issues with lightcone quantization.

To motivate our prescription, we first study equal-time quantization in a frame with

very large momentum Px. This will make it possible to see how the zero modes drop

out as Px → ∞, but remain as additional δ(x+) function contributions to correlators.

Our prescription identifies these delta functions and uses them to build a new lightcone

Hamiltonian Heff that includes the zero modes. These delta functions can also be identified

in momentum space as polynomial terms in the lightcone momenta.

3.1 Argument for prescription

Consider a general CFT, which is then deformed by a relevant operator OR. A natural

set of observables are the time-dependent two-point functions 〈O(t)O(0)〉 of local UV CFT

operators in the presence of this deformation. We can construct these by inserting the

unitary time evolution operator between two CFT basis states

〈O, Px, µ|U(t, 0)|O, Px, µ′〉 ≡ 〈O, Px, µ|T
{
e−i

∫ t
0 dt
′[H0+V (t′)]

}
|O, Px, µ′〉. (3.1)

We can evaluate this expression by expanding U(t, 0) as the Dyson series

U(t, 0) = 1− i
∫ t

0
dt1H(t1)− 1

2

∫ t

0
dt1dt2 T {H(t1)H(t2)}+ . . . (3.2)

By construction, the external basis states are eigenstates of the original CFT Hamiltonian

H0, which means we only need to consider the contributions of the deformation V to

this series,

〈O,Px,µ|U(t,0)|O,Px,µ′〉⊃ 〈O,Px,µ|O,Px,µ′〉−i
∫ t

0
dt1〈O,Px,µ|V (t1)|O,Px,µ′〉

− 1

2

∫ t

0
dt1dt2〈O,Px,µ|T {V (t1)V (t2)}|O,Px,µ′〉+· · · (3.3)
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In order to compute any two-point function 〈O(t)O(0)〉, in principle we need all correlation

functions involving n intermediate insertions of the deformation OR.

For concreteness, let’s focus specifically on the second-order term in this expansion,

which corresponds to a four-point function in the CFT. In equal-time quantization, we can

compute this four-point function by inserting a complete set of intermediate states,

〈O, Px, µ|V (t1)V (t2)|O, Px, µ′〉

=
∑
ψ

∫
dµ2

ψ〈O, Px, µ|V (t1)|ψ, Px, µψ〉〈ψ, Px, µψ|V (t2)|O, Px, µ′〉. (3.4)

The individual contributions of intermediate states correspond to momentum space three-

point functions, or equivalently the matrix elements of the deformation.

However, if we take the limit Px → ∞, we find that all intermediate contributions

where ∆ψ = ∆ + ∆R + n vanish. Roughly, such intermediate states, which correspond to

lightcone zero modes, have matrix elements that behave like

〈O, Px, µ|V (t1)|ψ, Px, µψ〉 ∼
(
µ2 − µ2

ψ

Px

)α
(Px →∞), (3.5)

for some power α. This is exactly what we saw for the bulk toy model in eq. (2.25), where

the intermediate two-particle contributions all vanished in the lightcone limit. In that

example, the small lightcone momentum transfer q− we introduced is equivalent to
µ2−µ2

ψ

Px

in the large momentum limit,

q− = P− − Pψ− =
(√

µ2 + P 2
x − Px

)
−
(√

µ2
ψ + P 2

x − Px
)
Px�µ∼

µ2 − µ2
ψ

Px
. (3.6)

The time-ordered two-point function 〈O(t)O(0)〉 is independent of the choice of mo-

mentum frame, so these contributions must still be present in the full, physical result. For

any fixed Px these contributions are present in the sum over states, but as Px increases, their

contributions come from larger and larger µ2
ψ, the invariant mass of the intermediate states.

At Px = ∞, which is equivalent to working in lightcone quantization (see appendix D),

the four-point function is no longer reproduced as a sum over states. In other words,

in the lightcone limit Px → ∞, there are contributions to the four-point function that do

not have a spectral function decomposition. Momentum space three-point functions, which

correspond to the naive set of Hamiltonian matrix elements, are not sufficient to reproduce

〈O(t)O(0)〉 in lightcone quantization.

The missing zero modes do not have a spectral representation in lightcone quantization.

Instead they appear as local terms in lightcone time, meaning that their contributions are

proportional to δ(x+). We will see many explicit examples in section 4. When inserted

in the LC version of the Dyson series in eq. (3.3), this delta function eliminates one of

the integrals over time, reducing a second-order term in the Dyson series to the effective

first-order term∫ x+

0
dx+

1 dx
+
2 〈O,P−,µ|T {V (x1)V (x2)}|O,P−,µ′〉∼

∫ x+

0
dx+

1 〈O,P−,µ|δHeff(x1)|O,P−,µ′〉.
(3.7)
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We can reintroduce these missing contributions by defining a new effective lightcone

Hamiltonian via the derivative at x+ = 0 of the unitary evolution operator U(x+, 0):

Heff ≡ lim
x+→0

i∂+U(x+, 0). (3.8)

Matrix elements of the effective Hamiltonian Heff are therefore written as a sum over n-point

functions involving n − 2 insertions of the relevant deformation OR. When these higher-

point functions are regular at x+ = 0, only the term linear in V contributes, because the

region of integration 0 ≤ x+
i ≤ x+ shrinks to zero at x+ = 0. In this case, our prescription

reduces to the standard definition of Hamiltonian matrix elements in terms of three-point

functions. However, when vanishing intermediate states lead to factors of δ(x+), the higher-

point correlators can contribute even in the x+ → 0 limit, modifying the naive lightcone

Hamiltonian to include the effects of zero modes. Note that this prescription only relies on

“data” derived from the correlation functions in the UV CFT.

In order to see that the only higher-order contributions to Heff come from lightcone

zero modes, let’s look more explicitly at the four-point function contributions which do have

a spectral decomposition in lightcone quantization. These can be rewritten in the form

〈O, P−, µ|T {V (x+
1 )V (x+

2 )}|O, P−, µ〉

⊃
∑
ψ

∫ Λ2

0
dµ̄2

∣∣〈O, P−, µ|V |ψ, P−, µψ〉∣∣2(ei µ̄2

2P−
x+

12θ(x+
12) + e

−i µ̄
2

2P−
x+

12θ(−x+
12)

)

=

∫ Λ2

0
dµ̄2 ρ(µ, µ̄)

∫
dP+ e

iP+x
+
12

(
i

2P+P− − µ̄2 + iε
+

i

2P+P− + µ̄2 − iε

)
, (3.9)

where we have taken both external states to have the same invariant mass µ for simplicity,

we have defined µ̄2 ≡ µ2
ψ − µ2, and the four-point function spectral density is

ρ(µ, µ̄) ≡
∑
ψ

∣∣〈O, P−, µ|V |ψ, P−, µψ〉∣∣2. (3.10)

Note that in eq. (3.9) we have written ⊃ instead of = because, crucially, not all contributions

to this four-point function are contained in the sum over states in lightcone quantization.

The advantage of the last expression in eq. (3.9) is that, for finite UV cutoff Λ, the

integral over µ̄ is finite, since the integrand and the range of integration are finite, and

therefore no δ(x+
12) factors can be produced. Manifestly, only terms in the four-point

function that cannot be written in this spectral function representation will contribute to

our prescription for Heff.

While this discussion has been somewhat technical, at its core, our prescription can

be understood as a simple matching procedure between equal-time and lightcone quanti-

zation. Specifically, the effective lightcone Hamiltonian Heff is constructed such that the

resulting time-dependent two-point functions of local operators match those in equal-time

quantization. In equal-time quantization, these two-point functions can be computed by

inserting a complete set of states, which means that the three-point function contributions

to the Hamiltonian are sufficient to reconstruct the resulting dynamics. However, in light-

cone quantization, this is no longer true, precisely because we have removed some of the
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intermediate states from the Hilbert space by discarding zero modes. Our definition for

Heff in terms of the unitary evolution operator is thus simply designed to add back in any

contributions which were initially discarded in lightcone quantization.

3.2 Momentum space diagnostic

Now that we have a general prescription for constructing the effective Hamiltonian from

CFT correlators, we can develop a practical diagnostic for determining when this Hamilto-

nian receives higher-order contributions due to zero modes. Inserting our definition of Heff

from eq. (3.8) in between two basis states, we obtain the general matrix element expression

〈O, P |Heff|O′, P ′〉 ≡ lim
x+→∞

i∂+〈O, P |U(x+, 0)|O′, P ′〉. (3.11)

Consider a generic higher-point function appearing in the Dyson series expansion of the

right-hand side

〈O,P |U(x+,0)|O′,P ′〉⊃ (−i)n
n!

∫ x+

0
dx+

1 · · ·dx+
n 〈O,P |T {V (x1) · · ·V (xn)}|O′,P ′〉. (3.12)

This correlator will only lead to a nonzero contribution to Heff if it contains n − 1 delta

functions in x+
ij . To see when these delta functions can arise, we can study the associated

momentum space correlator∫
ddx1 · · · ddxn ei(q1·x1+···+qn·xn)〈O, P |T {OR(x1) · · · OR(xn)}|O′, P ′〉

≡ (2π)dδd

(
P − P ′ +

∑
i

qi

)
G(qi, P, P

′).

(3.13)

Because the relevant deformation OR is a scalar, this function G can only depend on the

momenta qi via the Lorentz invariant combinations

q2
i , qi · qj , qi · P, qi · P ′.

However, because the momenta qi correspond to insertions of the lightcone Hamiltonian,

their “spatial” components ~qi = (qi−, ~qi⊥) are all set to zero, eliminating the first two

Lorentz invariant terms. The remaining two terms are actually equivalent due to conser-

vation of lightcone momentum, so that the only nonzero Lorentz invariant combination for

each qi is

qi · P = qi+P−.

We therefore have the following simple test: we can only obtain n − 1 delta functions (or

derivatives of delta functions) in x+ if the function G contains a contribution which is

analytic in qi · P (multiplied by an arbitrary function of P, P ′).

For large N theories, which have a weakly coupled bulk description, there is a partic-

ular class of Witten diagrams which automatically satisfy this test, and thus give rise to

corrections to the effective Hamiltonian. Any “plant” diagram where the physical modes

created by the external states connect to the zero modes created by OR through a single

– 19 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
0

O O′

OR

OR

OR

OR· · ·

· · ·

Figure 3. General structure of “plant” diagrams which lead to effective Hamiltonian contributions

in large N theories. The zero modes (dashed lines) created by the relevant deformation OR must

only connect to the physical states (solid lines) via a single contact interaction.

vertex (the “base” of the plant) corresponds to a polynomial in qi · P . As we can see from

the schematic example in figure 3, these plant diagrams have a simple interpretation as the

propagation of physical modes in the background bulk profile created by zero modes.

Similarly, if the UV CFT we’re deforming is either free or has a weakly-coupled bound-

ary description, such as a Banks-Zaks fixed point, then any Feynman diagram with this

same plant structure will lead to corrections to the effective Hamiltonian. Unlike the large

N case, however, where the sum of plant diagrams create nonlocal interactions reproducing

an entire bulk profile, the contributions from these boundary plant diagrams correspond to

local interactions in the field theory. For example, a boundary diagram similar to figure 3,

where only two physical propagators connect to the plant, simply gives rise to a mass

counterterm for the physical modes. In other words, plant diagrams on the boundary only

shift bare parameters in the Lagrangian. In this case, the contributions from zero modes

therefore don’t affect any of the resulting dynamics, as they only alter the map between

UV parameters in the Lagrangian and the resulting IR scales. Unless we are interested

in this precise map, we can therefore safely ignore the contributions from boundary plant

diagrams, to all orders in perturbation theory. As we discuss in section 4.3, it is precisely

this class of plant diagrams which explain observed discrepancies in perturbation theory

for φ4 theory in equal-time and lightcone quantization.

More generally, we now have a straightforward diagnostic for determining which cor-

relation functions (if any) contribute to the effective Hamiltonian, by looking at their

momentum space dependence on qi. For CFTs which are either perturbative or have a

weakly-coupled AdS dual, this analysis becomes especially simple and can be performed

at the level of diagrams. In section 4 we will use our prescription to either resolve dis-

crepancies between equal-time and lightcone quantization, or to demonstrate that such

discrepancies are harmless.
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4 Examples and applications

4.1 Vacuum energy

We will now use our prescription for Heff to study the vacuum energy for the deformation

of a general CFT,

〈Heff〉 ≡ lim
x+→0

i∂+〈U(x+)〉. (4.1)

It will be easy to see that there are contributions to the vacuum energy from each order in

the Dyson series expansion of the r.h.s. . Consider the nth order term

∆En = lim
x+→0

i∂+

∫ x+

0
dx+

1 · · · dx+
n 〈T {V (x+

1 ) · · ·V (x+
n )}〉. (4.2)

Following the analysis of section 3.2, we can determine whether this term contributes to

the vacuum energy by studying the associated momentum space correlator G(qi),

〈T {V (x+
1 ) · · ·V (x+

n )}〉 = λn
∫
dq1+ · · · dqn+ e

i
∑
i qi+x

+
i iG(qi) δ

d

(∑
i

qi

)
. (4.3)

However, because all the Lorentz invariant scalar products qi · qj vanish, G must be a

constant,

G(qi) ≡ G0, (4.4)

resulting in a non-zero contribution to the vacuum energy,

∆En = lim
x+→0

i∂+

∫ x+

0
dx+

1 · · · dx+
n iλ

nG0

n−1∏
i=1

δ(x+
i − x+

n )δd−1(0) = −λnG0 δ
d−1(0). (4.5)

Our discussion has been very general, so we will now work out the contributions to the

vacuum energy explicitly in the case of free field theory. Some of the computations will

also be useful as a warm-up for more complicated examples that we will study below.

Vacuum energy in free field theory. Consider a free scalar theory perturbed by a mass

term m2φ2. All diagrams that contribute to the vacuum matrix elements 〈vac|Heff |vac〉
are built from one-loop diagrams with φ2 insertions included in the loop. To evaluate

their contribution to Heff , we will work in mixed position/momentum space, keeping x+ in

position space and all other coordinates in momentum space. In mixed position/momentum

space, each φ propagator can be written as

G(x+,~k) =

∫
dk+

eik+x+

2k+k− − k2
⊥ + iε

. (4.6)

Note that if x+ > 0, then we can close the contour in the upper half-plane, and the

propagator vanishes unless k− < 0. Similarly, if x+ < 0, then we get zero unless k− > 0.

The case where x+ = 0 is more subtle and has to be treated carefully, and in fact our

prescription dictates that all zero mode contributions come from this case.
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A “vacuum” loop with n mass terms has no external momenta flowing through the

loop, so every propagator has the same k− and ~k⊥:

〈T {V (x+
1 ) · · ·V (x+

n )}〉 = m2nδd−1(0)

∫
dk−d

d−2k⊥I, I ≡
∫ n∏

i=1

dki+
ieiki+(x+

i −x
+
i+1)

2ki+k− − k2
⊥ + iε

.

(4.7)

Our argument above implies that this contribution vanishes unless all x+
i coincide. But

when the x+
i coincide, we can obtain (formally infinite) delta function contributions. We

can integrate over the x+
i to calculate the coefficients of these δ(x+

i,i+1) functions. This

integration forces all ki+ to be identical, so we are simply left with∫ (n−1∏
i=1

dx+
i

)
I =

∫
dk+

(2πi)n

(2k+k− − k2
⊥ + iε)n

. (4.8)

This result is also a little subtle. If k− 6= 0, then there is an order-n pole in one place, so

we can close the contour on the other side of the real axis and see that we just get zero.

But if k− = 0, then the integration over k+ diverges. We have again identified a delta

function, this time δ(k−). We can integrate over k− to pick up the coefficient of the δ(k−):∫
dk−

(
n−1∏
i=1

dx+
i

)
I =

∫
dk+dk−(2πi)n

(2k+k−−k2
⊥+iε)n

= (−2πi)n+1

∫ ∞
0

rdr

(r2+k2
⊥)n

=
(−2πi)n+1

(n−1)k
2(n−1)
⊥

,

(4.9)

where we have Wick rotated and changed to radial coordinates. So finally we see that

I =
(−2πi)n+1

(n− 1)k
2(n−1)
⊥

δ(k−)

n−1∏
i=1

δ(x+
i,i+1). (4.10)

Therefore, these diagrams contribute (only) to our prescription for Heff, and furthermore

we see that their entire contribution comes from the k− = 0 modes. The full vacuum

energy is the resummation of all possible such diagrams. While we have focused on free

field theories, this discussion would also apply to bubble diagrams in more general theories.

4.2 Ising model

We have mainly focused on the case where zero modes are individual Fock space modes

in an otherwise dynamical field. However, there are cases where an entire field becomes

non-dynamical in LC quantization and must be integrated out to generate an effective

Hamiltonian for the remaining dynamical fields.

A simple illustrative example is the 2d Ising model. As is well known, a deformation

of this CFT by the energy density ε is equivalent to free field theory of a massive fermion,

L = LIsing −mε = iψ∂+ψ + iχ∂−χ−
√

2mχψ, (4.11)

with the operator identification

ε =
√

2χψ, T ≡ T−− = iψ∂−ψ, T ≡ T++ = iχ∂+χ. (4.12)
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From the Lagrangian, we see that in LC quantization the left-moving field χ has no kinetic

term and is thus non-dynamical. Equivalently, its free equation of motion restricts χ to

only be composed of zero modes,

P−χ = 0. (4.13)

We therefore need to integrate out χ to obtain an effective Lagrangian for the physical

degrees of freedom built from ψ,

Leff = iψ∂+ψ −
i

2
m2ψ

1

∂−
ψ. (4.14)

As we’ll now demonstrate, our prescription automatically constructs this effective potential

directly from the CFT correlation functions, without making any appeal to equations

of motion.

From a conformal truncation perspective, the need to integrate out χ can first be seen

when constructing the naive Hamiltonian from three-point functions. For example, if we

look at the simplest matrix element, which corresponds to mixing between ε and T , we find

〈ε, P |V |T, P ′〉 = m

∫
d2x1 dx

−
2 d

2x3 e
i(P ·x1−P ′·x3)〈ε(x1)ε(x2)T (x3)〉 = 0. (4.15)

Just like in other free or large N examples, this integral vanishes because the scaling

dimensions of ε and T are related by an integer,

∆T = 2∆ε. (4.16)

This behavior continues for other three-point functions, such that we naively find that all

contributions to the Hamiltonian due to this deformation vanish in lightcone quantization.

However, using our prescription, we know that there may be corrections to the Hamil-

tonian from higher-point functions. For example, let’s consider the matrix element between

two insertions of the stress tensor component T , which is built solely from the dynamical

field ψ. Using our prescription, the resulting matrix element can be written in terms of

the unitary evolution operator,

〈T, P |Heff|T, P ′〉 ≡ lim
x+→0

i∂+〈T, P |U(x+)|T, P ′〉. (4.17)

The insertion of the evolution operator can then be expanded into a Dyson series, turning

this expression into a sum of correlation functions,

〈T, P |U(x+)|T, P ′〉 = 〈T, P |T, P ′〉 − i
∫ x+

0
dx+

1 〈T, P |V (x1)|T, P ′〉

− 1

2

∫ x+

0
dx+

1 dx
+
2 〈T, P |T {V (x1)V (x2)}|T, P ′〉+ · · ·

(4.18)

For this particular example, the standard three-point function contribution to the Hamil-

tonian actually vanishes because the associated OPE coefficient is zero,

〈T (x1)ε(x2)T (x3)〉 = 0. (4.19)
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TT

ψ 1
∂ψ

Figure 4. Using our prescription, the Ising four-point function 〈TεεT 〉 gives rise to a Hamiltonian

matrix element involving the effective interaction ψ 1
∂ψ. This contribution arises due to the factor

of δ(x+) in the χ propagator (dashed line).

However, let’s look more carefully at the next contribution in this series, due to the four-

point function,

〈T, P |T {V (x1)V (x2)}|T, P ′〉 = m2

∫
dx−1 dx

−
2 〈T, P |T {ε(x1)ε(x2)}|T, P ′〉. (4.20)

Because the external states are built only from ψ, we can use the fermion representation

of ε to factorize this expression into two independent correlators,

〈T, P |T {ε(x1)ε(x2)}|T, P ′〉 = −2〈T {χ(x1)χ(x2)}〉 · 〈T, P |T {ψ(x1)ψ(x2)}|T, P ′〉. (4.21)

The time-ordered two-point function of χ in this expression is given by

〈T {χ(x1)χ(x2)}〉 =
−i

4π(x+
12 − iε sgn(x−12))

= P
( −i

4πx+
12

)
+

1

4
δ(x+

12) sgn(x−12), (4.22)

where P indicates the principal value. The propagator for χ thus gives rise to a delta

function singularity in x+, leading to a nonzero contribution to the effective Hamiltonian,

〈T, P |δHeff|T, P ′〉 = −1

2
lim
x+→0

i∂+

∫ x+

0
dx+

1 dx
+
2 〈T, P |T {V (x1)V (x2)}|T, P ′〉

=
m2

4
lim
x+→0

i∂+

∫ x+

0
dx+

1 dx
+
2 δ(x

+
12)

∫
dx−1 dx

−
2 sgn(x−12)〈T, P |T {ψ(x1)ψ(x2)}|T, P ′〉

=
im2

4

∫
dx−1 dx

−
2 sgn(x−12)〈T, P |T {ψ(x1)ψ(x2)}|T, P ′〉. (4.23)

Not only do we obtain a nonvanishing contribution to the Hamiltonian, but the result-

ing matrix element is actually equivalent to that obtained by integrating out χ,

〈T, P |δHeff|T, P ′〉 =
im2

2

∫
dx−〈T, P |ψ(x)

1

∂−
ψ(x)|T, P ′〉.

Our prescription therefore automatically “integrates out” χ to reduce the original four-

point function to an effective three-point function, as shown schematically in figure 4.

We can also understand the emergence of this delta function by looking at the associ-

ated momentum space structure of this four-point function, which takes the schematic form

G(q, P, P ′) =

(
q+

q+q− − iε

)
f(q−, P, P

′). (4.24)
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The only dependence on the lightcone energy q+ associated with the Hamiltonian insertions

comes from the χ propagator, which factors out from the rest of the correlator. The real

part of this propagator is manifestly independent of q+, leading to a delta function in x+.

If we repeat this analysis for the higher-point functions in the Dyson series, we find that

there are no other contributions to Heff, which can easily be seen by dimensional analysis.

Each pair of ε insertions brings two lightcone time integrals but only one delta function, so

at higher orders the number of delta function singularities is insufficient to overcome the

suppression as x+ → 0. We therefore only need to consider four-point functions to obtain

the full effective Hamiltonian for this particular theory.

4.3 φ4 theory

Let’s now apply our prescription to a simple example where the resulting IR theory is

interacting. Our UV CFT is simply free field theory involving a single massless scalar field,

which we then deform by adding a mass term and a quartic interaction,

V =

∫
dd−1x

(
1

2
m2φ2 +

1

4!
λφ4

)
. (4.25)

This particular example will allow us to demonstrate how our prescription resolves multiple

known problems in lightcone quantization: the discrepancy between bare couplings in ET

and LC identified by Burkardt in [38], the divergent contributions due to zero modes

discussed by Hellerman and Polchinski in [40], and the insensitivity to tadpoles.

Matching bare parameters in LC and ET. As discussed in section 2.2, there is a

disagreement in the resulting spectrum of φ4 theory if we use the same bare parameters in

ET and LC quantization. However, at least in perturbation theory, this discrepancy can

be removed by shifting the LC bare mass by a counterterm proportional to the expectation

value of φ2 in the interacting theory [38],

m2
LC = m2

ET +
λ

2
〈φ2〉. (4.26)

This discrepancy between ET and LC quantization only arises because we are missing the

effects of zero modes on the Hamiltonian. In other words, the naive expression for VLC,

with the original bare parameters, is incomplete and needs the additional corrections from

higher-point functions, which naturally lead to the shift in eq. (4.26). We can reproduce

the result (4.26) by applying our prescription to the one-particle matrix element,

〈φ, P |Heff|φ, P ′〉 = lim
x+→0

i∂+

∑
n

(−i)n
n!

∫ x+

0
dx+

1 · · · dx+
n 〈φ, P |T {V (x1) · · ·V (xn)}|φ, P ′〉.

If we look at the various terms in this sum, we find that there is a class of contributions,

shown schematically in figure 5, which all have the “plant diagram” structure discussed

in section 3.2. These higher-point correlators therefore contain delta function singularities

and result in additional contributions to the LC Hamiltonian. More importantly, these cor-

relation functions precisely correspond to the Feynman diagrams used in [38] to determine
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φ φ

Figure 5. General structure of plant diagrams which contribute to the effective Hamiltonian

in φ4 theory. These higher-point correlation functions correspond to Feynman diagrams which

contribute to the one-particle mass in equal-time quantization but vanish in lightcone quantization.

By including these terms in Heff, our prescription eliminates the naive discrepancy between the two

quantization schemes.

the counterterm in eq. (4.26). So in this case, our prescription just reduces to the result of

this earlier work.

We have tested (4.26) explicitly up to O(λ5) for the case d = 2 by numerically comput-

ing the mass gap in LC and in ET quantization. First, we discuss the perturbative results.

The LC mass gap µgap is

µ2
gap,LC = m2

LC

[
1 +

∞∑
n=2

cn

(
λ

m2
LC

)n]
,

c2 = −3

2
, c3 =

9

π
, c4 = −11.5198, c5 = 53.62, (4.27)

whereas the ET mass gap is12

µ2
gap,ET = m2

ET

[
1 +

∞∑
n=2

c̃n

(
λ

m2
ET

)n]
,

c̃2 = −3

2
, c̃3 =

9

π
+

63ζ(3)

2π3
, c̃4 = −14.656, c̃5 = 65.97. (4.28)

Finally, the vev 〈φ2〉 is

〈φ2〉 =
63ζ(3)

π3
λ2 − 513ζ(3)

π4
λ3 + 15.2612λ4 +O(λ5). (4.29)

Substituting (4.26) into the LC expression reproduces the ET coefficients analytically up

to O(λ3), and to within 0.2%[4.4%] at O(λ4)[O(λ5)]:

c2 → −
3

2
, c3 →

9

π
+

63ζ(3)

2π3
, c4 → −14.685, c5 → 63.08. (4.30)

While this perturbative check of (4.26) is an encouraging sign, we have nevertheless

found experimentally that it appears to fail at the non-perturbative level. The most serious

12The ET results were obtained by a combination of numerical results from Hamiltonian truncation and

from explicit computations of the Feynman diagrams. The latter were obtained by private communication

from M. Serone and G. Spada, whom we thank for sharing their preliminary results.
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Figure 6. Left: the predicted value for m2
LC from (4.26) as a function of m2

ET, with λ = 1 fixed.

At large m2
ET and m2

LC, the relation is well-described by perturbation theory (in λ
m2 ) and is well-

behaved. However, at small m2
ET, the function is not monotonic, and as a result there are some real

values of m2
LC that correspond to two different real m2

ET values, and some that do not correspond

to any real m2
ET values, indicating that the prescription cannot be correct in this regime. Right:

the predicted mass gap µ2
gap in units of the bare mass, for the ET computation (black, dashed),

the raw LC computation (blue, dot-dashed), and for the LC computation corrected by (4.26) (red,

solid). The corrected LC result does significantly better than the raw result at large m2
ET (small

λ
m2

ET
), but starts to turn back upwards at small m2

ET at the same point that m2
LC(m2

ET) (left plot)

does, and disagrees completely for smaller m2
ET.

issue is that as one decreases the bare ET mass-squared m2
ET with λ fixed,13 the vev 〈φ2〉

increases, and eventually the ‘matching’ m2
LC value defined via (4.26) turns around and

starts to increase for decreasing m2
ET, as shown in figure 6. Therefore, if the prescription

were exactly correct, then by inspection we could choose two different values of m2
ET that

correspond to the same value m2
LC, which means that both m2

ET values would have to have

the same physical predictions. However, no such redundancy is seen in the numerical ET

analysis, and this matching procedure thus fails for values of m2
ET beyond the turnaround

point. We leave a more detailed analysis of the interpretation and consequences of this

result for future work.

No Hellerman-Polchinski corrections. In [40] Hellerman and Polchinski pointed out

additional possible zero mode contributions, beyond those captured by figure 5. In that

work, they were specifically interested in studying the effects of zero modes in the framework

of discrete lightcone quantization (DLCQ) [43, 44], in which the “spatial” direction x− is

compactified. They demonstrated that, in this DLCQ framework, internal loops involving

zero modes appeared to generically lead to IR divergences, precisely due to the δ(x+)

structure of zero mode propagators.

While we are instead interested in studying conformal truncation at infinite volume,

one might worry that such divergences give rise to additional contributions to the effective

lightcone Hamiltonian, beyond those that can be accounted for with a shift in the bare

mass. For example, consider the diagram on the left in figure 7, where two physical modes

13The bare parameter λ is easily matched between ET and LC since the theory is super-renormalizable

and λ is just the leading small 2-to-2 scattering amplitude at high energies in both quantizations.
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φ2 φ2 φ2 φ2

Figure 7. Two possible corrections to the effective lightcone Hamiltonian due to four-point func-

tions. By inserting a complete set of states, we find that the spectral decomposition of the left

diagram survives in the infinite momentum limit, such that there are no analytic terms in qi+ and

thus no contributions to the effective Hamiltonian. The spectral decomposition of the right dia-

gram vanishes in this limit, giving rise to delta function singularities which correct the lightcone

Hamiltonian.

(solid lines) exchange a loop of zero modes (dashed lines). From the perspective of our new

prescription, this diagram corresponds to a four-point function contribution in the Dyson

series expansion,

〈φ2, P |U(x+)|φ2, P ′〉 ⊃ −1

2

∫ x+

0
dx+

1 dx
+
2 〈φ2, P |T {V (x1)V (x2)}|φ2, P ′〉. (4.31)

However, if we repeat the analysis of section 3.2 and study the momentum space form

of this particular correlation function, we find that the loop integral gives rise to non-

analytic dependence on qi · P , where qi are the momenta of the V insertions. When we

Fourier transform with respect to qi+, we therefore do not obtain delta functions in x+.

We can understand this behavior by inserting a complete set of intermediate states

into this four-point function,

〈φ2,P |V (x1)V (x2)|φ2,P ′〉=
∑
O

∫
ddPO
(2π)d

〈φ2,P |V (x1)|O,PO〉〈O,PO|V (x2)|φ2,P ′〉. (4.32)

In ET quantization, this particular diagram only receives contributions from four-particle

intermediate states. If we then take the infinite momentum limit, we find that these in-

termediate contributions do not vanish. This correlation function thus retains its spectral

decomposition in LC quantization and does not give rise to any terms which are analytic

in qi+. Phrased more simply, this process is already captured by the three-point func-

tion contributions to the lightcone Hamiltonian, with no additional four-point function

contribution needed.

We can contrast this example with the diagram on the right in figure 7, which is

simply a two-particle generalization of the mass shift diagrams in figure 5. If we look at

the spectral decomposition of this four-point function in ET quantization, we find that it

also only receives contributions from four-particle intermediate states. However, if we again

take the infinite momentum limit, we find that all of these contributions vanish, because
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Figure 8. Leading corrections to the cubic interaction (left) and bare mass (right) in Heff due to

a tadpole term. Including all diagrams of these two types in the LC Hamiltonian is equivalent to

performing the field redefinition φ→ φ+ v.

the associated operator scaling dimensions are related to that of φ2 by an integer,

∆O = 2∆φ2 + n ⇒ lim
|Px|→∞

〈φ2, P |φ2|O, PO〉 = 0. (4.33)

This lack of a spectral decomposition in LC quantization leads to terms which are analytic

in qi+, which in turn leads to a correction to the effective Hamiltonian.

More generally, we find that the only correlation functions which contribute to the

effective Hamiltonian are the mass renormalization diagrams in figure 5 (and their higher-

particle generalizations).

Effects from tadpoles. Finally, we can deform our theory by a tadpole term,

δV =

∫
dd−1x gφ. (4.34)

From a Lagrangian perspective, it’s obvious that we simply need to shift our field φ by the

acquired expectation value v in order to move to the minimum of the new potential. This

shift then generates a cubic term and corrects the bare mass,

gφ+
1

2
m2φ2 +

1

4!
λφ4 ⇒

φ→φ+v

1

2

(
m2 +

1

2
λv2

)
φ2 +

1

3!
λvφ3 +

1

4!
λφ4 . (4.35)

While the naive LC Hamiltonian built from three-point functions completely misses this

effect (since all matrix elements involving the φ deformation vanish), it is straightforward

to see that the higher-point contributions in Heff automatically generate these shifts in

bare parameters.

For example, consider the matrix element contribution from the four-point function

〈φ,P |T {V (x1)V (x2)}|φ2,P ′〉⊃ gλ
∫
dd−1x1 d

d−1x2〈φ,P |T {φ(x1)φ4(x2)}|φ2,P ′〉, (4.36)

which corresponds to the left diagram in figure 8. This diagram has the familiar plant

diagram structure, which means it contains a delta function associated with the zero mode

propagator (dashed line) and thus contributes to Heff. As we can see, the resulting matrix

element clearly corresponds to a cubic interaction, mixing the one- and two-particle states.
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Similarly, we can obtain the leading contribution to the mass shift by looking at the

five-point function

〈φ, P |T {V (x1)V (x2)V (x3)}|φ, P ′〉

⊃ g2λ

∫
dd−1x1 d

d−1x2 d
d−1x3〈φ, P |T {φ(x1)φ(x2)φ4(x3)}|φ, P ′〉,

(4.37)

which corresponds to the right diagram in figure 8. The two zero mode propagators each

contain a δ(x+) function factor, leading to a non-zero correction to the bare mass.

Of course, to obtain the full Heff we need to include the infinite set of higher-point

functions that fall into these two classes. However, we can already see diagrammatically

that performing this sum is equivalent to computing the VEV of φ. Our prescription

therefore automatically “redefines” φ to account for the presence of a tadpole.

4.4 Holographic models

We now turn to the case of theories at large N , in order to demonstrate how our prescrip-

tion resolves the problem encountered in section 2.3. Specifically, let’s again consider the

example of a large N CFTd dual to a φ4 effective theory in AdSd+1,

Lbulk =
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4

g4

N2
φ4. (4.38)

As discussed in section 2.3, if we deform this theory by the single-trace operator O dual to

the bulk field φ,

Lbdy = LCFT − λNO, (4.39)

we naively find that all contributions to the lightcone Hamiltonian vanish as N →∞.

However, let’s now use our prescription to construct the effective Hamiltonian, just as

in prior examples. Focusing on the matrix element between two insertions of the single-

trace operator O, we again have the possible four-point function contribution

〈O, P |δHeff|O, P ′〉 = −1

2
lim
x+→0

i∂+

∫ x+

0
dx+

1 dx
+
2 〈O, P |T {V (x1)V (x2)}|O, P ′〉. (4.40)

We can compute the underlying position-space four-point function via AdS perturbation

theory, where the leading correction due to the bulk interaction corresponds to the tree-level

Witten diagram shown in figure 9.

As we can see, this diagram clearly has the “plant” structure discussed in section 3.2,

which means its momentum space expression is analytic in the lightcone energy qi+ asso-

ciated with the two zero modes. In fact, because this particular bulk process is a simple

contact interaction, the resulting function has no dependence on qi+. This four-point func-

tion therefore contains a delta function in x+ and provides a nonzero contribution to the

effective Hamiltonian.

We can also see the emergence of this delta function explicitly by directly computing

the zero mode bulk-to-boundary propagators. So long as the single-trace scaling dimension
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Figure 9. Witten diagram for the leading effective Hamiltonian contribution due to a bulk quartic

interaction. The bulk-to-boundary propagators of the two zero modes (dashed lines) have delta-

function singularities in x+, leading to a nonvanishing Hamiltonian matrix element for the physical

external states (solid lines).

∆ > d
2 , there are no IR divergences when integrating over the spatial directions, resulting

in the simple expression

K∆(~q = 0, x+, z) =

∫
dd−1x

(
z

x2 − z2 − iε

)∆

= zd−∆ δ(x+), (4.41)

where we’ve suppressed any overall coefficients. We thus see that, as expected, propagators

of bulk zero modes have delta-function singularities in x+.

Our prescription therefore allows us to construct the effective Hamiltonian for a single-

trace deformation even though the naive three-point function contributions vanish. Note

that even though this resulting matrix element doesn’t mix single-trace operators with

multi-trace ones, it still relies on the multi-trace OPE coefficients contained in the four-

point function. Our prescription thus confirms that for this particular toy example, our

analysis of large N theories in section 1.1 was too naive. If there are delta-function singular-

ities in higher-point functions of single-trace operators, then lightcone conformal truncation

requires the full set of planar limit OPE coefficients, just as in equal-time quantization.

The effective Hamiltonian for this bulk theory doesn’t only receive a contribution

from the four-point function, but actually has an infinite number of contributions coming

from additional higher-point functions, all of which are necessary to correctly capture

the IR physics. Let’s analyze these higher-point corrections more carefully, in order to

determine the structure of the resulting Heff. Consider the nth order term in the Dyson

series expansion,

〈O, P |Heff|O, P ′〉 ⊃
(−i)n
n!

lim
x+→0

i∂+

∫ x+

0
dx+

1 . . . dx
+
n 〈O, P |T {V (x1) . . . V (xn)}|O, P ′〉.

(4.42)

At leading order in the large N limit, this term potentially receives Witten diagram contri-

butions with the same plant structure as the four-point function, where the external states

are connected to a single bulk vertex, from which a “tree” of zero modes grows towards

the boundary to connect to the Hamiltonian insertions, as shown in figure 10.

– 31 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
0

O O

OO

O O

OO
φcl

O

O

O O

φcl

Figure 10. The higher-point function contributions to Heff corresponding to AdS “plant diagrams”

resum to reproduce the bulk profile φcl which solves the bulk equations of motion.

All diagrams of this type are manifestly analytic in qi+, which means they all provide

a nonzero contribution to the effective Hamiltonian. The resummation of this infinite set

of diagrams is actually equivalent to solving the equation of motion for φ in the bulk. This

was anticipated in section 2.3, where we demonstrated that “naive” conformal truncation

does not capture the IR physics arising from a deformation of the bulk profile. In other

words, resumming all of the higher-point function contributions to the Dyson series results

in the full effective Hamiltonian

〈O, P |Heff|O, P ′〉 = N2δd−1(P − P ′)
∫

dz

zd+1
S′′bulk[φcl(z)]K∆(P, z)K∆(P ′, z), (4.43)

where φcl is the solution of the bulk equation of motion with a boundary source,

S′bulk[φcl(z)] = 0 , φcl(z)
z∼0∼ λNzd−∆ + αz∆, (4.44)

and K∆ is the momentum space bulk-to-boundary propagator for the physical modes cre-

ated by the external states,

K∆(P, z) =

∫
ddx e−iP ·x

(
z

x2 − z2 − iε sgn(x+)

)∆

= µ∆− d
2 z

d
2J∆− d

2
(µz). (4.45)

Diagonalizing Heff therefore amounts to finding the spectrum of perturbations around the

saddle point φcl in the semiclassical large N limit. This makes it clear that an infinite

number of terms in the Dyson series are actually necessary to compute Heff exactly, as the

series expansion corresponds to an expansion of φcl in powers of the boundary source λ,

shown schematically in figure 10.

With knowledge of the bulk action, one may be able to reconstruct φcl and compute

Heff directly. In appendix C, we discuss a simple supersymmetric model where this can be

done analytically. However, in more physically realistic cases one might just have access to

the CFT correlators in eq. (4.42). In that case, one might hope that truncating the Dyson

series to a fixed order in λ could be sufficient to compute the Hamiltonian to a reasonable

accuracy. However, there are two obstructions. First, the resummed series may not be

analytic in λ. In a bulk model, this manifests itself with the presence of a boundary VEV,

corresponding to the α term in eq. (4.44). Second, the individual series expansion terms

in eq. (4.42) can be IR divergent. For example, in any large N model with local bulk
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interactions deformed by a single trace boundary deformation, the nth order term in the

Dyson series is proportional to

〈O, P |δH(n)
eff |O, P ′〉 ∼

∫
dz

zd+1
zn(d−∆)zdJ∆− d

2
(µz)J∆− d

2
(µ′z), (4.46)

which diverges for n > 2
d−∆ . On the other hand, we know that the exact expression in

eq. (4.43) is convergent, as φcl approaches a constant in the IR. Therefore, resumming the

whole series is necessary to obtain a finite Hamiltonian.

Alternatively, one can introduce an IR regulator. One possibility is to introduce an IR

brane at z = zIR, so that the integrals (4.46) will be finite by construction. In that case,

we can derive a rough estimate of the highest order term in the Dyson series

nmax & λΛ∆−d
IR (4.47)

needed to access QFT observables (e.g. spectral densities) down to the IR scale ΛIR ∼ z−1
IR .

4.5 O(N) model

As a final example of how to apply the prescription for Heff , in this section we consider a

simple deformation of the O(N) model at large N . The O(N) CFT can be defined via the

explicit action [45]

S =

∫
ddx

[
1

2
(∂µφi)

2 − 1

2
rφ2

i −
1

N

u

4!

(
φ2
i

)2]
, (4.48)

where i = 1, · · · , N and we tune to the critical point r = 0. There is a free fixed point,

u = 0, as well as an interacting one with u 6= 0. We will first focus on the free fixed point;

at the end of this section, we will describe the generalization to the interacting case. We

will deform by the singlet operator φ2, so that

S = SCFT + λN

∫
ddxφ2, (4.49)

and in what follows we drop the i index on φ for simplicity. We will see that in this

model, no contributions to the effective Hamiltonian arise, i.e. Heff = H, except for a

renormalization of the vacuum energy.

Four-point function. We begin by considering the contribution to Heff at second order

in the Dyson series for some external operators O,O′ that carry non-vanishing total mo-

mentum p−. We can try to extract the δ(x+) coefficient from the corresponding four-point

function by integrating over a small window around where the mass deformations coincide.

The four-point function in mixed position/momentum space contains two insertions, one

at x+
1 and one at x+

2 . The x+
2 dependence appears in two propagators, which together are

I ≡
∫
dk+dk

′
+

eix
+
12k++ix+

23k
′
+

(2k+k− − k2
⊥ + iε)(2k′+k− − k2

⊥ + iε)
. (4.50)
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We integrate over x+
2 over a small window around x+

1 :

I ′≡
∫ x+

1 +δ

x+
1 −δ

dx+
2 I = eik

′
+x

+
13

∫
dk+dk

′
+

ei(k+−k′+)δ−e−i(k+−k′+)δ

i(k+−k′++iε)(2k+k−−k2
⊥+iε)(2k′+k−−k2

⊥+iε)
.

(4.51)

Next, we do the k+ integral. We can take the k− to be non-negative, so both poles are

below the real axis. Therefore, only the term with the −ik+δ in the exponent contributes:

I ′ = 2π

∫
dk′+

(
e
i(k′+−

k2
⊥

2k−
)δ
e
− δε

2k− − 1

)
2k′+k− − k2

⊥ + iε

eik
′
+x

+
13

(2k′+k− − k2
⊥ + iε)

. (4.52)

Now, the key question is what happens when we take δ → 0: do we get zero or not? Note

that if we assume k− > 0, then the answer vanishes at δ → 0:

lim
δ→0
I ′ = 0, (k− > 0). (4.53)

However, if k− = 0, then the e
− δε

2k− causes the first term to shut down, and we instead find

lim
δ→0
I ′ =

∫
dk′+

2π

k4
⊥
eik
′
+x

+
13 , (k− = 0). (4.54)

Therefore, we explicitly find that the contributions to Heff from the four-point function

vanish when there is non-zero momentum k− flowing through the propagators between the

relevant operators.

This result still allows for the possibility that a contribution arises that is purely

localized at k− = 0. Since k− = 0 is a point of measure zero in the integral over k−,

the only way it can contribute a finite amount is by having a δ(k−) function localized

contribution in the dk− integrand. To establish that no such δ(k−) contributions are

present, we can set k− = 0 inside the integrand and show that we get a finite result. So, let

us again start with the four-point function with some general two-particle external states

O and O′.14 Without loss of generality, for any tensor operator Oµ1,...,µ` , we can always

choose the component with all minuses, i.e. O−···−. In the two-particle operator case, such

operators are linear combinations of ∂− derivatives acting on φiφi (e.g. (∂2
−φi)φi+(∂−φi)

2),

and in the one-loop diagram this linear combination simply introduces extra dependence

on k− given by the corresponding polynomial fO(k−).15 Consider now setting k− = 0,

and following the propagators around the closed loop, as depicting in figure 11. The first

propagator, from the external operator at x+
4 to the mass insertion at x+

1 , just becomes

a δ(x+
41): ∫

dk+
eik+x

+
41

2k+k− − k2
⊥ + iε

k−=0→ δ(x+
41). (4.55)

14At infinite N , the correlators of higher-particle states, e.g. (φiφi)
2, factor into the correlators of the

two-particle states.
15In the free theory, or the interacting theory at infinite N , operators like (∂µφ)2 with internal contracted

indices can always be reduced using the equations of motion to a linear combination of primaries and

descendants of primaries that have only ∂− derivatives.
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Figure 11. Four-point diagram in mixed position/momentum space, contributing to Heff for

external states O at second order in the Dyson series in the free O(N) model with a mass-squared

φ2 deformation.

Similarly, the propagator between the two mass insertions just becomes δ(x+
12), and the

propagator between the second insertion and the final state becomes δ(x+
23). The last

propagator, between the two external states, is however qualitatively different, since it has

some external p− flowing through it:

fO(k−)fO′(k−)(k−)

∫
dk+

eik+x
+
34

2k+(k−−p−)−k2
⊥+iε

k−=0→ fO(0)fO′(0)

∫
dk+

1

−2k+p−−k2
⊥+iε

.

(4.56)

We have included the polynomials fO(k−), fO′(k−) corresponding to the external states,

but since these are finite they can be ignored. In addition, we have set the factor in

the numerator to 1, since the other propagators became a product of δ functions ∝
δ(x+

41)δ(x+
12)δ(x+

23) = δ(x+
41)δ(x+

12)δ(x+
43), and so set x+

34 = 0. The integral on the r.h.s.

above is logarithmically divergent at large k+. Physically, a logarithmic divergence is not

strong enough just based on dimensional analysis to correspond to a δ(k−) singularity eval-

uated at k− = 0. To be more mathematically precise, we can note that the result is finite

if we choose a two-sided regulator −Λ < k+ < Λ′ with finite Λ/Λ′ in the limit Λ → 0.

Equivalently, if we choose a Gaussian regulator, ∼ e−δ2k2
+ , then the r.h.s. has a finite δ → 0

limit of − iπ
2|p−| . Since this result is finite at k− = 0, there is no δ(k−) factor.16

Higher-point functions. Finally, we argue that there are no contributions to Heff from

higher-point functions (other than the vacuum energy), by reducing higher point functions

to the same form as the four-point function.

First, since mass insertions φ2 have two legs, we can think of one “coming in” and one

“going out” and we can follow them around the diagram in a chain until they eventually

16Note that this logic relied crucially on the presence of the p− in the last propagator. In the vacuum

bubble, p− = 0, and the last propagator at k− just produces another δ(x+
34). Since there is already a

δ(x+
34) from the chain of the other propagators, the final result contains δ(x+

34)δ(x+
34) = δ(x+

34)δ(0), which

does have the required strength singularity to indicate the presence of a δ(k−) term. As a final comment,

one may worry about divergences from the k⊥ integral. However, one can always (and may be forced to)

introduce a regulator on k⊥. Since this regulator is boost invariant, it cannot introduce additional k− or

x+ dependence, and so cannot introduce either δ(k−) or δ(x+) functions.
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end by connecting to the external state. Consider chains that are at least three insertions

long. We are only interested in δ(x+) function contributions, so consider the case where

all the times of the operators coincide. If we take any insertion in the middle of the chain,

it has k− flowing into and out of it, so it cannot have both its legs pointing into the past

or into the future - if it does, then the diagram vanishes. This means that we can integrate

over its time, because the only possible contributions come from when it lines up with the

time of the other operators in the tower. But this leads to a significant simplification, if

we look at the two propagator factors coming out of it:∫
dx+

i

∫
dk+dk

′
+

eik+(x+
i−1−x

+
i )+ik′+(x+

i −x
+
i+1)

(2k+k−−k2
⊥+iε)(2k′+k−−k2

⊥+iε)
=

∫
dk+

eik+(x+
i−1−x

+
i+1)

(2k+k−−k2
⊥+iε)2

. (4.57)

The r.h.s. of the above expression is the same form as a single propagator, except that the

denominator is squared. Clearly, repeating this procedure for n such internal insertions

just gives ∫
dk+

eik+(x+
i −x

+
i+n)

(2k+k− − k2
⊥ + iε)n

. (4.58)

Therefore, all the propagators between all the mass terms just collapse to a single modified

propagator of the above form. The result is equivalent to a four-point function with this

modified propagator between the two mass terms, and at k− = 0 the modified propagator

simply has extra powers of k⊥ compared to the original propagator. The argument in the

previous subsection then immediately applies.

Interacting case. Here, we will briefly describe how the above arguments can be gen-

eralized to the interacting fixed point of (4.48). As usual, is it useful to rewrite the action

in terms of an auxiliary field σ:

S ∼=
∫
ddx

[
1

2
(∂µφi)

2 − 1

2
r′φ2

i −
1

2
σφ2

i +
N

u
σ2

]
. (4.59)

At infinite N , the σ two-point function can be computed in closed form. At the

critical point, it can be summarized by the fact that σ becomes a primary dimension

∆ = 2 operator, so 〈σ(q)σ(−q)〉 ∝ q. Planar 1PI correlators of the relevant deformation φ2

are just one-loop diagrams with φ2 insertions. At a diagrammatic level, the main difference

between a theory of N free bosons and the interacting O(N) CFT is that in the interacting

theory there are σ propagators attached to each φ2 insertion. In momentum space, these

are trivial to include.

The prescription (3.8), on the other hand, expresses the correlators as functions of

lightcone time. Since contributions to Heff arise only from δ(x+) function dependence in

the correlators, we can isolate these contributions either by working in momentum space

and considering the limit where the energy q+ of the relevant operator insertions goes to

infinity, or we can work directly in real space and integrate over an infinitesimal window

in time. We will mostly use the latter strategy. In this case, there is a useful simplification

that arises when we restrict our attention to such δ(x+) contributions, that allows us to
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take correlators in the free O(N) theory and simply associate an extra factor of the k⊥
momentum component flowing through the φ2σ vertex. The reasoning is as follows.

Consider any correlator with some insertions of σ in the interacting O(N) theory, with

no external q− flowing in through the σ propagator. We can write the σ propagator in

terms of its spectral function in mixed position/momentum space as

〈σ(x+, q−, q⊥)σ(0,−q−,−q⊥)〉 =

∫
dµ2dq+

µeiq+x
+

2q+q− − q2
⊥ − µ2 + iε

. (4.60)

The relevant deformation σ is integrated along all x− and therefore has q− = 0. With

q− = 0, it is clear that there are no poles as a function of q+, so if x+ 6= 0, then the

propagator vanishes; the only possible contribution is proportional to δ(x+). We can

compute the coefficient of the δ(x+) function by integrating,∫
dx+

∫ Λ

0
dµ2dq+

µeiq+x
+

−q2
⊥ − µ2 + iε

= −
∫ Λ

0

dµ2µ

q2
⊥ + µ2

= π|q⊥|, (4.61)

where we have subtracted off a UV divergence = −2Λ. Therefore,

〈σ(x+, 0, q⊥)σ(0, 0,−q⊥)〉 ∼= δ(x+)π|q⊥|. (4.62)

In our prescription, we integrate over x+, so we just pick up the contribution π|q⊥|. A 1PI

diagram in the interacting theory, with the external σ operators, is therefore reduced to

diagram in the free theory, without them, times a factor of π|q⊥|.

5 Discussion and future directions

Our main result in this paper is the prescription (1.14) for an effective lightcone Hamilto-

nian Heff that incorporates the effects of integrating out zero modes. The proposed Heff

was defined directly in terms of CFT correlation functions, without reference to an un-

derlying Lagrangian. One can regard Heff as the result of integrating out the zero modes

before taking the LC limit.

We have shown how to apply our prescription in several examples, but there is more

work to do to understand how Heff behaves in various specific theories. However, it seems

very plausible that many theories will not have any contribution to Heff beyond the vacuum

energy and the renormalization of bare parameters. The reason is that, as we saw in

section 2.1, LC quantization only discards zero mode contributions between operators with

definite relations in their dimensions. Such relations arise in free theories and infinite N

theories, and often in integrable theories, but rarely in generic non-integrable theories.

Of course, free theories are a particularly important class, since their CFT data is

readily available. It is likely that the types of arguments employed in sections 3.2, 4.3,

and 4.5 could be generalized to a large class of perturbative theories. The goal would be to

show that perturbative deformations lead to an Heff whose deviations from the naive LC

Hamiltonian can be completely absorbed by a shift in the bare parameters of the theory,

plus terms like the non-local fermion bilinear term in (4.14) that result from integrating
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out non-dynamical fields. At a diagrammatic level, this seems plausible because diagrams

contributing to Heff must have very special configurations17 in order to produce δ(x+)

functions in LC time.

In general, it may be more natural to study Heff using CFT data. Unfortunately, the

OPE is not so well-behaved in momentum space. Most of our analyses have been either

fully in momentum space or else in mixed position/momentum space. It would be useful

to understand if they can nevertheless be reformulated in terms of a convergent OPE.

Our prescription for constructing Heff allows one to match LC and ET calculations to

all orders in the deformation parameters. However, it is still possible for there to be addi-

tional non-perturbative effects which are missed by this construction, as we demonstrated

in the case for 2d φ4 theory in section 4.3. While one might hope that the perturbative

data is sufficient to determine these non-perturbative effects either quantitatively or at

least qualitatively (for instance, whether these effects can simply be absorbed into a shift

in bare parameters), it remains unclear if this is generally the case. We plan to consider

these effects in more detail in future work, which must be understood in order to develop

a fully non-perturbative prescription for integrating out zero modes.

Looking ahead, perhaps our most important conclusion is that RG flows originating

from N = 4 SYM at infinite N can be investigated using lightcone Hamiltonian truncation

methods. If our expectations about Heff bear out, then at least at finite ’t Hooft coupling λ

the only contribution to Heff arises from integrating out the non-dynamical component of

fermion fields on the LC. The only other data that is needed for LC Hamiltonian truncation

is the spectrum of operators, which are known, and three-point functions of single-trace

operators, which have been obtained up to three loops [46, 47].18 So it may be possible

to obtain the spectra of large N confining gauge theories in practice by perturbing N = 4

SYM theory.
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A Hamiltonian matrix elements from correlation functions

In this appendix, we consider the standard method for computing Hamiltonian matrix

elements from CFT three-point functions. First, we briefly review the use of iε prescriptions

in Lorentzian correlation functions. Using this prescription, we then explicitly compute

Hamiltonian matrix elements for the example of d = 2, demonstrating that a large set of

matrix elements vanish for free or large N theories.

A.1 Lorentzian correlators and the iε prescription

In standard conformal truncation, Hamiltonian matrix elements are given by Fourier trans-

forms of Lorentzian correlation functions. These correlators can in turn be defined as an-

alytic continuations of Euclidean correlation functions. However, there are ambiguities in

this analytic continuation, depending on our choice of contour. These different contours

correspond to different orderings of the operators in the resulting Lorentzian correlator.

Fortunately, we can use a simple iε prescription to fix a particular choice of contour,

and thus a particular operator ordering (for a nice review, see [48]). In general, we can

obtain a specific ordering for Lorentzian correlators with the following prescription

〈O1(t1, ~x1) · · · On(tn, ~xn)〉 = lim
εi→0
〈O1(t1 − iε1, ~x1) · · · On(tn − iεn, ~xn)〉, (A.1)

where the limit is taken with ε1 > · · · > εn (such that O1 is the leftmost operator and On
the rightmost). In terms of the lightcone coordinates x± ≡ 1√

2
(t ± x), this prescription

becomes

x±i → x±i − iεi. (A.2)

As a simple example, let’s consider a two-point function in d = 2. Using this iε

prescription, we find the two orderings

〈O(x1)O(x2)〉 =
1(

(x+
12 − iε)(x−12 − iε)

)∆ ,
〈O(x2)O(x1)〉 =

1(
(x+

12 + iε)(x−12 + iε)
)∆ . (A.3)

We can also use these two expressions to obtain the time-ordered correlation function

〈T {O(x1)O(x2)}〉 =
1(

(x+
12 − iε sgn(t12))(x−12 − iε sgn(t12))

)∆ =
1

(x+
12x
−
12 − iε)∆

. (A.4)

We could also consider ordering operators with respect to the lightcone time x+, rather

than the standard time t. However, this iε prescription is only necessary if the two op-

erators are timelike separated. In other words, both orderings are equivalent at spacelike
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separation, since the operators commute due to causality,

[O(x1),O(x2)] = 0 (x2
12 < 0). (A.5)

At timelike separation sgn(x+) = sgn(t), which means that lightcone time-ordering is

actually the same as standard time-ordering in causal theories.

A.2 Computing matrix elements

For a general CFT deformed by a relevant operator OR, the resulting Hamiltonian matrix

elements are given by

〈O, ~P , µ|V |O′, ~P ′, µ′〉 ≡ λ
∫
ddx1 d

d−1x2 d
dx3 e

i(P ·x1−P ′·x3)〈O(x1)OR(x2)O′(x3)〉. (A.6)

The three-point function in the integrand is a Wightman function with a specific ordering.

We therefore need to use the appropriate iε prescription to enforce this ordering. For

example, in d = 2 this correlator takes the form

〈O(x1)OR(x2)O′(x3)〉 =
COO′OR

(x−12 − iε)h+hR−h′(x−23 − iε)h
′+hR−h(x−13 − iε)h+h′−hR

× 1

(x+
12 − iε)h̄+h̄R−h̄′(x+

23 − iε)h̄
′+h̄R−h̄(x+

13 − iε)h̄+h̄′−h̄R
,

(A.7)

where h and h̄ are the (anti)holomorphic dimensions

h ≡ ∆ + `, h̄ ≡ ∆− `. (A.8)

For this 2d example, let’s specifically focus on the integral over the insertion of the

relevant deformation, x−2 . This integral takes the form

I(x−1 , x
−
3 ) ≡

∫
dx−2

1

(x−12 − iε)h+hR−h′(x−23 − iε)h
′+hR−h

. (A.9)

Looking at the integrand, we see that there are two branch points, where OR collides with

one of the other operators. Due to our iε prescription, one of these branch points is located

in the upper half plane and the other is in the lower half plane, as shown in figure 12. So

long as the relevant deformation has ∆R >
d
2 , we can then evaluate this integral by closing

the contour on either side, leading to the result

I(x−1 , x
−
3 ) =

2πiΓ(2hR − 1)

Γ(h+ hR − h′)Γ(h′ + hR − h)(x13 − iε)2hR−1
. (A.10)

However, if the holomorphic dimensions are related by an integer, such that

h′ = h+ hR + n, (A.11)

then one of the gamma functions in the denominator is singular, such that this expression

vanishes.
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x−
1 − iϵ

x−
3 + iϵ

x−
2

Figure 12. Integration contour for evaluating Hamiltonian matrix elements. The iε prescription

forces the two branch points to lie on opposite sides of the real axis. If the scaling dimensions are

related by an integer, such that h′ = h+ hR + n, one of the branch points becomes a zero, and the

integral vanishes.

This behavior is easy to understand from the associated integration contour. When

the dimensions are related by an integer, the integrand takes the form

1

(x−12 − iε)h+hR−h′(x−23 − iε)h
′+hR−h

=
(x−12 − iε)n

(x−23 − iε)2hR+n
. (A.12)

In this case, there is no longer a branch point at x−1 , such that if we close the contour in

the lower half plane the integral (and the resulting Hamiltonian matrix element) vanishes,

〈O, P−, µ|VLC|O′, P ′−, µ′〉 = 0 (h′ = h+ hR + n). (A.13)

For theories at large N , this relation between dimensions precisely corresponds to the

case where one of the operators is a double-trace operator built from the other two,

O′ = [OOR]n,n̄ ≡ O
↔
∂n−
↔
∂n̄+OR. (A.14)

We thus see that all matrix elements mixing single-trace operators with double-trace op-

erators vanish at infinite N ,

〈O, P |VLC|[OOR]n,n̄, P
′〉 = 0 (N →∞). (A.15)

While we’ve focused on the case of d = 2 for the sake of simplicity, this result can be

generalized to arbitrary d.

B Details of the bulk model Old-Fashioned Perturbation Theory

Here we will go through the details of the Old-Fashioned Perturbation Theory (OFPT)

computation, referenced in section 2.4, of the energy eigenvalues in the bulk toy model

at second order. We want to evaluate the contributions at second order, (2.24), from

double-trace operators.

The relevant operator is a deformation to the CFT described by the interacting theory

in the bulk with a quartic coupling ∼ g4φ
4. To take the effect of the bulk interaction into
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account, we will also work to first order in an expansion at small g4. The computation

will be easiest to do if we first sum over double-trace operators in a bulk Fock space basis;

once we have the answer, it will be straightforward to interpret the result as a sum over

primary operators.

To begin, we write the double-trace states corrected by the g4φ
4 coupling in the bulk

at leading order:

|p1, p2〉(1) = |p1, p2〉+

∫
d2p̃1d

2p̃2
〈p̃1p̃2|

∫
dzdx−

√
gg4φ

4|p1, p2〉
µ̃2

1
p1−

+
µ̃2

2
p2−
− µ2

1
p1−
− µ2

2
p2−

|p̃1p̃2〉. (B.1)

States without an (n) superscript are eigenstates in the absence of both the bulk interaction

g4φ
4 and the boundary deformation V . The above expression is the expansion in g4φ

4 and

should not be confused with the expansion in the relevant deformation V ∼ λO(q−); we

will perform two separate OFPT expansions, one in g4 (to first order), and one in V (to

second order). To avoid clutter, from now on we will use the abbreviation∫
g4φ

4 ∼=
∫
dzdx−

√
gg4φ

4. (B.2)

The denominator in (B.1) is the energy denominator, and µ2 is the mass-squared of

each state. The integral d2p̃1d
2p̃2 can equally well be thought of as an integral over

µ̃1, µ̃2, p̃1−, p̃2−.

Next, we return to the second order OFPT term in the expansion in the relevant

deformation V :

δP+ ≡
[
〈O, p, µ|H|O, p′, µ′〉

](2)
⊃
∫
d2p1d

2p2
〈p|V |p1p2〉(1)(1)〈p1, p2|V |p′〉

µ2

p−
− µ2

1
p1−
− µ2

2
p2−

+ (p↔ p′).

(B.3)

We have written ⊃ instead of = above because we are just considering the contribution

from the double-trace states at this order. Substituting the expression for |p1p2〉(1) into

δP+ above, we need the following overlaps:

〈p|
∫
λO|p1, p2〉(0) = λµν2δ

2(p− p1)δ(p2− − q−) + sym, ν ≡ ∆− 1, (B.4)

and

I ≡ 〈p|V
∫
d2p̃1d

2p̃2
〈p̃1p̃2|

∫
g4φ

4|p1, p2〉
µ̃2

1
p1−

+
µ̃2

2
p2−
− µ2

1
p1−
− µ2

2
p2−

|p̃1p̃2〉 = λ

∫
dµ̃2

2µ̃
ν
2

q−

〈p, q−, µ̃2|
∫
g4φ

4|p1, p2〉
µ2

p−
+

µ̃2
2
q−
− µ2

1
p1−
− µ2

2
p2−

.

(B.5)

The matrix element of g4φ
4 on the r.h.s. above can be evaluated using standard methods

for Witten diagrams:

I = λ

∫
dµ̃2

2µ̃
ν
2

q−

A(µ, µ1, µ2, µ̃2)

µ2

p−
+

µ̃2
2
q−
− µ2

1
p1−
− µ2

2
p2−

, (B.6)

A(µ, µ1, µ2, µ̃2) = 〈p, q−, µ̃2|
∫
g4φ

4|p1, p2〉 = g4

∫ ∞
0

zdzJν(µ1z)Jν(µ2z)Jν(µ̃2z)Jν(µz).
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Putting everything together, one finds

δP+ ⊃
∫

dµ2
2dµ̃

2
2µ

ν
2µ̃

ν
2

(µ2(1− q−
p−

)− µ2
2)(µ̃2

2 − µ2
2)
A(µ, µ, µ2, µ̃2). (B.7)

The integral is over the mass-squareds of the Fock space modes, but we are interested in the

contribution from the mass-squareds of the full double-trace states. To change variables,

we start with the mass-squared M2 of the double-trace state:

M2 = (p1 + p2)2 = µ2
1 + µ2

2 + µ2
2

p1−
p2−

+ µ2
2

p2−
p1−

. (B.8)

In the evaluation of δP+, δ functions set pµ = pµ1 and p2− = q−, so

M2 ∼= µ2

(
1 +

q−
p−

)
+ µ2

2

(
1 +

p−
q−

)
. (B.9)

In the limit of small q− � p− and large M2 � µ2 (with fixed external momentum p and

µ2), we therefore have the relation

µ2
2 ≈M2q−/p−. (B.10)

Finally, we obtain the relation described in the text:

δP+∼
∫
dµ̃2

2dM
2 q−
p−
µ̃ν2

(
M2 q−

p−

) ν
2
−2

A
(
µ,µ,M2 q−

p−
, µ̃2

)
, (M2�µ2, µ̃2

2 and q−� p−).

(B.11)

We would like to understand how this result scales at large M2 and small q− for general

values of ν. This will be determined by the integral

δP+ ∼
∫
dµ̃2

2 µ̃
ν
2

(
M

√
q−
p−

)ν−2

A(µ, µ,M(q−/p−)1/2, µ̃2) (B.12)

which in turn depends on the amplitude

A(µ, µ, µ2, µ̃2) = g4

∫ ∞
0

zdz [Jν(µz)]2 Jν(µ2z)Jν(µ̃2z) (B.13)

evaluated at large µ2. We can immediately evaluate the µ̃2 integral since only a single

Bessel function in the amplitude depends on this variable, yielding

δP+ ∼ g4

(
M

√
q−
p−

)ν−2 2νΓ(ν + 1
2)√

π

∫
dz

zν
[Jν(µz)]2 Jν

(
zM

√
q−
p−

)
. (B.14)

Note that for ν > −1
2 the integrand is convergent near z = 0. If we expand at large M , we

can simplify the Bessel function

Jν

(
zM

√
q−
p−

)
≈

√
2
π sin

(
1
4(−2πν + 4zM

√
q−
p−

+ π)
)

√
zM

√
q−
p−

. (B.15)
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In this approximation, the remaining z integral essentially becomes the large ‘energy’

Fourier transform of

f(z) = z−ν [Jν(µz)]2 (B.16)

with respect to z. It appears that its possible to directly evaluate this integral in terms of

3F2 hypergeometric functions (producing a final result that scales as 1/M3 for all ν), but

there is a better way to understand the large M behavior.

At very large values of M , the Fourier transform will be dominated by the least ana-

lytic parts of f(z). Since f is smooth at general values of z, this means that the transform

will be dominated by the boundary of the region of integration, namely small z. In this

limit f(z) ∼ zν , so we can evaluate equation (B.14) simply by rescaling the integration

variable, giving

δP+ ∼ g4
1(

M
√

q−
p−

)3 (B.17)

for all values of ν at large M , where we have neglected many numerical factors.

C SUSY bulk model

In this section we analyze a large N model with local bulk Lagrangian in which the bulk

profile can be solved exactly. As discussed in section 2.3, finding the correct AdS vacuum

profile in necessary to describe the correct IR QFT.

In particular, consider a “supersymmetric” bulk Lagrangian for a single scalar field, in

terms of a superpotential W (φ),

S = N2

∫
dd+1x

√−g1

2

[
z2

(
∂zφ−

1

z

∂W

∂φ

)2

+
1

2
z2(∂µφ)2

]
(C.1)

∼ N2

∫
dd+1x

√−g
[

1

2
z2(∂zφ)2 − dW +

1

2

(
∂W

∂φ

)2

+
1

2
z2(∂µφ)2

]
. (C.2)

For definiteness, let us fix the form of the superpotential,

W =
m

2
φ2 − g

3!
φ3 , (C.3)

corresponding to a bulk mass M2 = m(d − m) and UV conformal dimension ∆ = m or

∆ = d −m for the boundary operator. In this paper we consider the second case, since

deforming the CFT by an operator with dimension d
2 < ∆ < d can be more directly treated

with Conformal Truncation.

The exact background solution is found by solving ∂zφcl = 1
z
∂W
∂φ

∣∣∣
φ=φcl

, which in case

of the explicit superpotential (C.3) gives

φcl(z) = λ
zm

1 + g
2mλz

m
(C.4)
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which in the UV approaches

φcl
z→0∼ λzm + o(z2m) . (C.5)

According to the standard AdS/CFT dictionary, the boundary condition (C.5) is equiv-

alent to deforming the boundary action by δS = Nλ
∫
O∆. Note that the power zd−m

is absent in (C.5), so that 〈O∆〉 = 0. This is property holds for any form of the local

superpotential W .

In the IR, the bulk profile (C.4) flows to a constant, φcl
z→∞∼ 2m

g . Expanding the

potential around the asymptotic profile, the mass squared for the linearized spectrum of

perturbations is V ′′(φcl) = m(d + m). That corresponds to an IR CFT with spectral

dimension ∆IR = d+m = 2d−∆, which is irrelevant.

Using Conformal Truncation, it is possible to plugin (C.5) into (4.43) to compute

the effective Hamiltonian for the spectrum of perturbations around φcl. That would give

access to information on the full RG flow, for example via the spectral density of O∆.

That, however, lies outside the scope of the present work.

D Lightcone truncation and the infinite momentum limit

In this appendix, we demonstrate that the matrix elements of the “naive” lightcone Hamil-

tonian, which are computed from CFT three-point functions, correspond to the infinite

momentum limit of matrix elements of the more familiar equal-time Hamiltonian. While

this result is perhaps not surprising, establishing this relation is an important step in

justifying our prescription for the effective LC Hamiltonian.

To start, let’s briefly review the structure of conformal truncation in ET and LC

quantization. In both cases, the correction to the Hamiltonian density simply corresponds

to a relevant local operator OR(x). The resulting ET Hamiltonian is given by integrating

this relevant operator over a slice of fixed time t,

H = H0 + VET, VET ≡ λ
∫
dd−1xOR(t, ~x), (D.1)

while the LC Hamiltonian is obtained by integrating over a slice of fixed lightcone time x+,

P+ = P+0 + VLC, VLC ≡ λ
∫
dx−dd−2x⊥OR(x+, x−, ~x⊥). (D.2)

Here, ~x⊥ is the set of directions perpendicular to the lightcone directions x± ≡ 1√
2
(t± x).

We are specifically interested in computing the matrix elements of the invariant mass

operator M2 ≡ PµPµ. We can write this in terms of the ET Hamiltonian,

M2 = (H0 + VET)2 − ~P 2 = M2
0 + {H0, VET}+ V 2

ET, (D.3)

or in terms of the LC Hamiltonian,

M2 = {P+0 + VLC, P−} − ~P 2
⊥ = M2

0 + {P−, VLC}. (D.4)
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For conformal truncation, we consider the matrix elements of M2 in a basis of states with

definite conformal Casimir C, spatial momentum ~P , and invariant mass µ,

|O, ~P , µ〉 ≡
∫
ddx e−iP ·xO(x)|0〉, (D.5)

where µ2 ≡ P 2 is the associated eigenvalue of the unperturbed mass operator M2
0 . The

resulting ET basis states are labeled by the spatial momentum ~P = (Px, ~P⊥), while the

LC states are labeled by ~P = (P−, ~P⊥). Note that these basis states are defined by Fourier

transforming with respect to all spacetime directions, regardless of quantization scheme.19

Because the physical mass-squared is Lorentz invariant, the eigenvalues of the full

infinite-dimensional matrix constructed from M2 are the same in both ET and LC quan-

tization. However, the individual matrix elements in the two quantization schemes are

generically different, due to the fact that the operator is acting on two different Hilbert

spaces. If we truncate the two matrices by setting some Cmax and then diagonalize, we will

therefore obtain two different sets of eigenvalues. While these eigenvalues must converge

to the same result as Cmax → ∞, at any finite truncation level there will generically be

some difference.

However, we now want to show that in the infinite momentum limit the individual ma-

trix elements in ET quantization exactly match those of LC quantization. In other words,

we can define the LC Hamiltonian as the infinite momentum limit of the ET Hamiltonian.

To do so, we first show that in the limit of infinite spatial momentum (|Px| → ∞), the

matrix elements that are linear in V match in the two quantization schemes,

lim
|Px|→∞

〈O, Px, µ|{H0, VET}|O′, P ′x, µ′〉 = 〈O, P−, µ|{P−, VLC}|O′, P ′−, µ′〉. (D.6)

We then show that the matrix elements of V 2
ET vanish at infinite momentum,

lim
Px→∞

〈O, Px, µ|V 2
ET|O′, P ′x, µ′〉 = 0. (D.7)

As a first step, consider the normalization of our basis states. Given the definition

in eq. (D.5), we find that the inner product is simply the Fourier transform of a CFT

two-point function,

〈O, ~P , µ|O, ~P ′, µ′〉 =

∫
ddx1 d

dx2 e
i(P ·x1−P ′·x2)〈O(x1)O(x2)〉. (D.8)

Since the transverse momenta are conserved in both quantization schemes, we can specifi-

cally consider the reference frame with ~P⊥ = 0, without loss of generality.

Depending on our choice of quantization scheme, we can then rewrite this inner product

in the form

〈O, ~P , µ|O, ~P ′, µ′〉 =

{
2E(2π)δ(Px − P ′x) δ(µ2 − µ′2)NO(P ) (ET)

2P−(2π)δ(P− − P ′−) δ(µ2 − µ′2)NO(P ) (LC)
(D.9)

19As shown in [49], this complete set of states in Minkowski space can be mapped to the more familiar

radial quantization states via a combination of conformal transformations and Wick rotation.
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where, for simplicity, we’ve suppressed the overall delta functions for the transverse mo-

menta. Note that both quantization schemes have the same overall normalization factor

NO(P ) ≡
∫
ddx eiP ·x〈O(x)O(0)〉. (D.10)

Let’s look at this normalization factor more carefully. Because we’ve set ~P⊥ = 0, this

function can only depend on µ and Px (or equivalently µ and P−). However, if we organize

our basis into eigenstates of the operator J+−, which generates boosts in the t-x plane,

then we can complete fix the Px-dependence, obtaining the general expression

NO(P ) = P 2m
− fO(µ), (D.11)

where m is the boost eigenvalue of O.

Turning to the mass-squared operator, we can write the matrix elements in a somewhat

similar form,

〈O, ~P , µ|M2|O′, ~P ′, µ′〉 =

{√
4EE′(2π)δ(Px − P ′x)M(ET)

OO′ (P, P
′)

2P−(2π)δ(P− − P ′−)M(LC)
OO′ (P, P

′)
(D.12)

where we’ve again suppressed any ~P⊥ delta functions. In ET quantization, there are three

distinct contributions to these matrix elements: the original CFT term M2
0 , the linear

correction {H0, VET}, and the quadratic correction V 2
ET. Focusing first on the linear term,

we can write the properly normalized ET matrix element as the Fourier transform of a

CFT three-point function,

δM(ET)
OO′ (P, P

′) =
λ(E + E′)√

4EE′NO(P )NO′(P ′)

∫
ddx ddx′ ei(P ·x−P

′·x′)〈O(x)OR(0)O′(x′)〉.

(D.13)

Similar to the inner product, we can fix the Px-dependence of this matrix element by

using the transformation of the operators under J+−, obtaining

δM(ET)
OO′ (P, P

′) =
λ(E + E′)√

4EE′NO(P )NO′(P ′)
Pm− P

′m′
− g

(
µ, µ′,

P ′−
P−

)
. (D.14)

However, the overall scaling with respect to boosts is precisely cancelled by the normaliza-

tion factors, reducing this to the somewhat simpler expression

δM(ET)
OO′ (P, P

′) =
λ(E + E′)√

4EE′fO(µ)fO′(µ′)
g

(
µ, µ′,

P ′−
P−

)
. (D.15)

If we now take the limit Px → −∞,20 we find that the matrix element reduces to the

Px-independent expression

lim
Px→−∞

δM(ET)
OO′ (P, P

′) =
λ g(µ, µ′)√
fO(µ)fO′(µ′)

. (D.16)

20The direction of this limit does not change the final result, but taking Px → −∞ is the natural choice

in order to obtain slices of fixed x+ (rather than x−).
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The resulting expression exactly matches the linear correction to the LC matrix elements,

δM(LC)
OO′ (P, P

′) =
λ√

NO(P )NO′(P ′)

∫
ddx ddx′ ei(P ·x−P

′·x′)〈O(x)OR(0)O′(x′)〉

=
λ g(µ, µ′)√
fO(µ)fO′(µ′)

.

(D.17)

We therefore see that the LC matrix elements simply correspond to the infinite mo-

mentum limit of ET matrix elements,

lim
|Px|→∞

M(ET)
OO′ (µ, µ

′, Px) =M(LC)
OO′ (µ, µ

′). (D.18)

One interesting consequence of this relation is the observation that LC matrix elements are

actually independent of the choice of reference frame, as all P−-dependence cancels out.

Lightcone truncation is thus the natural framework for making both unitarity and Lorentz

invariance manifest.

To complete this argument, though, we also need to establish that the matrix element

contributions from V 2
ET vanish at infinite momentum,

lim
Px→∞

〈O, Px, µ|V 2
ET|O′, P ′x, µ′〉 = 0. (D.19)

To see this, consider inserting a complete set of states,

〈O, Px, µ|V 2
ET|O,′ P ′x, µ′〉 ∼

∑
ψ

∫
dE〈O, Px, µ|VET|ψ, Px, E〉〈ψ, Px, E|VET|O′, P ′x, µ′〉,

where we have labeled the intermediate states by their energy E and spatial momentum

Px. The range of integration of E is restricted to E ≥ Px, since the invariant mass-squared

must be positive, but is also restricted to E ≤
√
P 2
x + Λ2 ≈ Px+ Λ2

2Px
in the presence of a UV

cutoff, which we generically must introduce to even define the matrix elements of VET. The

range of integration for E therefore vanishes as Px →∞. Equivalently, the integral could

instead be written in terms of the invariant mass µ2
ψ of the intermediate state, in which

case we obtain an explicit suppression factor of 1/
√
P 2
x + µ2

ψ in the integration measure.

The integral therefore vanishes at infinite momentum, since both the range of integration

and the matrix elements in the integrand remain finite in the Px →∞ limit.21

21Note that we can take the Px → ∞ limit after performing the dµ2
ψ integration, so the subtleties that

we saw in evaluating the Dyson series at infinite momentum do not arise here.
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